CN111755513B - Semiconductor structure and forming method thereof - Google Patents

Semiconductor structure and forming method thereof Download PDF

Info

Publication number
CN111755513B
CN111755513B CN201910236722.XA CN201910236722A CN111755513B CN 111755513 B CN111755513 B CN 111755513B CN 201910236722 A CN201910236722 A CN 201910236722A CN 111755513 B CN111755513 B CN 111755513B
Authority
CN
China
Prior art keywords
layer
metal
forming
metal silicide
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910236722.XA
Other languages
Chinese (zh)
Other versions
CN111755513A (en
Inventor
王楠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Manufacturing International Shanghai Corp
Semiconductor Manufacturing International Beijing Corp
Original Assignee
Semiconductor Manufacturing International Shanghai Corp
Semiconductor Manufacturing International Beijing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Manufacturing International Shanghai Corp, Semiconductor Manufacturing International Beijing Corp filed Critical Semiconductor Manufacturing International Shanghai Corp
Priority to CN201910236722.XA priority Critical patent/CN111755513B/en
Publication of CN111755513A publication Critical patent/CN111755513A/en
Application granted granted Critical
Publication of CN111755513B publication Critical patent/CN111755513B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/01Manufacture or treatment
    • H10D30/021Manufacture or treatment of FETs having insulated gates [IGFET]
    • H10D30/0212Manufacture or treatment of FETs having insulated gates [IGFET] using self-aligned silicidation

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Thin Film Transistor (AREA)

Abstract

A semiconductor structure and a method for forming the same, the method for forming the same includes: providing a substrate, a gate structure positioned on the substrate, source-drain doped layers positioned in the substrate at two sides of the gate structure and an interlayer dielectric layer covering the side wall of the gate structure and the source-drain doped layers; forming an opening exposing the source-drain doping layer in the interlayer dielectric layer, wherein the bottom of the opening comprises a central area and an edge area; forming a first metal layer in the edge area, and forming a second metal layer in the central area, wherein the material diffusion capacity of the second metal layer is larger than that of the first metal layer; and processing the first metal layer and the second metal layer to form a first metal silicide layer and a second metal silicide layer respectively, wherein the resistivity of the second metal silicide layer is smaller than that of the first metal layer silicide layer. According to the invention, under the condition that the source-drain doped layer is not easy to pass through, the contact resistance between the source-drain doped layer and a contact hole plug formed subsequently is reduced, and the electrical property of the semiconductor structure is optimized.

Description

半导体结构及其形成方法Semiconductor structures and methods of forming them

技术领域technical field

本发明实施例涉及半导体制造领域,尤其涉及一种半导体结构及其形成方法。Embodiments of the present invention relate to the field of semiconductor manufacturing, and in particular, to a semiconductor structure and a method for forming the same.

背景技术Background technique

在半导体制造中,随着超大规模集成电路的发展趋势,集成电路特征尺寸持续减小,为了适应更小的特征尺寸,金属-氧化物-半导体场效应晶体管(Metal-Oxide-Semiconductor Field-Effect Transistor,MOSFET)的沟道长度也相应不断缩短。然而,随着器件沟道长度的缩短,器件源极与漏极间的距离也随之缩短,因此栅极结构对沟道的控制能力随之变差,栅极电压夹断(pinch off)沟道的难度也越来越大,使得亚阈值漏电(subthreshold leakage)现象,即所谓的短沟道效应(SCE:short-channel effects)更容易发生。In semiconductor manufacturing, with the development trend of ultra-large-scale integrated circuits, the feature size of integrated circuits continues to decrease. In order to adapt to smaller feature sizes, Metal-Oxide-Semiconductor Field-Effect Transistors , MOSFET) channel length has been shortened accordingly. However, as the channel length of the device shortens, the distance between the source and the drain of the device also shortens, so the ability of the gate structure to control the channel becomes worse, and the gate voltage pinches off the channel. The difficulty of the channel is also increasing, making the phenomenon of subthreshold leakage (subthreshold leakage), the so-called short-channel effect (SCE: short-channel effects) more likely to occur.

因此,为了减小短沟道效应的影响,半导体工艺逐渐开始从平面MOSFET向具有更高功效的三维立体式的晶体管过渡,如鳍式场效应晶体管(FinFET)。FinFET中,栅极结构至少可以从两侧对超薄体(鳍部)进行控制,与平面MOSFET相比,栅极结构对沟道的控制能力更强,能够很好的抑制短沟道效应;且FinFET相对于其他器件,与现有集成电路制造具有更好的兼容性。Therefore, in order to reduce the impact of the short channel effect, the semiconductor process gradually begins to transition from planar MOSFETs to three-dimensional transistors with higher efficiency, such as Fin Field Effect Transistors (FinFETs). In FinFET, the gate structure can control the ultra-thin body (fin) from at least two sides. Compared with the planar MOSFET, the gate structure has a stronger ability to control the channel and can well suppress the short channel effect; Moreover, compared with other devices, FinFET has better compatibility with existing integrated circuit manufacturing.

发明内容Contents of the invention

本发明实施例解决的问题是提供一种半导体结构及其形成方法,来优化半导体结构的性能。The problem solved by the embodiments of the present invention is to provide a semiconductor structure and a method for forming the same to optimize the performance of the semiconductor structure.

为解决上述问题,本发明实施例提供一种半导体结构的形成方法,包括:提供基底,所述基底包括衬底、位于所述衬底上的栅极结构,位于所述栅极结构两侧所述衬底中的源漏掺杂层以及覆盖所述栅极结构侧壁和源漏掺杂层的层间介质层,且所述层间介质层露出所述栅极结构的顶壁;在所述层间介质层中形成露出所述源漏掺杂层的开口,所述开口底部包括中心区域,以及包围所述中心区域的边缘区域;在所述开口底部形成第一金属层;去除所述开口底部中心区域的第一金属层,形成开孔;在所述开孔中形成第二金属层,所述第二金属层的材料扩散能力大于所述第一金属层的材料扩散能力,且所述第二金属层对应硅化物的电阻率小于所述第一金属层对应硅化物的电阻率;对所述第一金属层和第二金属层进行处理,形成金属硅化物层,所述第一金属层和第二金属层分别对应第一金属硅化物层和第二金属硅化物层;形成金属硅化物层后,在所述开口中形成接触孔插塞。In order to solve the above problems, an embodiment of the present invention provides a method for forming a semiconductor structure, including: providing a base, the base includes a substrate, a gate structure on the substrate, and gate structures located on both sides of the gate structure. The source-drain doped layer in the substrate and the interlayer dielectric layer covering the sidewall of the gate structure and the source-drain doped layer, and the interlayer dielectric layer exposes the top wall of the gate structure; forming an opening exposing the source-drain doped layer in the interlayer dielectric layer, the bottom of the opening includes a central region, and an edge region surrounding the central region; forming a first metal layer at the bottom of the opening; removing the The first metal layer in the central area of the bottom of the opening forms an opening; a second metal layer is formed in the opening, the material diffusion capacity of the second metal layer is greater than the material diffusion capacity of the first metal layer, and the The resistivity of the second metal layer corresponding to the silicide is smaller than the resistivity of the first metal layer corresponding to the silicide; the first metal layer and the second metal layer are processed to form a metal silicide layer, and the first The metal layer and the second metal layer respectively correspond to the first metal silicide layer and the second metal silicide layer; after forming the metal silicide layer, a contact hole plug is formed in the opening.

可选的,所述第一金属层的材料包括:Ti。Optionally, the material of the first metal layer includes: Ti.

可选的,所述第一金属层的厚度为2纳米至8纳米。Optionally, the thickness of the first metal layer is 2 nm to 8 nm.

可选的,采用原子层沉积或者低压化学气相沉积工艺在所述开口底部形成所述第一金属层。Optionally, the first metal layer is formed on the bottom of the opening by atomic layer deposition or low pressure chemical vapor deposition.

