CN111766274A - Pd修饰的α-Fe2O3纳米材料及其制备方法和应用 - Google Patents
Pd修饰的α-Fe2O3纳米材料及其制备方法和应用 Download PDFInfo
- Publication number
- CN111766274A CN111766274A CN202010644923.6A CN202010644923A CN111766274A CN 111766274 A CN111766274 A CN 111766274A CN 202010644923 A CN202010644923 A CN 202010644923A CN 111766274 A CN111766274 A CN 111766274A
- Authority
- CN
- China
- Prior art keywords
- solution
- modified
- nano
- dodecahedral
- nano material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000463 material Substances 0.000 title claims abstract description 22
- 238000002360 preparation method Methods 0.000 title claims abstract description 12
- WQOXQRCZOLPYPM-UHFFFAOYSA-N dimethyl disulfide Chemical compound CSSC WQOXQRCZOLPYPM-UHFFFAOYSA-N 0.000 claims abstract description 62
- 239000002086 nanomaterial Substances 0.000 claims abstract description 53
- 239000002105 nanoparticle Substances 0.000 claims abstract description 34
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 claims abstract description 28
- 238000000034 method Methods 0.000 claims abstract description 10
- 239000002245 particle Substances 0.000 claims abstract description 6
- 239000000243 solution Substances 0.000 claims description 68
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 46
- 239000000843 powder Substances 0.000 claims description 24
- 238000003760 magnetic stirring Methods 0.000 claims description 17
- 239000008367 deionised water Substances 0.000 claims description 14
- 229910021641 deionized water Inorganic materials 0.000 claims description 14
- 238000001035 drying Methods 0.000 claims description 13
- 238000000227 grinding Methods 0.000 claims description 13
- 238000001816 cooling Methods 0.000 claims description 10
- 239000002244 precipitate Substances 0.000 claims description 9
- 239000000047 product Substances 0.000 claims description 9
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 claims description 8
- 239000001768 carboxy methyl cellulose Substances 0.000 claims description 8
- 239000000276 potassium ferrocyanide Substances 0.000 claims description 8
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 claims description 8
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 claims description 8
- XOGGUFAVLNCTRS-UHFFFAOYSA-N tetrapotassium;iron(2+);hexacyanide Chemical compound [K+].[K+].[K+].[K+].[Fe+2].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-] XOGGUFAVLNCTRS-UHFFFAOYSA-N 0.000 claims description 8
- NWZSZGALRFJKBT-KNIFDHDWSA-N (2s)-2,6-diaminohexanoic acid;(2s)-2-hydroxybutanedioic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O.NCCCC[C@H](N)C(O)=O NWZSZGALRFJKBT-KNIFDHDWSA-N 0.000 claims description 7
- IKDUDTNKRLTJSI-UHFFFAOYSA-N hydrazine monohydrate Substances O.NN IKDUDTNKRLTJSI-UHFFFAOYSA-N 0.000 claims description 7
- 238000003756 stirring Methods 0.000 claims description 7