可选的,垂直于所述栅极结构的侧壁方向,所述第二金属层的宽度为10纳米至20纳米。Optionally, perpendicular to the direction of the sidewall of the gate structure, the width of the second metal layer is 10 nm to 20 nm.

可选的,所述第二金属层的材料包括:Ni。Optionally, the material of the second metal layer includes: Ni.

可选的,所述第二金属层的厚度为2纳米至8纳米。Optionally, the thickness of the second metal layer is 2 nanometers to 8 nanometers.

可选的,采用原子层沉积或者低压化学气相沉积工艺在所述开孔中形成所述第二金属层。Optionally, the second metal layer is formed in the opening by atomic layer deposition or low pressure chemical vapor deposition.

可选的,形成所述开孔的步骤包括:在所述开口的侧壁上形成牺牲层;以所述牺牲层为掩膜去除所述牺牲层露出的所述第一金属层,形成由所述第一金属层和源漏掺杂层围成的所述开孔;所述半导体结构的形成方法还包括:形成所述开孔后,形成第二金属层前,去除所述牺牲层;或者,形成所述金属硅化物层后,去除所述牺牲层。Optionally, the step of forming the opening includes: forming a sacrificial layer on the sidewall of the opening; using the sacrificial layer as a mask to remove the first metal layer exposed by the sacrificial layer, forming the The opening surrounded by the first metal layer and the source-drain doped layer; the method for forming the semiconductor structure further includes: removing the sacrificial layer after forming the opening and before forming the second metal layer; or , after forming the metal silicide layer, removing the sacrificial layer.

可选的,所述牺牲层的材料包括:low-K材料、金属化合物、Al化合物、无定型碳和无定型锗中的一种或多种。Optionally, the material of the sacrificial layer includes: one or more of low-K materials, metal compounds, Al compounds, amorphous carbon and amorphous germanium.

可选的,在垂直于所述栅极结构侧壁的方向,所述第一金属层的长度和第二金属层的长度比值为2至3。Optionally, in a direction perpendicular to the sidewall of the gate structure, the ratio of the length of the first metal layer to the length of the second metal layer is 2 to 3.

可选的,采用自对准金属硅化物工艺对所述第一金属层和所述第二金属层进行处理,分别形成所述第一金属硅化物层和所述第二金属硅化物层。Optionally, a salicide process is used to process the first metal layer and the second metal layer to form the first metal silicide layer and the second metal silicide layer respectively.

可选的,所述衬底为具有鳍部的衬底;所述栅极结构横跨所述鳍部且覆盖所述鳍部的部分顶壁和侧壁;所述源漏掺杂层位于所述栅极结构两侧的所述鳍部中。Optionally, the substrate is a substrate with a fin; the gate structure spans the fin and covers part of the top wall and side wall of the fin; the source-drain doped layer is located on the fin in the fins on both sides of the gate structure.

相应的,本发明实施例还提供一种半导体结构,包括:衬底,栅极结构,位于所述衬底上;源漏掺杂层,位于所述栅极结构两侧的所述衬底中;层间介质层,覆盖于所述栅极结构和源漏掺杂层上,且所述层间介质层露出所述栅极结构的顶面;接触孔插塞,贯穿所述层间介质层,且用于与所述源漏掺杂层电连接,所述接触孔插塞包括中心区域,以及包围所述中心区域的边缘区域;金属硅化物层,位于所述源漏掺杂层和接触孔插塞之间,所述金属硅化物层包括第一金属硅化物层和第二金属硅化物层;所述第一金属硅化物层,位于所述源漏掺杂层和接触孔插塞边缘区域之间;所述第二金属硅化物层,位于所述源漏掺杂层和接触孔插塞中心区域之间;所述第二金属硅化物层的电阻值低于所述第一金属硅化物层的电阻值,且所述第二金属硅化物层对应金属的材料扩散能力大于所述第一金属硅化物对应金属的材料扩散能力。Correspondingly, an embodiment of the present invention also provides a semiconductor structure, including: a substrate, a gate structure located on the substrate; source and drain doped layers located in the substrate on both sides of the gate structure an interlayer dielectric layer covering the gate structure and the source-drain doped layer, and the interlayer dielectric layer exposes the top surface of the gate structure; a contact hole plug penetrates the interlayer dielectric layer , and is used for electrical connection with the source-drain doped layer, the contact hole plug includes a central region, and an edge region surrounding the central region; a metal silicide layer is located between the source-drain doped layer and the contact Between the hole plugs, the metal silicide layer includes a first metal silicide layer and a second metal silicide layer; the first metal silicide layer is located at the edge of the source-drain doped layer and the contact hole plug Between regions; the second metal silicide layer is located between the source-drain doped layer and the central region of the contact hole plug; the resistance value of the second metal silicide layer is lower than that of the first metal silicide The resistance value of the material layer, and the material diffusion capacity of the second metal silicide layer corresponding to the metal is greater than the material diffusion capacity of the first metal silicide layer corresponding to the metal.

可选的,所述第一金属硅化物层包括:钛硅化合物。Optionally, the first metal silicide layer includes: titanium silicon compound.

可选的,所述第一金属硅化物层的厚度为2纳米至16纳米。Optionally, the thickness of the first metal silicide layer is 2 nm to 16 nm.

可选的,所述第二金属硅化物层包括:镍硅化合物。Optionally, the second metal silicide layer includes: nickel silicon compound.

可选的,所述第二金属硅化物层的厚度为2纳米至16纳米。Optionally, the thickness of the second metal silicide layer is 2 nm to 16 nm.

可选的,在垂直于所述栅极结构侧壁的方向,所述第一金属硅化物层的长度和第二金属硅化物层的长度比值为2至3。Optionally, in a direction perpendicular to the sidewall of the gate structure, the ratio of the length of the first metal silicide layer to the length of the second metal silicide layer is 2 to 3.

可选的,在垂直于所述栅极结构侧壁的方向,所述第二金属硅化物层的宽度为10纳米至20纳米。Optionally, in a direction perpendicular to the sidewall of the gate structure, the width of the second metal silicide layer is 10 nanometers to 20 nanometers.

与现有技术相比,本发明实施例的技术方案具有以下优点:Compared with the prior art, the technical solutions of the embodiments of the present invention have the following advantages:

本发明实施例所述开口底部包括中心区域,以及包围所述中心区域的边缘区域,所述边缘区域相比于中心区域距离栅极结构下方的沟道区更近;在所述开口底部形成第一金属层;去除所述开口底部中心区域的第一金属层,形成开孔;在所述开孔中形成第二金属层。所述第二金属层的材料扩散能力大于所述第一金属层的材料扩散能力,与单独使用第二金属层形成金属硅化物层的情况相比,位于中心区域的第二金属层形成第二金属硅化物层的过程中第二金属层的材料不易扩散至所述栅极结构下方的沟道区中,使得源漏掺杂层不易穿通,所述栅极结构更易控制沟道。所述第二金属硅化物层的电阻率小于所述第一金属硅化物层的电阻率,相比于只采用第一金属层反应形成金属硅化物层的情况相比,具有更低的阻值。综上,在所述开口底部中心区域形成第二金属硅化物层,在边缘区域形成第一金属硅化物层,保障了在源漏掺杂层不易穿通的情况下,降低了接触孔插塞与源漏掺杂层的接触电阻,优化了半导体结构的电学性能。The bottom of the opening in the embodiment of the present invention includes a central region and an edge region surrounding the central region, the edge region is closer to the channel region below the gate structure than the central region; A metal layer; removing the first metal layer in the central area of the bottom of the opening to form an opening; forming a second metal layer in the opening. The material diffusion ability of the second metal layer is greater than the material diffusion ability of the first metal layer. Compared with the case where the second metal layer is used alone to form the metal silicide layer, the second metal layer located in the central region forms a second metal silicide layer. In the process of the metal silicide layer, the material of the second metal layer is not easy to diffuse into the channel region under the gate structure, so that the source-drain doped layer is not easy to penetrate, and the gate structure is easier to control the channel. The resistivity of the second metal silicide layer is smaller than the resistivity of the first metal silicide layer, and has a lower resistance value than the case where only the first metal layer is used to react to form the metal silicide layer . To sum up, the second metal silicide layer is formed in the central area of the bottom of the opening, and the first metal silicide layer is formed in the edge area, which ensures that the contact hole plug and contact holes are reduced when the source-drain doped layer is not easy to penetrate. The contact resistance of the source-drain doped layer optimizes the electrical performance of the semiconductor structure.