- 238000006243 chemical reaction Methods 0.000 claims description 6
- 239000011259 mixed solution Substances 0.000 claims description 5
- 229920000036 polyvinylpyrrolidone Polymers 0.000 claims description 5
- 239000001267 polyvinylpyrrolidone Substances 0.000 claims description 5
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 claims description 5
- 238000005406 washing Methods 0.000 claims description 5
- 239000000956 alloy Substances 0.000 claims description 4
- 101150003085 Pdcl gene Proteins 0.000 claims description 3
- 238000009210 therapy by ultrasound Methods 0.000 claims description 3
- 238000001027 hydrothermal synthesis Methods 0.000 claims description 2
- 238000002156 mixing Methods 0.000 claims description 2
- 239000002904 solvent Substances 0.000 claims description 2
- 229910021642 ultra pure water Inorganic materials 0.000 claims description 2
- 239000012498 ultrapure water Substances 0.000 claims description 2
- 229910000859 α-Fe Inorganic materials 0.000 claims description 2
- 238000004519 manufacturing process Methods 0.000 abstract description 9
- 230000035945 sensitivity Effects 0.000 abstract description 5
- 239000002159 nanocrystal Substances 0.000 abstract description 3
- 230000003197 catalytic effect Effects 0.000 abstract description 2
- 239000007789 gas Substances 0.000 description 37
- KDLHZDBZIXYQEI-UHFFFAOYSA-N palladium Substances [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 37
- 239000000919 ceramic Substances 0.000 description 12
- 238000001514 detection method Methods 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- 239000004570 mortar (masonry) Substances 0.000 description 6
- 230000004044 response Effects 0.000 description 6
- 238000011084 recovery Methods 0.000 description 5
- 239000004065 semiconductor Substances 0.000 description 4
- 229910018487 Ni—Cr Inorganic materials 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- 238000005119 centrifugation Methods 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 229910052593 corundum Inorganic materials 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- VLXBWPOEOIIREY-UHFFFAOYSA-N dimethyl diselenide Natural products C[Se][Se]C VLXBWPOEOIIREY-UHFFFAOYSA-N 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 229920006316 polyvinylpyrrolidine Polymers 0.000 description 3
- 230000001681 protective effect Effects 0.000 description 3
- 239000002002 slurry Substances 0.000 description 3
- 229910001845 yogo sapphire Inorganic materials 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- 229910002666 PdCl2 Inorganic materials 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000005034 decoration Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 235000019645 odor Nutrition 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 210000003491 skin Anatomy 0.000 description 2
- 231100000331 toxic Toxicity 0.000 description 2