附图说明Description of drawings

图1是一种半导体结构的结构示意图;Fig. 1 is a structural schematic diagram of a semiconductor structure;

图2至图10是本发明实施例半导体结构的形成方法另一实施例中各步骤对应的结构示意图。2 to 10 are structural diagrams corresponding to each step in another embodiment of the method for forming a semiconductor structure according to the embodiment of the present invention.

具体实施方式Detailed ways

由背景技术可知,目前所形成的半导体结构仍有性能不佳的问题。现结合一种半导体结构分析半导体结构性能不佳的原因。It can be seen from the background art that the semiconductor structures formed so far still have the problem of poor performance. The reasons for the poor performance of the semiconductor structure are analyzed in conjunction with a semiconductor structure.

参考图1,示出了一种半导体结构的结构示意图。Referring to FIG. 1 , a schematic structural diagram of a semiconductor structure is shown.

参考图1,所述半导体结构包括:衬底1;鳍部2,位于所述衬底1上;栅极结构3,横跨所述鳍部2,且所述栅极结构3覆盖所述鳍部2的部分顶壁和侧壁;源漏掺杂层4,位于所述栅极结构3两侧的所述鳍部2中;金属硅化物5位于所述源漏掺杂层4上;层间介质层(图中未示出),覆盖所述栅极结构3以及源漏掺杂层4,且所述层间介质层露出所述栅极结构3的顶面;接触孔插塞6,位于所述金属硅化物5上,且与金属硅化物5接触,所述接触孔插塞6的顶面高于所述层间介质层的顶面;介电层7,位于所述层间介质层上,覆盖所述接触孔插塞6的侧壁,露出所述接触孔插塞6的顶面。Referring to FIG. 1, the semiconductor structure includes: a substrate 1; a fin 2 located on the substrate 1; a gate structure 3 spanning the fin 2, and the gate structure 3 covers the fin part of the top wall and sidewall of part 2; doped source and drain layer 4, located in the fin part 2 on both sides of the gate structure 3; metal silicide 5 is located on the doped source and drain layer 4; layer An interlayer dielectric layer (not shown in the figure), covering the gate structure 3 and the source-drain doped layer 4, and the interlayer dielectric layer exposes the top surface of the gate structure 3; a contact hole plug 6, Located on the metal silicide 5 and in contact with the metal silicide 5, the top surface of the contact hole plug 6 is higher than the top surface of the interlayer dielectric layer; a dielectric layer 7 is located on the interlayer dielectric layer, covering the sidewall of the contact plug 6 and exposing the top surface of the contact plug 6 .

所述金属硅化物层5用于减小源漏掺杂层4与接触孔插塞6的接触电阻。若所述金属硅化物层5的材料为镍硅化合物,在形成镍硅化合物的过程中,所述金属镍易扩散至栅极结构3下方的沟道区中,在半导体结构工作时会导致栅极结构3两侧的源漏掺杂层4穿通,导致栅极结构3不能够很好的控制沟道,使得半导体结构的电学性能不高。若所述金属硅化物层5的材料为钛硅化合物,钛硅化合物的电阻率较高,不能够很好的降低源漏掺杂层4和接触孔插塞6的接触电阻,所述半导体结构的电学性能不佳。The metal silicide layer 5 is used to reduce the contact resistance between the source-drain doped layer 4 and the contact hole plug 6 . If the material of the metal silicide layer 5 is a nickel-silicon compound, during the process of forming the nickel-silicon compound, the metal nickel is easy to diffuse into the channel region below the gate structure 3, which will cause gate The source-drain doped layer 4 on both sides of the electrode structure 3 penetrates through, so that the gate structure 3 cannot control the channel well, so that the electrical performance of the semiconductor structure is not high. If the material of the metal silicide layer 5 is a titanium-silicon compound, the resistivity of the titanium-silicon compound is relatively high, and the contact resistance between the source-drain doped layer 4 and the contact hole plug 6 cannot be well reduced. poor electrical performance.

为了解决所述技术问题,本发明实施例提供一种半导体结构的形成方法,包括:提供基底,所述基底包括衬底、位于所述衬底上的栅极结构,位于所述栅极结构两侧所述衬底中的源漏掺杂层以及覆盖所述栅极结构侧壁和源漏掺杂层的层间介质层,且所述层间介质层露出所述栅极结构的顶壁;在所述层间介质层中形成露出所述源漏掺杂层的开口,所述开口底部包括中心区域,以及包围所述中心区域的边缘区域;在所述开口底部形成第一金属层;去除所述开口底部中心区域的第一金属层,形成开孔;在所述开孔中形成第二金属层,所述第二金属层的材料扩散能力大于所述第一金属层的材料扩散能力,且所述第二金属层对应硅化物的电阻率小于所述第一金属层对应硅化物的电阻率;对所述第一金属层和第二金属层进行处理,形成金属硅化物层,所述第一金属层和第二金属层分别对应第一金属硅化物层和第二金属硅化物层;形成金属硅化物层后,在所述开口中形成接触孔插塞。In order to solve the above technical problem, an embodiment of the present invention provides a method for forming a semiconductor structure, including: providing a base, the base includes a substrate, a gate structure on the substrate, and a gate structure located on both sides of the gate structure. The source-drain doped layer in the substrate and the interlayer dielectric layer covering the sidewall of the gate structure and the source-drain doped layer, and the interlayer dielectric layer exposes the top wall of the gate structure; Forming an opening exposing the source-drain doped layer in the interlayer dielectric layer, the bottom of the opening includes a central region, and an edge region surrounding the central region; forming a first metal layer at the bottom of the opening; removing The first metal layer in the central area of the bottom of the opening forms an opening; a second metal layer is formed in the opening, and the material diffusion capacity of the second metal layer is greater than the material diffusion capacity of the first metal layer, And the resistivity corresponding to the silicide of the second metal layer is smaller than the resistivity corresponding to the silicide of the first metal layer; the first metal layer and the second metal layer are processed to form a metal silicide layer, the The first metal layer and the second metal layer respectively correspond to the first metal silicide layer and the second metal silicide layer; after forming the metal silicide layer, a contact hole plug is formed in the opening.

本发明实施例所述开口底部包括中心区域,以及包围所述中心区域的边缘区域,所述边缘区域相比于中心区域距离栅极结构下方的沟道区更近;在所述开口底部形成第一金属层;去除所述开口底部中心区域的第一金属层,形成开孔;在所述开孔中形成第二金属层。所述第二金属层的材料扩散能力大于所述第一金属层的材料扩散能力,与单独使用第二金属层形成金属硅化物层的情况相比,位于中心区域的第二金属层形成第二金属硅化物层的过程中第二金属层的材料不易扩散至所述栅极结构下方的沟道区中,使得源漏掺杂层不易穿通,所述栅极结构更易控制沟道。所述第二金属硅化物层的电阻率小于所述第一金属硅化物层的电阻率,相比于只采用第一金属层反应形成金属硅化物层的情况相比,具有更低的阻值。综上,在所述开口底部中心区域形成第二金属硅化物层,在边缘区域形成第一金属硅化物层,保障了在源漏掺杂层不易穿通的情况下,降低了接触孔插塞与源漏掺杂层的接触电阻,优化了半导体结构的电学性能。The bottom of the opening in the embodiment of the present invention includes a central region and an edge region surrounding the central region, the edge region is closer to the channel region below the gate structure than the central region; A metal layer; removing the first metal layer in the central area of the bottom of the opening to form an opening; forming a second metal layer in the opening. The material diffusion ability of the second metal layer is greater than the material diffusion ability of the first metal layer. Compared with the case where the second metal layer is used alone to form the metal silicide layer, the second metal layer located in the central region forms a second metal silicide layer. In the process of the metal silicide layer, the material of the second metal layer is not easy to diffuse into the channel region under the gate structure, so that the source-drain doped layer is not easy to penetrate, and the gate structure is easier to control the channel. The resistivity of the second metal silicide layer is smaller than the resistivity of the first metal silicide layer, and has a lower resistance value than the case where only the first metal layer is used to react to form the metal silicide layer . To sum up, the second metal silicide layer is formed in the central area of the bottom of the opening, and the first metal silicide layer is formed in the edge area, which ensures that the contact hole plug and contact holes are reduced when the source-drain doped layer is not easy to penetrate. The contact resistance of the source-drain doped layer optimizes the electrical performance of the semiconductor structure.

为使本发明实施例的上述目的、特征和优点能够更为明显易懂,下面结合附图对本发明实施例的具体实施例做详细的说明。In order to make the above objects, features and advantages of the embodiments of the present invention more comprehensible, specific embodiments of the embodiments of the present invention will be described in detail below in conjunction with the accompanying drawings.

图2至图10是本发明实施例半导体结构的形成方法一实施例中各步骤对应的结构示意图。2 to 10 are structural schematic diagrams corresponding to each step in an embodiment of a method for forming a semiconductor structure according to an embodiment of the present invention.

参考图2,提供基底,所述基底包括衬底100、位于所述衬底100上的栅极结构103,位于所述栅极结构103两侧所述衬底100中的源漏掺杂层104以及覆盖所述栅极结构103侧壁和源漏掺杂层104的层间介质层105,且所述层间介质层105露出所述栅极结构103的顶壁。Referring to FIG. 2 , a base is provided, and the base includes a substrate 100, a gate structure 103 on the substrate 100, a source-drain doped layer 104 in the substrate 100 on both sides of the gate structure 103 And the interlayer dielectric layer 105 covering the sidewalls of the gate structure 103 and the source-drain doped layer 104 , and the interlayer dielectric layer 105 exposes the top wall of the gate structure 103 .

衬底100为后续形成半导体结构提供工艺基础。The substrate 100 provides a process basis for subsequent formation of semiconductor structures.

本实施例以形成的半导体结构为鳍式场效应晶体管(FinFET)为例,所述衬底100为具有鳍部100a的衬底100。在其他实施例中,形成的半导体结构还可以为平面结构,相应的,衬底为平面衬底。In this embodiment, the formed semiconductor structure is a Fin Field Effect Transistor (FinFET) as an example, and the substrate 100 is a substrate 100 having a fin portion 100a. In other embodiments, the formed semiconductor structure may also be a planar structure, and correspondingly, the substrate is a planar substrate.

本实施例中,衬底100的材料为硅。在其他实施例中,衬底的材料还可以为锗、锗化硅、碳化硅、砷化镓或镓化铟,衬底还能够为绝缘体上的硅衬底或者绝缘体上的锗衬底。衬底100表面还能够形成有界面层,界面层的材料为氧化硅、氮化硅或氮氧化硅等。In this embodiment, the material of the substrate 100 is silicon. In other embodiments, the material of the substrate may also be germanium, silicon germanium, silicon carbide, gallium arsenide or indium gallium, and the substrate may also be a silicon-on-insulator substrate or a germanium-on-insulator substrate. An interface layer can also be formed on the surface of the substrate 100, and the material of the interface layer is silicon oxide, silicon nitride, or silicon oxynitride.

所述栅极结构103横跨所述鳍部100a且覆盖所述鳍部100a的部分顶壁和侧壁。所述栅极结构103用于在半导体结构工作时控制沟道的开启与断开。The gate structure 103 spans the fin portion 100a and covers part of the top wall and the side wall of the fin portion 100a. The gate structure 103 is used to control the opening and closing of the channel when the semiconductor structure is working.

本实施例中,所述栅极结构103为金属栅极结构。In this embodiment, the gate structure 103 is a metal gate structure.

本实施例中,栅极结构103为叠层结构,包括保形覆盖鳍部100a的部分顶面和部分侧壁的栅介质层1031和位于栅介质层1031上的栅极层1032。其他实施例中,栅极结构还可以为单层结构,即栅极结构仅包括栅极层。In this embodiment, the gate structure 103 is a stacked structure, including a gate dielectric layer 1031 conformally covering part of the top surface and part of the sidewall of the fin 100 a and a gate layer 1032 on the gate dielectric layer 1031 . In other embodiments, the gate structure may also be a single-layer structure, that is, the gate structure only includes a gate layer.

栅介质层1031的材料为高k介质层,高k介质层的材料是指相对介电常数大于氧化硅相对介电常数的介质材料。本实施例中,栅介质层1031的材料为HfO2。其他实施例中,栅介质层的材料还可以选自ZrO2、HfSiO、HfSiON、HfTaO、HfTiO、HfZrO或Al2O3中的一种或几种。The material of the gate dielectric layer 1031 is a high-k dielectric layer, and the material of the high-k dielectric layer refers to a dielectric material with a relative dielectric constant greater than that of silicon oxide. In this embodiment, the material of the gate dielectric layer 1031 is HfO 2 . In other embodiments, the material of the gate dielectric layer may also be selected from one or more of ZrO 2 , HfSiO, HfSiON, HfTaO, HfTiO, HfZrO or Al 2 O 3 .

栅极层1032作为电极,用于实现与外部电路的电连接。在本实施例中,栅极层1032的材料为镁钨合金。其他实施例中,栅极层的材料还可以为W、Al、Cu、Ag、Au、Pt、Ni或Ti等。The gate layer 1032 is used as an electrode for realizing electrical connection with an external circuit. In this embodiment, the material of the gate layer 1032 is magnesium-tungsten alloy. In other embodiments, the material of the gate layer may also be W, Al, Cu, Ag, Au, Pt, Ni or Ti, etc.

其他实施例中,所述栅极结构还可以为多晶硅栅极结构。相应的,所述栅极结构包括栅氧化层以及位于所述栅氧化层上的栅极层。In other embodiments, the gate structure may also be a polysilicon gate structure. Correspondingly, the gate structure includes a gate oxide layer and a gate layer on the gate oxide layer.

所述基底还包括侧墙层108,所述侧墙108用于在后续刻蚀去除所述源漏掺杂层104上的层间介质层105的过程中对所述栅极结构103的侧壁起到保护作用,所述侧墙108还用于定义源漏掺杂层104的位置。The substrate further includes a sidewall layer 108, and the sidewall 108 is used to protect the sidewall of the gate structure 103 during subsequent etching to remove the interlayer dielectric layer 105 on the source-drain doped layer 104. Playing a protective role, the sidewall 108 is also used to define the position of the source-drain doped layer 104 .

源漏掺杂层104,位于所述栅极结构103两侧的所述鳍部100a中。所述源漏掺杂层104在半导体结构工作时,为栅极结构103下方的沟道提供应力,提高载流子的迁移率。The source-drain doped layer 104 is located in the fin portion 100 a on both sides of the gate structure 103 . The source-drain doped layer 104 provides stress to the channel under the gate structure 103 when the semiconductor structure is working, and improves the mobility of carriers.