- 230000002588 toxic effect Effects 0.000 description 2
- 241000251468 Actinopterygii Species 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 244000245420 ail Species 0.000 description 1
- 238000010923 batch production Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 150000002019 disulfides Chemical class 0.000 description 1
- 230000035622 drinking Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 210000001508 eye Anatomy 0.000 description 1
- 235000004611 garlic Nutrition 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 230000007794 irritation Effects 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 230000000877 morphologic effect Effects 0.000 description 1
- 210000000653 nervous system Anatomy 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 230000029058 respiratory gaseous exchange Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 231100000041 toxicology testing Toxicity 0.000 description 1
- 239000012855 volatile organic compound Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/02—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
- G01N27/04—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
- G01N27/12—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
- G01N27/125—Composition of the body, e.g. the composition of its sensitive layer
- G01N27/127—Composition of the body, e.g. the composition of its sensitive layer comprising nanoparticles
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G49/00—Compounds of iron
- C01G49/02—Oxides; Hydroxides
- C01G49/06—Ferric oxide [Fe2O3]
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/72—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/03—Particle morphology depicted by an image obtained by SEM
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/04—Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/30—Particle morphology extending in three dimensions
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/62—Submicrometer sized, i.e. from 0.1-1 micrometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/80—Particles consisting of a mixture of two or more inorganic phases
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/20—Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Electrochemistry (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Nanotechnology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
Abstract
本发明公开了一种Pd修饰的α‑Fe2O3纳米材料及其制备方法和应用,所述α‑Fe2O3纳米材料为十二面体状,包括两个顶部六边形表面和十二个梯形侧面,其粒径为200‑250nm;所述α‑Fe2O3纳米材料表面修饰有Pd纳米粒子。本发明采用修饰Pd纳米粒子的十二面体状α‑Fe2O3纳米晶体作为敏感材料,此材料不仅有较高的比表面积,而且通过修饰Pd纳米粒子的方法,有效地利用了Pd纳米粒子对α‑Fe2O3表面与二甲基二硫醚气体传感器气体的催化作用,使得α‑Fe2O3对二甲基二硫醚气体的敏感性得到很大提高。总体上本发明采用的制得的器件体积小且易于携带、制备工艺简单、可大批量生产,因而具有重要的应用价值。
Description
技术领域
本发明涉及气体传感器技术领域,具体涉及一种Pd(钯)修饰的α-Fe2O3纳米材料及其制备方法和应用。
背景技术
含硫的挥发性有机化合物(SVOC)是引起大气污染物的重要因素之一。化学式为CH3SSCH3的二甲基二硫醚(DMDS)是SVOC的成员,具有高毒性,刺激性和强腐蚀性,并且还具有令人不愉快的气味,如刺鼻的大蒜、丙烷和腐烂鱼类的气味。在不同二烷基二硫化物的毒性研究中,DMDS的毒性最大。DMDS主要通过挥发扩散到环境中,并且在所有SVOC的有臭化合物中其最低阈值0.1μg·m-3。它可以通过呼吸,饮用被污染的水或通过皮肤接触进入人体,并对肺,皮肤,眼睛和神经系统产生不利刺激。因此,开发一种快速检测并对环境友好的高性能二甲基二硫醚气体传感器十分重要。
金属氧化物半导体(MOS)型气体传感器一种全固态电阻式气体传感器,具有检测灵敏度高,生产成本低,检测限低,易于生产,响应/回收速度快以及使用方便等优点,是目前在工业生产和日常生活中应用最广泛的气体传感器之一。金属氧化物半导体气体传感器是利用敏感材料直接吸附检测气体,使得敏感材料的电学性质等产生变化,经过检测外围电路敏感元件的输出信号变化从而检测气体浓度。氧化物半导体材料的气敏过程是发生在材料表面的化学反应过程,除了与材料本身的成分有关外,还与材料的表面、形貌有关。不同的氧化物半导体敏感材料合成方法会产生不同的形貌结构,进而在气敏性能上存在较大差异,因此往往通过合成不同形貌的敏感材料来改善气敏性能。
发明内容
为解决上述技术问题,本发明提供一种Pd修饰的α-Fe2O3纳米材料。
本发明的另一目的是提供Pd修饰的α-Fe2O3纳米材料的制备方法。
本发明的再一目的是提供Pd修饰的α-Fe2O3纳米材料在二甲基二硫醚气体传感器中的应用。
为达成上述目的,本发明提供如下技术方案:Pd修饰的α-Fe2O3纳米材料,所述α-Fe2O3纳米材料为十二面体状,包括两个顶部六边形表面和十二个梯形侧面,其粒径为200-250nm;所述α-Fe2O3纳米材料表面修饰有Pd纳米粒子。
上述Pd修饰的α-Fe2O3纳米材料的制备方法,步骤包括:
步骤一、采用制备过程简单的水热法制备十二面体状α-Fe2O3纳米材料,包括如下步骤:
S1、羧甲基纤维素钠0.04-0.08g在50-70℃水浴下,溶解于40-70ml水中,磁力搅拌20-50min分钟使其完全溶解,制得A溶液;
S2、亚铁氰化钾0.5-1.5mmol在50-70℃水浴下,溶解于A溶液中,制得B溶液;
S3、B溶液置于50-70℃水浴下,将0.3-1.0g聚乙烯吡咯烷酮加至B溶液中,水浴的同时伴随搅拌20-50min,制得C溶液;
S4、将0.2-0.5mL水合肼(85%)加入到C溶液中,在50-70℃水浴下,保持磁力搅拌3-5h得到D溶液;
S5、将D溶液放入反应釜中,在100-200℃下反应4-8h后,自然冷却;
S6、将混合液经离心、洗涤后,将沉淀物在60-80℃下干燥12-24小时,取出后研磨,得到十二面体状α-Fe2O3红色粉末;
步骤二、Pd纳米粒子修饰的十二面体状α-Fe2O3纳米材料的制备,包括如下步骤:
S7、取步骤一制得的十二面体状α-Fe2O3红色粉末0.02-0.05g加入到10-30ml水中并使之完全溶解;
S8、将40-80μL、浓度为10-30mg/mL的PdCl2溶液加至S7制得的溶液中并使之完全溶解;
S9、将S8制得的溶液在常温下反应3-5小时,所得产物离心并干燥后得到红色沉淀物,后将沉淀物置于马弗炉中灼烧,冷却后研磨20-30min后得到Pd纳米粒子修饰的十二面体状α-Fe2O3纳米材料。
进一步地,所述步骤一和步骤二中所用的溶剂水为去离子水或超纯水。
进一步地,所述步骤S4中水合肼滴加至C溶液的速度为1滴/秒。
进一步地,所述步骤S7中十二面体状α-Fe2O3红色粉末溶解后对溶液超声5-10min。
上述Pd修饰的α-Fe2O3纳米材料可应用于二甲基二硫醚气体传感器中。
进一步地,将Pd修饰的α-Fe2O3纳米材料涂覆于所述二甲基二硫醚气体传感器的敏感元件上。
进一步地,所述Pd修饰的α-Fe2O3纳米材料在所述敏感元件上形成的敏感层厚度为20-40μm。
进一步地,所述二甲基二硫醚气体传感器包括防爆罩、涂覆Pd修饰的α-Fe2O3纳米材料的敏感元件以及六脚管座。
本发明与现有技术相对比,其有益效果在于:本发明的优势和良好效果:本发明的修饰Pd纳米粒子的十二面体状α-Fe2O3纳米材料,其多面体晶体形状良好且具有高度对称的特征,不仅有较高的比表面积,而且通过修饰Pd纳米粒子的方法,有效地利用了Pd纳米粒子对α-Fe2O3表面与二甲基二硫醚气体传感器气体的催化作用,使得α-Fe2O3对二甲基二硫醚气体的敏感性得到很大提高。此外本发明的二甲基二硫醚气体传感器仅需要将上述修饰Pd纳米粒子的十二面体状α-Fe2O3纳米材料涂覆于敏感元件,此制备方法易于操作,过程简单,成本低廉,响应恢复快速,可批量生产,并对二甲基二硫醚气体具有良好的检测性能。总体上本发明采用的制得的器件体积小且易于携带、制备工艺简单、可大批量生产,因而具有重要的应用价值。
附图说明
图1是本发明Pd纳米粒子修饰的十二面体状α-Fe2O3纳米材料的SEM(a)及TEM(b)形貌;
图2是本发明所制备的二甲基二硫醚气体传感器的器件结构示意图;
图3是本发明制备的修饰Pd纳米粒子的十二面体状α-Fe2O3纳米材料的XRD图;
图4是本发明的二甲基二硫醚传感器在工作温度为120℃下,器件的灵敏度-二甲基二硫醚气体传感器浓度特性曲线;
图5是本发明的二甲基二硫醚气体传感器在工作温度为120℃、二甲基二硫醚浓度为100ppm下,器件的响应恢复曲线;
图6是本发明的二甲基二硫醚气体传感器在工作温度为120℃、气体浓度为100ppm下,器件的选择特性。
具体实施方式
下面结合具体实施方式对本发明作进一步说明。
实施例1
以修饰Pd纳米粒子的十二面体状α-Fe2O3纳米材料作为敏感材料制作成旁热式二甲基二硫醚气体传感器传感器,如图2所示,传感器是由防爆保护罩1、涂覆修饰Pd纳米粒子的十二面体状α-Fe2O3纳米材料的敏感元件2及六脚管座3组成。
具体制作步骤如下:
(1)将0.075g羧甲基纤维素钠加入到60ml的去离子水中,在60℃水浴下,保持磁力搅拌30分钟使其完全溶解,记为A溶液;
(2)将1.2mmol亚铁氰化钾溶解在A溶液中,在60℃水浴下,保持磁力搅拌30分钟使其完全溶解,记为B溶液;
(3)将0.8g聚乙烯吡咯烷酮(K30)加至B溶液中,在60℃水浴下,保持磁力搅拌30分钟使其完全溶解,记为C溶液;
(4)将0.4mL水合肼(85%)按照1滴/秒的滴速滴加至C溶液,在60℃水浴下,保持磁力搅拌5h得到D溶液;
(5)将D溶液放入100mL反应釜中,在200℃下反应6h后,自然冷却;
(6)对混合液用去离子水通过离心进行多次洗涤,将沉淀物在60℃下干燥12小时,取出后研磨,得到十二面体状α-Fe2O3红色粉末;
(7)将0.03g的十二面体状α-Fe2O3红色粉末加入到15mL去离子水中,磁力搅拌下使其分散均匀;
(8)取50.1μL的PdCl2溶液(浓度10mg/mL)加入到步骤(7)得到的溶液中,室温下磁力搅拌4h使其完全溶解;