本实施例中,所述半导体结构用于形成PMOS(Positive Channel Metal OxideSemiconductor)晶体管,即所述源漏掺杂层104的材料为掺杂P型离子的锗化硅。本实施例通过在锗化硅中掺杂P型离子,使P型离子取代晶格中硅原子的位置,掺入的P型离子越多,多子的浓度就越高,导电性能也就越强。具体的,P型离子包括B、Ga或In。In this embodiment, the semiconductor structure is used to form a PMOS (Positive Channel Metal Oxide Semiconductor) transistor, that is, the material of the source-drain doped layer 104 is silicon germanium doped with P-type ions. In this embodiment, by doping P-type ions in silicon germanium, the P-type ions replace the positions of silicon atoms in the crystal lattice. The more P-type ions doped, the higher the concentration of multiple children and the better the conductivity. powerful. Specifically, the P-type ions include B, Ga or In.

其他实施例中,所述半导体结构用于形成NMOS(Negative channel Metal OxideSemiconductor)晶体管,即所述源漏掺杂层的材料相应为掺杂N型离子的碳化硅或磷化硅。通过在碳化硅或磷化硅中掺杂N型离子,使N型离子取代晶格中硅原子的位置,掺入的N型离子越多,多子的浓度就越高,导电性能也就越强。具体的,N型离子包括P、As或Sb。In other embodiments, the semiconductor structure is used to form an NMOS (Negative channel Metal Oxide Semiconductor) transistor, that is, the material of the doped source and drain layers is silicon carbide or silicon phosphide doped with N-type ions. By doping N-type ions in silicon carbide or silicon phosphide, N-type ions replace the positions of silicon atoms in the crystal lattice. The more N-type ions doped, the higher the concentration of many children and the better the conductivity. powerful. Specifically, the N-type ions include P, As or Sb.

需要说明的是,所述基底还包括:刻蚀停止层(Contact Etch Stop Layer,CESL)(图中未示出),位于所述源漏掺杂层104上。所述刻蚀停止层用于后续在刻蚀层间介质层105形成开口的过程中,定义刻蚀工艺刻蚀停止的位置,从而保障刻蚀形成开口的同时,降低所述刻蚀工艺对所述源漏掺杂层104造成过刻蚀的概率。It should be noted that, the substrate further includes: an etch stop layer (Contact Etch Stop Layer, CESL) (not shown in the figure), located on the source-drain doped layer 104 . The etch stop layer is used to define the etching stop position of the etching process during the subsequent process of etching the interlayer dielectric layer 105 to form an opening, so as to ensure that the etching forms an opening while reducing the impact of the etching process on the opening. The probability of over-etching caused by the source-drain doped layer 104 is discussed above.

所述刻蚀停止层的材料采用低K介电常数的材料。The material of the etching stop layer is a material with a low K dielectric constant.

所述刻蚀停止层的材料包括氮化硅、氮氧化硅、碳化硅、氮碳化硅、氮化硼、氮化硼硅和氮化硼碳硅中的一种或多种。本实施例中,所述刻蚀停止层的材料为氮化硅。The material of the etching stop layer includes one or more of silicon nitride, silicon oxynitride, silicon carbide, silicon carbide nitride, boron nitride, silicon boron nitride and silicon boron nitride. In this embodiment, the material of the etching stop layer is silicon nitride.

需要说明的是,所述源漏掺杂层104的顶部中形成有非晶区,所述非晶区采用非晶化前注入(PAI)工艺形成。PAI工艺包括使用从硅、锗或其组合中选取的离子进行离子注入,使得源漏掺杂层104顶部非晶化,虽然已知非晶硅化布植工艺可用来减缓应力迟滞反应(stress-retarded reaction)和增加晶核形成的密度,使得后续形成在源漏掺杂层顶面的第一金属层和第二金属层经过处理后形成的更为均匀更厚的第一金属硅化物层和第二金属硅化物层。在不改变源漏掺杂层104导电性的情况下选择所述离子。It should be noted that an amorphous region is formed on the top of the source-drain doped layer 104 , and the amorphous region is formed by a pre-amorphization implantation (PAI) process. The PAI process includes ion implantation using ions selected from silicon, germanium, or a combination thereof, so that the top of the source-drain doped layer 104 is amorphized, although it is known that the amorphous silicon implantation process can be used to slow down the stress-retarded reaction. reaction) and increase the density of crystal nucleus formation, so that the first metal silicide layer and the second metal layer that are subsequently formed on the top surface of the source-drain doped layer are processed to form a more uniform and thicker first metal silicide layer and the second metal silicide layer Two metal silicide layers. The ions are selected without changing the conductivity of the source-drain doped layer 104 .

具体的注入离子包括:Ge或Si中的一种或两种。Specific implanted ions include: one or two of Ge or Si.

层间介质层105用于实现相邻半导体结构之间的电隔离,因此,层间介质层105的材料为绝缘材料。The interlayer dielectric layer 105 is used to realize electrical isolation between adjacent semiconductor structures, therefore, the material of the interlayer dielectric layer 105 is an insulating material.

所述层间介质层105露出所述栅极结构103的顶壁。The interlayer dielectric layer 105 exposes the top wall of the gate structure 103 .

具体的,层间介质层105的材料为氧化硅。氧化硅是工艺常用、成本较低的介电材料,且具有较高的工艺兼容性,有利于降低形成所述层间介质层105的工艺难度和工艺成本,且氧化硅的去除工艺简单。其他实施例中,层间介质层的材料还可以为氮化硅、氮氧化硅、碳氧化硅、碳氮化硅和碳氮氧化硅中的一种或多种。Specifically, the material of the interlayer dielectric layer 105 is silicon oxide. Silicon oxide is a commonly used dielectric material with low cost, and has high process compatibility, which is beneficial to reduce the process difficulty and process cost of forming the interlayer dielectric layer 105, and the silicon oxide removal process is simple. In other embodiments, the material of the interlayer dielectric layer may also be one or more of silicon nitride, silicon oxynitride, silicon oxycarbide, silicon carbonitride and silicon oxycarbonitride.

需要说明的是,所述基底还包括:介电层106,位于所述层间介质层105上。所述介电层106和层间介质层105为后续形成与源漏掺杂层104相连接的接触孔插塞提供工艺基础。It should be noted that the substrate further includes: a dielectric layer 106 located on the interlayer dielectric layer 105 . The dielectric layer 106 and the interlayer dielectric layer 105 provide a process basis for subsequent formation of contact hole plugs connected to the source-drain doped layer 104 .

所述介电层106用于实现相邻器件之间的电隔离,所述介电层106的材料为绝缘材料。The dielectric layer 106 is used to realize electrical isolation between adjacent devices, and the material of the dielectric layer 106 is an insulating material.

本实施例中,所述介电层106的材料为氧化硅。氧化硅是工艺常用、成本较低的介电材料,且具有较高的工艺兼容性,有利于降低形成所述介电层106的工艺难度和工艺成本,且氧化硅的去除工艺简单。其他实施例中,所述介电层的材料还可以为氮化硅或氮氧化硅等其他的绝缘材料。In this embodiment, the material of the dielectric layer 106 is silicon oxide. Silicon oxide is a commonly used dielectric material with low cost, and has high process compatibility, which is beneficial to reduce the process difficulty and process cost of forming the dielectric layer 106, and the silicon oxide removal process is simple. In other embodiments, the material of the dielectric layer may also be other insulating materials such as silicon nitride or silicon oxynitride.

参考图3,在所述层间介质层105中形成露出所述源漏掺杂层104的开口107,所述开口107底部包括中心区域,以及包围所述中心区域的边缘区域。Referring to FIG. 3 , an opening 107 exposing the source-drain doped layer 104 is formed in the interlayer dielectric layer 105 , the bottom of the opening 107 includes a central region, and an edge region surrounding the central region.

所述中心区域相比于边缘区域更远离沟道区。后续中心区域用于形成第二金属硅化物层,所述边缘区域用于形成第一金属硅化物层。The central region is farther from the channel region than the edge regions. The subsequent central area is used to form a second metal silicide layer, and the edge area is used to form a first metal silicide layer.

所述开口107为后续形成接触孔插塞提供空间位置。The opening 107 provides a space for subsequent formation of contact hole plugs.

形成所述开口107的步骤包括:在所述介电层106上形成开口掩膜层(图中未示出);以所述开口掩膜层为掩膜去除源漏掺杂层104上的层间介质层105和介电层106,形成露出所述源漏掺杂层104的开口107。The step of forming the opening 107 includes: forming an opening mask layer (not shown in the figure) on the dielectric layer 106; using the opening mask layer as a mask to remove the layer on the source-drain doped layer 104 The inter-dielectric layer 105 and the dielectric layer 106 form an opening 107 exposing the source-drain doped layer 104 .

本实施例中,采用干法刻蚀工艺去除源漏掺杂层104上的层间介质层105和介电层106,形成开口107。干法刻蚀工艺为各向异性刻蚀工艺,具有较好的刻蚀剖面控制性,降低对其他膜层结构的损伤,有利于使所述开口107的形貌满足工艺需求,且还有利于提高所述层间介质层105和介电层106的去除效率。In this embodiment, a dry etching process is used to remove the interlayer dielectric layer 105 and the dielectric layer 106 on the source-drain doped layer 104 to form the opening 107 . The dry etching process is an anisotropic etching process, which has good controllability of the etching profile, reduces damage to other film structures, and is conducive to making the shape of the opening 107 meet the process requirements, and is also conducive to The removal efficiency of the interlayer dielectric layer 105 and the dielectric layer 106 is improved.

需要说明的是,在刻蚀所述层间介质层105的过程中,所述刻蚀停止层定义刻蚀工艺刻蚀停止的位置,从而保障刻蚀形成开口107的同时,降低所述刻蚀工艺对所述源漏掺杂层104造成过刻蚀的概率。It should be noted that, in the process of etching the interlayer dielectric layer 105, the etching stop layer defines the etching stop position of the etching process, so as to ensure that the etching forms the opening 107 while reducing the etching process. The process causes the possibility of over-etching the source-drain doped layer 104 .

具体的,所述开口107贯穿介电层106、层间介质层105以及刻蚀停止层。Specifically, the opening 107 penetrates through the dielectric layer 106 , the interlayer dielectric layer 105 and the etch stop layer.

需要说明的是,前续所述非晶化前注入(PAI)工艺也可以在形成开口107后进行。It should be noted that the aforementioned pre-amorphization implantation (PAI) process may also be performed after the opening 107 is formed.

参考图4,在所述开口107底部形成第一金属层109。Referring to FIG. 4 , a first metal layer 109 is formed at the bottom of the opening 107 .

所述第一金属层109为后续形成第一金属硅化物层做准备。所述第一金属硅化物层用于降低源漏掺杂层104与后续形成的接触孔插塞之间的接触电阻。The first metal layer 109 prepares for the subsequent formation of a first metal silicide layer. The first metal silicide layer is used to reduce the contact resistance between the source-drain doped layer 104 and the subsequently formed contact hole plug.

本实施例中,第一金属层109的材料包括:Ti。In this embodiment, the material of the first metal layer 109 includes: Ti.

本实施例中,采用原子层沉积工艺(Atomic Layer Deposition,ALD)形成第一金属层109。原子层沉积工艺具有较好的保形覆盖能力,有利于保证在形成所述第一金属层109的步骤中,所述第一金属层109能够保形覆盖于所述开口107的底面和侧壁,通过采用原子层沉积工艺,还有利于提高所述第一金属层109的厚度均一性。其他实施例中,还可以采用化学气相沉积工艺(chemical vapor deposition,CVD)形成第一金属层。In this embodiment, the first metal layer 109 is formed by using an atomic layer deposition process (Atomic Layer Deposition, ALD). The atomic layer deposition process has better conformal coverage ability, which is beneficial to ensure that in the step of forming the first metal layer 109, the first metal layer 109 can conformally cover the bottom surface and sidewall of the opening 107 , by using the atomic layer deposition process, it is also beneficial to improve the thickness uniformity of the first metal layer 109 . In other embodiments, the first metal layer may also be formed by chemical vapor deposition (CVD).

需要说明的是,所述第一金属层109不宜过厚也不宜过薄。若所述第一金属层109过厚,形成所述第一金属层109的工艺时间过长,且后续过程会去除未反应形成第一金属硅化物的第一金属109,造成资源浪费。若所述第一金属层109过薄,使得后续采用自对准金属硅化物工艺(self-alignment silicide processes)形成的第一金属硅化物层的厚度过薄,以致于不能起到减小接触电阻的作用,使得半导体结构的电学性能欠佳。本实施例中,所述第一金属层109的厚度为2纳米至8纳米。It should be noted that the first metal layer 109 should neither be too thick nor too thin. If the first metal layer 109 is too thick, the process time for forming the first metal layer 109 is too long, and the subsequent process will remove the unreacted first metal 109 to form the first metal silicide, resulting in waste of resources. If the first metal layer 109 is too thin, the thickness of the first metal silicide layer formed by subsequent self-alignment silicide processes (self-alignment silicide processes) is too thin, so that the contact resistance cannot be reduced. The role of making the electrical performance of the semiconductor structure is not good. In this embodiment, the thickness of the first metal layer 109 is 2 nm to 8 nm.

参考图5至图7,去除所述开口107底部中心区域的第一金属层109,形成开孔101。Referring to FIG. 5 to FIG. 7 , the first metal layer 109 at the bottom central area of the opening 107 is removed to form the opening 101 .

所述开孔101为后续形成第二金属层做准备,所述第二金属层材料的扩散能力大于所述第一金属层材料的扩散能力。The opening 101 is a preparation for subsequent formation of a second metal layer, and the diffusion capacity of the material of the second metal layer is greater than that of the material of the first metal layer.

本实施例中,所述垂直于所述栅极结构103的侧壁方向,所述开孔101的宽度不宜过大也不宜过小。若所述开孔101的宽度过小,导致垂直于栅极结构103侧壁的方向上后续形成第二金属层宽度过小,不利于减小后续形成的接触孔插塞与源漏掺杂层的电阻。若所述开孔101的宽度过大,导致垂直于栅极结构103侧壁的方向上后续形成第二金属层宽度过大,因为所述第二金属层材料的扩散能力大于所述第一金属层材料的扩散能力,若所述第二金属层的宽度过大,会导致后续在将第二金属层处理形成第二金属硅化物层的过程中,所述第二金属层材料易扩散至沟道中,导致源漏掺杂层104易穿通,导致半导体结构性能不佳。本实施例中,垂直于所述栅极结构103的侧壁方向,所述开孔101的宽度为10纳米至20纳米。In this embodiment, the width of the opening 101 should not be too large or too small in the direction perpendicular to the sidewall of the gate structure 103 . If the width of the opening 101 is too small, the width of the subsequent formation of the second metal layer in the direction perpendicular to the sidewall of the gate structure 103 is too small, which is not conducive to reducing the subsequent formation of contact hole plugs and source-drain doped layers. The resistance. If the width of the opening 101 is too large, the width of the subsequent second metal layer formed in the direction perpendicular to the sidewall of the gate structure 103 is too large, because the diffusion capacity of the material of the second metal layer is greater than that of the first metal layer. If the width of the second metal layer is too large, the material of the second metal layer will easily diffuse into the groove during the subsequent processing of the second metal layer to form the second metal silicide layer. In the channel, the source-drain doped layer 104 is easy to punch through, resulting in poor performance of the semiconductor structure. In this embodiment, the width of the opening 101 perpendicular to the direction of the sidewall of the gate structure 103 is 10 nanometers to 20 nanometers.