(9)置于60℃烘箱中48小时,干燥完全后,将所得产物置于300℃马弗炉中2小时,自然冷却后,得到修饰Pd纳米粒子的十二面体状α-Fe2O3纳米材料;
(10)将修饰Pd纳米粒子的十二面体状α-Fe2O3纳米材料的粉末放入研钵中,研磨30分钟;然后向研钵中滴入去离子水(纳米材料与水的质量比为5:2),再继续研磨30分钟,得到黏稠状的浆料;将浆料用毛笔刷均匀地涂覆在带有环形Au电极的Al2O3陶瓷管外表面,形成30μm厚的敏感层,敏感层要完全覆盖环形Au电极;
(11)将涂覆修饰Pd纳米粒子的十二面体状α-Fe2O3纳米材料的Al2O3陶瓷管在70℃烘干1小时,将此陶瓷管置于150℃的马弗炉中5min;然后将电阻值为38Ω的Ni-Cr合金加热丝穿过Al2O3陶瓷管作为加热丝,最后将上述敏感元件焊接在六脚管座并进行封装,最终得到一种修饰Pd纳米粒子的十二面体状Fe2O3纳米材料的粉末的二甲基二硫醚气体传感器。
实施例2
以修饰Pd纳米粒子的十二面体状α-Fe2O3纳米材料作为敏感材料制作成旁热式二甲基二硫醚气体传感器传感器,如图2所示,传感器是由防爆保护罩1、涂覆修饰Pd纳米粒子的十二面体状α-Fe2O3纳米材料的敏感元件2及六脚管座3组成。
具体制作步骤如下:
(1)将0.0475g羧甲基纤维素钠加入到30ml的去离子水中,在60℃水浴下,保持磁力搅拌30分钟使其完全溶解,记为A溶液;
(2)将0.6mmol亚铁氰化钾溶解在A溶液中,在60℃水浴下,保持磁力搅拌30分钟使其完全溶解,记为B溶液;
(3)将0.4g聚乙烯吡咯烷酮(K30)加至B溶液中,在60℃水浴下,保持磁力搅拌30分钟使其完全溶解,记为C溶液;
(4)将0.2mL水合肼(85%)按照1滴/秒的滴速滴加至C溶液,在60℃水浴下,保持磁力搅拌5h得到D溶液;
(5)将D溶液放入50mL反应釜中,在200℃下反应6h后,自然冷却;
(6)对混合液用去离子水通过离心进行多次洗涤,将沉淀物在60℃下干燥12小时,取出后研磨,得到十二面体状α-Fe2O3红色粉末;
(7)将0.02g的十二面体状α-Fe2O3红色粉末加入到10mL去离子水中,磁力搅拌下使其分散均匀;
(8)取40μL的PdCl2溶液(浓度10mg/mL)加入到步骤(7)得到的溶液中,室温下磁力搅拌4h使其完全溶解;
(9)置于60℃烘箱中48小时,干燥完全后,将所得产物置于300℃马弗炉中2小时,自然冷却后,得到修饰Pd纳米粒子的十二面体状α-Fe2O3纳米材料;
(10)将修饰Pd纳米粒子的十二面体状α-Fe2O3纳米材料的粉末放入研钵中,研磨30分钟;然后向研钵中滴入去离子水(纳米材料与水的质量比为5:2),再继续研磨30分钟,得到黏稠状的浆料;将浆料用毛笔刷均匀地涂覆在带有环形Au电极的Al2O3陶瓷管外表面,形成30μm厚的敏感层,敏感层要完全覆盖环形Au电极;
(11)将涂覆修饰Pd纳米粒子的十二面体状α-Fe2O3纳米材料的Al2O3陶瓷管在70℃烘干1小时,将此陶瓷管置于150℃的马弗炉中5min;然后将电阻值为38Ω的Ni-Cr合金加热丝穿过Al2O3陶瓷管作为加热丝,最后将上述敏感元件焊接在六脚管座并进行封装,最终得到一种修饰Pd纳米粒子的十二面体状Fe2O3纳米材料的粉末的二甲基二硫醚气体传感器。
实施例3
以负载Ru纳米粒子的花状ZnO纳米材料作为敏感材料制作成旁热式丙酮传感器,如图2所示,传感器是由防爆保护罩1、涂覆负载Ru纳米粒子的花状ZnO纳米材料的敏感元件2及六脚管座3组成。
具体制作步骤如下:
(1)将0.056g羧甲基纤维素钠加入到45ml的去离子水中,在60℃水浴下,保持磁力搅拌30分钟使其完全溶解,记为A溶液;
(2)将0.9mmol亚铁氰化钾溶解在A溶液中,在60℃水浴下,保持磁力搅拌30分钟使其完全溶解,记为B溶液;
(3)将0.6g聚乙烯吡咯烷酮(K30)加至B溶液中,在60℃水浴下,保持磁力搅拌30分钟使其完全溶解,记为C溶液;
(4)将0.3mL水合肼(85%)按照1滴/秒的滴速滴加至C溶液,在60℃水浴下,保持磁力搅拌5h得到D溶液;
(5)将D溶液放入50mL反应釜中,在200℃下反应6h后,自然冷却;
(6)对混合液用去离子水通过离心进行多次洗涤,将沉淀物在60℃下干燥12小时,取出后研磨,得到十二面体状α-Fe2O3红色粉末;
(7)将0.023g的十二面体状α-Fe2O3红色粉末加入到11.25mL去离子水中,磁力搅拌下使其分散均匀,然后对溶液超声处理8min;
(8)取40μL的PdCl2溶液(浓度10mg/mL)加入到步骤(7)得到的溶液中,室温下磁力搅拌4h使其完全溶解;
(9)置于60℃烘箱中48小时,干燥完全后,将所得产物置于300℃马弗炉中2小时,自然冷却后,得到修饰Pd纳米粒子的十二面体状α-Fe2O3纳米材料;
(10)将修饰Pd纳米粒子的十二面体状α-Fe2O3纳米材料的粉末放入研钵中,研磨30分钟;然后向研钵中滴入去离子水(纳米材料与水的质量比为5:2),再继续研磨30分钟,得到黏稠状的浆料;将浆料用毛笔刷均匀地涂覆在带有环形Au电极的Al2O3陶瓷管外表面,形成30μm厚的敏感层,敏感层要完全覆盖环形Au电极;
(11)将涂覆修饰Pd纳米粒子的十二面体状α-Fe2O3纳米材料的Al2O3陶瓷管在70℃烘干1小时,将此陶瓷管置于150℃的马弗炉中5min;然后将电阻值为38Ω的Ni-Cr合金加热丝穿过Al2O3陶瓷管作为加热丝,最后将上述敏感元件焊接在六脚管座并进行封装,最终得到一种修饰Pd纳米粒子的十二面体状Fe2O3纳米材料的粉末的二甲基二硫醚气体传感器。
对上述各实施例制得的十二面体状α-Fe2O3纳米晶体进行观测,各实施例结果相似,因此仅列举实施例1进行说明。如图1所示,(a)图中看出修饰Pd纳米粒子的α-Fe2O3纳米晶体为十二面体状晶体,(b)图看出修饰Pd纳米粒子的十二面体状α-Fe2O3纳米材料的粒径尺寸为250-300nm;如图3所示,样品XRD谱图出现α-Fe2O3特征峰,说明样品包含α-Fe2O3晶体。
对上述各实施例制得的二甲基二硫醚气体传感器性能进行检测,各实施例结果相似,因此仅列举实施例1进行说明。如图4所示,当器件随着工作温度的升高,器件的响应值随温度的变化先增大后减小,可知其最佳工作温度为120℃;如图5所示,当器件在工作温度为120℃、二甲基二硫醚气体传感器浓度为100ppm下,器件的响应时间是1秒,器件的恢复时间是68秒。表现出了优良的响应恢复特性,对二甲基二硫醚气体传感器气体有良好的检测;如图6所示,当器件在工作温度为120℃、气体浓度为100ppm下,器件对二甲基二硫醚气体传感器的灵敏度均大于其他检测气体,器件表现出良好的选择性。
本发明实施例涉及到的材料、试剂和实验设备,如无特别说明,均为符合传感器材料领域的市售产品。