需要说明的是,针对所述鳍部100a的延伸方向的两端的所述源漏掺杂层104,只有一端靠近沟道区,所述开孔101露出了远离所述沟道区的部分源漏掺杂层104。所述开孔101露出了远离所述沟道区的部分源漏掺杂层104,使得更多的区域可以在后续过程中形成第二金属层。其他实施例中,所述开孔还可以只露处中心区域的源漏掺杂层。It should be noted that, for the source-drain doped layer 104 at both ends of the extending direction of the fin portion 100a, only one end is close to the channel region, and the opening 101 exposes part of the source-drain layer far away from the channel region. Doped layer 104. The opening 101 exposes a portion of the source-drain doped layer 104 away from the channel region, so that more regions can be used to form the second metal layer in a subsequent process. In other embodiments, the opening may only expose the source-drain doped layer in the central region.

形成开孔101的步骤包括:The steps of forming the opening 101 include:

如图5和图6所示,在所述开口107的侧壁上形成牺牲层111(如图6所示)。所述牺牲层111露出所述中心区域,为后续以所述牺牲层111为掩膜刻蚀第一金属层109形成开孔做准备。As shown in FIGS. 5 and 6 , a sacrificial layer 111 (as shown in FIG. 6 ) is formed on the sidewall of the opening 107 . The sacrificial layer 111 exposes the central region to prepare for subsequent etching of the first metal layer 109 using the sacrificial layer 111 as a mask to form openings.

所述牺牲层111与所述第一金属层109以及源漏掺杂层104的材料不同,因此所述牺牲层111与所述第一金属层109以及源漏掺杂层104具有刻蚀选择比,在后续去除所述牺牲层111的过程中,所述第一金属层109以及源漏掺杂层104的被刻蚀速率小。The material of the sacrificial layer 111 is different from that of the first metal layer 109 and the source-drain doped layer 104, so the sacrificial layer 111 and the first metal layer 109 and the source-drain doped layer 104 have an etching selectivity ratio , during the subsequent process of removing the sacrificial layer 111 , the etching rates of the first metal layer 109 and the source-drain doped layer 104 are small.

具体的,所述牺牲层111的材料为low-K材料,金属化合物、Al氧化物、Ti化合物和无定形锗中的一种或多种。本实施例中,所述牺牲层111的材料为无定形锗。Specifically, the material of the sacrificial layer 111 is low-K material, one or more of metal compound, Al oxide, Ti compound and amorphous germanium. In this embodiment, the material of the sacrificial layer 111 is amorphous germanium.

形成所述牺牲层111的步骤包括:形成保形覆盖所述第一金属层109的牺牲材料层113(如图5所示);去除位于所述源漏掺杂层104上以及介电层106上的所述牺牲材料层113,形成位于所述开口107的侧壁上的牺牲层111。The step of forming the sacrificial layer 111 includes: forming a sacrificial material layer 113 conformally covering the first metal layer 109 (as shown in FIG. 5 ); removing the source-drain doped layer 104 and the dielectric layer 106 The sacrificial material layer 113 is formed on the sacrificial layer 111 on the sidewall of the opening 107 .

本实施例中,采用无掩膜刻蚀工艺去除位于所述源漏掺杂层104以及介电层106上的所述牺牲材料层113,形成所述牺牲层111的步骤中不需用到光罩(Mask),降低了工艺成本。In this embodiment, the sacrificial material layer 113 located on the source-drain doped layer 104 and the dielectric layer 106 is removed by using a maskless etching process, and no light is used in the step of forming the sacrificial layer 111. Mask (Mask), which reduces the process cost.

如图7所示,以所述牺牲层111为掩膜去除所述牺牲层111露出的所述第一金属层109,形成由所述第一金属层109和源漏掺杂层104围成的开孔101。As shown in FIG. 7 , the first metal layer 109 exposed by the sacrificial layer 111 is removed by using the sacrificial layer 111 as a mask to form a metal layer surrounded by the first metal layer 109 and the source-drain doped layer 104. Hole 101.

本实施例中,采用干法刻蚀工艺去除所述牺牲层111露出的所述第一金属层109。In this embodiment, the first metal layer 109 exposed by the sacrificial layer 111 is removed by a dry etching process.

具体地,干法刻蚀工艺具有各向异性刻蚀的特性,有利于保证将位于所述源漏掺杂层104以及介电层106上的所述牺牲材料层113完全去除的同时,对其他膜层结构的损伤较小,而且不易对第一金属层109进行横向刻蚀,使得在垂直于所述栅极结构103侧壁方向所述第一金属层109不易过短,进而使得所述第二金属层在垂直于所述栅极结构103侧壁方向不易过长,使得所述第二金属层中的材料在后续进行自对准金属硅化物工艺的过程中不易扩散至沟道区中,所述源漏掺杂层104不易穿通,优化了半导体结构的电学性能。Specifically, the dry etching process has the characteristics of anisotropic etching, which is beneficial to ensure that the sacrificial material layer 113 located on the source-drain doped layer 104 and the dielectric layer 106 is completely removed, while other The damage to the film layer structure is small, and it is not easy to etch the first metal layer 109 laterally, so that the first metal layer 109 is not easy to be too short in the direction perpendicular to the sidewall of the gate structure 103, so that the first metal layer 109 is not easy to be too short. The second metal layer is not easy to be too long in the direction perpendicular to the sidewall of the gate structure 103, so that the material in the second metal layer is not easy to diffuse into the channel region during the subsequent salicide process, The source-drain doped layer 104 is not easy to punch through, which optimizes the electrical performance of the semiconductor structure.

其他实施例中,还可以采用湿法刻蚀工艺去除所述牺牲层露出的所述第一金属层。湿法刻蚀工艺具有较高的刻蚀速率,且操作简单,工艺成本低。In other embodiments, a wet etching process may also be used to remove the first metal layer exposed by the sacrificial layer. The wet etching process has a high etching rate, simple operation and low process cost.

具体的,所述开孔101由所述第一金属层109、刻蚀停止层和源漏掺杂层104围成。Specifically, the opening 101 is surrounded by the first metal layer 109 , the etch stop layer and the source-drain doped layer 104 .

参考图8,在所述开孔101中形成第二金属层110,所述第二金属层110的材料扩散能力大于所述第一金属层109的材料扩散能力,且所述第二金属层110对应硅化物的电阻率小于所述第一金属层109对应硅化物的电阻率。Referring to FIG. 8, a second metal layer 110 is formed in the opening 101, the material diffusion capacity of the second metal layer 110 is greater than the material diffusion capacity of the first metal layer 109, and the second metal layer 110 The resistivity corresponding to the silicide is smaller than the resistivity of the first metal layer 109 corresponding to the silicide.