以上所述,仅为本发明的优选实施例,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明的核心技术的前提下,还可以做出改进和润饰,这些改进和润饰也应属于本发明的专利保护范围。与本发明的权利要求书相当的含义和范围内的任何改变,都应认为是包括在权利要求书的范围内。
Claims (10)
1.Pd修饰的α-Fe2O3纳米材料,其特征在于,所述α-Fe2O3纳米材料为十二面体状,包括两个顶部六边形表面和十二个梯形侧面,其粒径为200-250nm;所述α-Fe2O3纳米材料表面修饰有Pd纳米粒子。
2.如权利要求1所述的Pd修饰的α-Fe2O3纳米材料的制备方法,其特征在于,步骤包括:
步骤一、采用水热法制备十二面体状α-Fe2O3纳米材料,得到十二面体状α-Fe2O3红色粉末;
步骤二、Pd纳米粒子修饰的十二面体状α-Fe2O3纳米材料的制备,包括如下步骤:
S7、取步骤一制得的十二面体状α-Fe2O3红色粉末0.02-0.05g加入到10-30ml水中并使之完全溶解;
S8、将40-80μL、浓度为10-30mg/mL的PdCl2溶液加至S7制得的溶液中并使之完全溶解;
S9、将S8制得的溶液在常温下反应3-5小时,所得产物离心并干燥后得到红色沉淀物,后将沉淀物置于马弗炉中灼烧,冷却后研磨20-30min后得到Pd纳米粒子修饰的十二面体状α-Fe2O3纳米材料。
3.根据权利要求2所述的制备方法,其特征在于,所述步骤一包括如下步骤:
S1、羧甲基纤维素钠0.04-0.08g在50-70℃水浴下,溶解于40-70ml水中,磁力搅拌20-50min分钟使其完全溶解,制得A溶液;
S2、亚铁氰化钾0.5-1.5mmol在50-70℃水浴下,溶解于A溶液中,制得B溶液;
S3、B溶液置于50-70℃水浴下,将0.3-1.0g聚乙烯吡咯烷酮加至B溶液中,水浴的同时伴随搅拌20-50min,制得C溶液;
S4、将0.2-0.5mL水合肼(85%)加入到C溶液中,在50-70℃水浴下,保持磁力搅拌3-5h得到D溶液;
S5、将D溶液放入反应釜中,在100-200℃下反应4-8h后,自然冷却;
S6、将混合液经离心、洗涤后,将沉淀物在60-80℃下干燥12-24小时,取出后研磨,得到十二面体状α-Fe2O3红色粉末。
4.根据权利要求3所述的制备方法,其特征在于,所述步骤一和步骤二中所用的溶剂水为去离子水或超纯水。
5.根据权利要求3所述的制备方法,其特征在于,所述步骤S4中水合肼滴加至C溶液的速度为1滴/秒。
6.根据权利要求2所述的制备方法,其特征在于,所述步骤S7中十二面体状α-Fe2O3红色粉末溶解后对溶液超声5-10min。
7.如权利要求1所述的Pd修饰的α-Fe2O3纳米材料或者由权利要求2-6任意一项所述制备方法得到的Pd修饰的α-Fe2O3纳米材料在二甲基二硫醚气体传感器中的应用。
8.根据权利要求7所述的应用,其特征在于,将Pd修饰的α-Fe2O3纳米材料涂覆于所述二甲基二硫醚气体传感器的敏感元件上。
9.根据权利要求8所述的应用,其特征在于,所述Pd修饰的α-Fe2O3纳米材料在所述敏感元件上形成的敏感层厚度为20-40μm。
10.根据权利要求8所述的应用,其特征在于,所述二甲基二硫醚气体传感器包括防爆罩、涂覆Pd修饰的α-Fe2O3纳米材料的敏感元件以及六脚管座。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010644923.6A CN111766274B (zh) | 2020-07-07 | 2020-07-07 | Pd修饰的α-Fe2O3纳米材料的应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010644923.6A CN111766274B (zh) | 2020-07-07 | 2020-07-07 | Pd修饰的α-Fe2O3纳米材料的应用 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111766274A true CN111766274A (zh) | 2020-10-13 |
CN111766274B CN111766274B (zh) | 2023-05-02 |
Family
ID=73455468
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010644923.6A Active CN111766274B (zh) | 2020-07-07 | 2020-07-07 | Pd修饰的α-Fe2O3纳米材料的应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111766274B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110284145A (zh) * | 2019-05-13 | 2019-09-27 | 鲁东大学 | 一种调制二十面体金电极材料表面应变的方法 |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101356004A (zh) * | 2005-11-14 | 2009-01-28 | 新加坡科技研究局 | 高度分散的金属催化剂 |
CN101767018A (zh) * | 2009-01-06 | 2010-07-07 | 北京大学 | 负载型Pd基金属纳米簇催化剂及其制备方法与应用 |
US20140138259A1 (en) * | 2012-10-05 | 2014-05-22 | The Regents Of The University Of California | Nanoparticle-based gas sensors and methods of using the same |
CN104289725A (zh) * | 2014-09-15 | 2015-01-21 | 中国科学院深圳先进技术研究院 | Pd基复合纳米粒子及其制备方法 |
CN104402060A (zh) * | 2014-10-29 | 2015-03-11 | 宁夏大学 | 一种合成α-Fe2O3十二面体和十四面体微晶的方法 |
CN104495948A (zh) * | 2014-12-30 | 2015-04-08 | 南开大学 | 一种中空多面体纳米α-Fe2O3的制备方法 |
CN104556245A (zh) * | 2014-12-31 | 2015-04-29 | 中国地质大学(武汉) | 一种汉堡状纳米氧化铁材料及其制备方法和用途 |