本发明实施例所述开口107底部包括中心区域,以及包围所述中心区域的边缘区域,所述边缘区域相比于中心区域距离栅极结构103下方的沟道区更近;在所述开口107底部形成第一金属层109;去除所述开口107底部中心区域的第一金属层109,形成开孔112;在所述开孔112中形成第二金属层110。所述第二金属层110的材料扩散能力大于所述第一金属层109的材料扩散能力,与单独使用第二金属层110形成金属硅化物层的情况相比,位于中心区域的第二金属层110形成第二金属硅化物层的过程中第二金属层110的材料不易扩散至所述栅极结构103下方的沟道区中,使得源漏掺杂层104不易穿通,所述栅极结构103更易控制沟道。所述第二金属硅化物层的电阻率小于所述第一金属硅化物层的电阻率,相比于只采用第一金属层109反应形成金属硅化物层的情况相比,具有更低的阻值。综上,在所述开口107底部中心区域形成第二金属硅化物层,在边缘区域形成第一金属硅化物层,保障了在源漏掺杂层104不易穿通的情况下,降低了接触孔插塞与源漏掺杂层104的接触电阻,优化了半导体结构的电学性能。The bottom of the opening 107 in the embodiment of the present invention includes a central region and an edge region surrounding the central region, the edge region is closer to the channel region below the gate structure 103 than the central region; in the opening 107 A first metal layer 109 is formed at the bottom; the first metal layer 109 at the bottom central area of the opening 107 is removed to form an opening 112 ; and a second metal layer 110 is formed in the opening 112 . The material diffusion ability of the second metal layer 110 is greater than the material diffusion ability of the first metal layer 109. Compared with the case where the second metal layer 110 is used alone to form a metal silicide layer, the second metal layer located in the central region 110 In the process of forming the second metal silicide layer, the material of the second metal layer 110 is not easy to diffuse into the channel region under the gate structure 103, so that the source-drain doped layer 104 is not easy to penetrate through, and the gate structure 103 Easier to control channels. The resistivity of the second metal silicide layer is smaller than the resistivity of the first metal silicide layer, and has a lower resistivity than the case where only the first metal layer 109 is used to react to form the metal silicide layer. value. To sum up, the second metal silicide layer is formed in the central area of the bottom of the opening 107, and the first metal silicide layer is formed in the edge area, which ensures that the contact hole insertion is reduced when the source-drain doped layer 104 is not easy to penetrate. The contact resistance between the plug and the source-drain doped layer 104 optimizes the electrical performance of the semiconductor structure.

本实施例中,第二金属层110的材料包括:Ni。In this embodiment, the material of the second metal layer 110 includes: Ni.

需要说明的是,所述第二金属层110不宜过厚也不宜过薄。若所述第二金属层110过厚,形成所述第二金属层110的工艺时间过长,且后续过程会去除未反应形成第二金属硅化物的第二金属109,造成资源浪费。若所述第二金属层110过薄,使得后续采用自对准金属硅化物工艺形成的第一金属硅化物层的厚度过薄,以致于不能起到减小接触电阻的作用,使得半导体结构的电学性能欠佳。本实施例中,所述第二金属层110的厚度为2纳米至8纳米。It should be noted that the second metal layer 110 should neither be too thick nor too thin. If the second metal layer 110 is too thick, the process time for forming the second metal layer 110 is too long, and the subsequent process will remove the unreacted second metal 109 to form the second metal silicide, resulting in waste of resources. If the second metal layer 110 is too thin, the thickness of the first metal silicide layer formed by the subsequent salicide process is too thin, so that it cannot play the role of reducing the contact resistance, so that the semiconductor structure Poor electrical performance. In this embodiment, the thickness of the second metal layer 110 is 2 nm to 8 nm.

本实施例中,采用原子层沉积工艺形成第二金属层110。原子层沉积工艺具有较好的保形覆盖能力,有利于保证在形成所述第二金属层110的步骤中,所述第二金属层110能够保形覆盖于所述开口107的底面和侧壁,通过采用原子层沉积工艺,还有利于提高所述第二金属层110的厚度均一性。其他实施例中,还可以采用化学气相沉积工艺形成第二金属层。In this embodiment, the second metal layer 110 is formed by an atomic layer deposition process. The atomic layer deposition process has better conformal coverage ability, which is beneficial to ensure that in the step of forming the second metal layer 110, the second metal layer 110 can conformally cover the bottom surface and sidewall of the opening 107 , by using the atomic layer deposition process, it is also beneficial to improve the thickness uniformity of the second metal layer 110 . In other embodiments, a chemical vapor deposition process may also be used to form the second metal layer.

需要说明的是,本实施例中,垂直于所述栅极结构103的侧壁方向,所述开孔101的宽度为10纳米至20纳米。相应的,所述第二金属层110垂直于所述栅极结构103的侧壁方向的宽度为10纳米至20纳米。It should be noted that, in this embodiment, the width of the opening 101 perpendicular to the direction of the sidewall of the gate structure 103 is 10 nm to 20 nm. Correspondingly, the width of the second metal layer 110 perpendicular to the sidewall direction of the gate structure 103 is 10 nm to 20 nm.

需要说明的是,在垂直于所述栅极结构103侧壁的方向,所述第一金属层109和第二金属层110的长度比不宜过大,也不宜过小。对所述第一金属层109和第二金属层110进行处理形成金属硅化物层,所述金属硅化物层包括第一金属硅化物层和第二金属硅化物层,所述第二金属硅化物层的电阻值低于所述第一金属硅化物层的电阻值,若所述比值过大,也就是说,所述第二金属层110过短会导致后续形成的第二金属硅化物层过短,相应的,导致源漏掺杂层104与后续形成的接触孔插塞的电阻过大,不利于减小源漏掺杂层104与后续形成的接触孔插塞的接触电阻,不利于优化半导体结构的电学性能。若所述比值过小,也就是说,第二金属层110的长度过长,所述第二金属层110过于靠近沟道区,会导致所述第二金属层110中的材料在后续进行自对准工艺的过程中易扩散至所述沟道区中,易导致源漏掺杂层104的穿通。本实施例中,在垂直于所述栅极结构103侧壁的方向,所述第一金属层109和第二金属层110的长度比为2至3。It should be noted that, in the direction perpendicular to the sidewall of the gate structure 103 , the length ratio between the first metal layer 109 and the second metal layer 110 should not be too large or too small. The first metal layer 109 and the second metal layer 110 are processed to form a metal silicide layer, and the metal silicide layer includes a first metal silicide layer and a second metal silicide layer, and the second metal silicide layer The resistance value of the layer is lower than the resistance value of the first metal silicide layer. If the ratio is too large, that is to say, the second metal layer 110 is too short, it will cause the subsequent formation of the second metal silicide layer to be too short. Correspondingly, the resistance between the source-drain doped layer 104 and the subsequently formed contact hole plug is too large, which is not conducive to reducing the contact resistance between the source-drain doped layer 104 and the subsequently formed contact hole plug, and is not conducive to optimization. Electrical properties of semiconductor structures. If the ratio is too small, that is, the length of the second metal layer 110 is too long, and the second metal layer 110 is too close to the channel region, the material in the second metal layer 110 will be automatically During the alignment process, it is easy to diffuse into the channel region, which easily leads to the breakthrough of the source-drain doped layer 104 . In this embodiment, the length ratio between the first metal layer 109 and the second metal layer 110 is 2 to 3 in a direction perpendicular to the sidewall of the gate structure 103 .

需要说明的是,本实施例中,在形成所述开孔101后,去除所述牺牲层111;去除所述牺牲层111后,在所述开孔101中形成第二金属层110。It should be noted that, in this embodiment, after the opening 101 is formed, the sacrificial layer 111 is removed; after the sacrificial layer 111 is removed, the second metal layer 110 is formed in the opening 101 .

本实施例中,采用湿法刻蚀工艺去除所述牺牲层111。湿法刻蚀工艺具有较高的刻蚀速率,且操作简单,工艺成本低。In this embodiment, the sacrificial layer 111 is removed by a wet etching process. The wet etching process has a high etching rate, simple operation and low process cost.

具体的,湿法刻蚀的溶液为热HCl溶液。Specifically, the wet etching solution is hot HCl solution.

其他实施例中,所述半导体结构的形成方法还可以为:所述第二金属层保形覆盖所述介电层、牺牲层以及所述牺牲层露出的源漏掺杂层上,后续形成所述金属硅化物层后,去除所述牺牲层。In other embodiments, the method for forming the semiconductor structure may also be: the second metal layer conformally covers the dielectric layer, the sacrificial layer, and the source-drain doped layer exposed by the sacrificial layer, and subsequently forms the After removing the metal silicide layer, the sacrificial layer is removed.

参考图9,对所述第一金属层109和第二金属层110进行处理,