US20160334359A1 (en) * | 2014-12-23 | 2016-11-17 | Korea Advanced Institute Of Science And Technology | Member for Gas Sensor, Having a Metal Oxide Semiconductor Tube Wall with Micropores and Macropores, Gas Sensor, and Method for Manufacturing Same |
CN108918632A (zh) * | 2018-06-29 | 2018-11-30 | 中国科学院合肥物质科学研究院 | 一种钯纳米颗粒修饰的氧化铟纳米片复合材料制备方法与应用 |
CN109368706A (zh) * | 2018-08-29 | 2019-02-22 | 中国科学院合肥物质科学研究院 | 一种Pd修饰的三维分级多孔α-Fe2O3材料及其制备方法与应用 |
CN109709192A (zh) * | 2018-12-14 | 2019-05-03 | 复旦大学 | 一种基于氧化钨/氧化锡核壳纳米片结构的气敏纳米材料、制备工艺及其应用 |
CN110988047A (zh) * | 2019-11-05 | 2020-04-10 | 华中科技大学 | 一种钯单原子掺杂的氧化铟复合材料及其制备与应用 |
-
2020
- 2020-07-07 CN CN202010644923.6A patent/CN111766274B/zh active Active
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101356004A (zh) * | 2005-11-14 | 2009-01-28 | 新加坡科技研究局 | 高度分散的金属催化剂 |
CN101767018A (zh) * | 2009-01-06 | 2010-07-07 | 北京大学 | 负载型Pd基金属纳米簇催化剂及其制备方法与应用 |
US20140138259A1 (en) * | 2012-10-05 | 2014-05-22 | The Regents Of The University Of California | Nanoparticle-based gas sensors and methods of using the same |
CN104289725A (zh) * | 2014-09-15 | 2015-01-21 | 中国科学院深圳先进技术研究院 | Pd基复合纳米粒子及其制备方法 |
CN104402060A (zh) * | 2014-10-29 | 2015-03-11 | 宁夏大学 | 一种合成α-Fe2O3十二面体和十四面体微晶的方法 |
US20160334359A1 (en) * | 2014-12-23 | 2016-11-17 | Korea Advanced Institute Of Science And Technology | Member for Gas Sensor, Having a Metal Oxide Semiconductor Tube Wall with Micropores and Macropores, Gas Sensor, and Method for Manufacturing Same |
CN104495948A (zh) * | 2014-12-30 | 2015-04-08 | 南开大学 | 一种中空多面体纳米α-Fe2O3的制备方法 |
CN104556245A (zh) * | 2014-12-31 | 2015-04-29 | 中国地质大学(武汉) | 一种汉堡状纳米氧化铁材料及其制备方法和用途 |
CN108918632A (zh) * | 2018-06-29 | 2018-11-30 | 中国科学院合肥物质科学研究院 | 一种钯纳米颗粒修饰的氧化铟纳米片复合材料制备方法与应用 |
CN109368706A (zh) * | 2018-08-29 | 2019-02-22 | 中国科学院合肥物质科学研究院 | 一种Pd修饰的三维分级多孔α-Fe2O3材料及其制备方法与应用 |
CN109709192A (zh) * | 2018-12-14 | 2019-05-03 | 复旦大学 | 一种基于氧化钨/氧化锡核壳纳米片结构的气敏纳米材料、制备工艺及其应用 |
CN110988047A (zh) * | 2019-11-05 | 2020-04-10 | 华中科技大学 | 一种钯单原子掺杂的氧化铟复合材料及其制备与应用 |
Non-Patent Citations (3)
Title |
---|
CAO XIA ET AL.: "Hollow Fe2O3 polyhedrons: One-pot synthesis and their use as electrochemical material for nitrite sensing", 《ELECTROCHIMICA ACTA》 * |
DOMINIK SEEBURG ET AL.: "Structural Changes of Highly Active Pd/MeOx(Me = Fe, Co, Ni) during Catalytic Methane Combustion", 《CATALYSTS》 * |
YALI CHENG ET AL.: "Low cost fabrication of highly sensitive ethanol sensor based on Pd-doped α-Fe2O3 porous nanotubes", 《MATERIALS RESEARCH BULLETIN》 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110284145A (zh) * | 2019-05-13 | 2019-09-27 | 鲁东大学 | 一种调制二十面体金电极材料表面应变的方法 |
Also Published As
Publication number | Publication date |
---|---|
CN111766274B (zh) | 2023-05-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Majhi et al. | Au@ NiO core-shell nanoparticles as a p-type gas sensor: Novel synthesis, characterization, and their gas sensing properties with sensing mechanism | |
Hu et al. | Heterostructure of CuO microspheres modified with CuFe2O4 nanoparticles for highly sensitive H2S gas sensor | |
Zhang et al. | Low concentration isopropanol gas sensing properties of Ag nanoparticles decorated In2O3 hollow spheres | |
Devi et al. | NH3 gas sensing properties of nanocrystalline ZnO based thick films | |
Feng et al. | In-situ generation of highly dispersed Au nanoparticles on porous ZnO nanoplates via ion exchange from hydrozincite for VOCs gas sensing | |
Kim et al. | Extremely sensitive ethanol sensor using Pt-doped SnO2 hollow nanospheres prepared by Kirkendall diffusion | |
Yin et al. | Improved gas sensing properties of silver-functionalized ZnSnO 3 hollow nanocubes | |
Kim et al. | A strategy for ultrasensitive and selective detection of methylamine using p-type Cr2O3: Morphological design of sensing materials, control of charge carrier concentrations, and configurational tuning of Au catalysts | |
Tobaldi et al. | Sensing properties and photochromism of Ag–TiO 2 nano-heterostructures | |
Sukunta et al. | Highly-sensitive H2S sensors based on flame-made V-substituted SnO2 sensing films | |
CN105158303B (zh) | 贵金属/贱金属氧化物/石墨烯三元复合气敏材料及制备 | |
US20180031532A1 (en) | Methylbenzene gas sensor using palladium-containing cobalt oxide nanostructures and method for manufacturing the same | |
Yang et al. | Comparison of the enhanced gas sensing properties of tin dioxide samples doped with different catalytic transition elements | |
Sureshkumar et al. | Enhanced H2S gas sensing properties of Mn doped ZnO nanoparticles—an impedance spectroscopic investigation | |
CN110333271B (zh) | 一种花状三氧化钨多级纳米材料的制备方法及其三乙胺气体传感器和用途 | |
Fan et al. | Carbon nanotubes-CuO/SnO2 based gas sensor for detecting H2S in low concentration | |
WO2016098942A1 (ko) | 백금/팔라듐 코어-셀 그래핀 하이브리드 기반 수소센서 및 그 제조방법 | |
Espid et al. | Facile synthesis and UV-activated gas sensing performance of Ag: ZnO nano-ellipsoids | |
Liu et al. | Highly sensitive and selective triethylamine gas sensor based on Ag nanoparticles-decorated MoO3 nanobelts | |
Al-darwesh et al. | Synthesis and characterizations of zinc oxide nanoparticles and its ability to detect O2 and NH3 gases | |
Li et al. | Size-tunable Ag nanoparticles sensitized porous ZnO nanobelts: controllably partial cation-exchange synthesis and selective sensing toward acetic acid | |
Lei et al. | Three-dimensional hierarchical CuO gas sensor modified by Au nanoparticles | |
CN111766274A (zh) | Pd修饰的α-Fe2O3纳米材料及其制备方法和应用 | |
Wang et al. | Room temperature NO2 gas sensing of Au-loaded tungsten oxide nanowires/porous silicon hybrid structure | |
Singkammo et al. | Catalytic roles of Sm2O3 dopants on ethylene oxide sensing mechanisms of flame-made SnO2 nanoparticles |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |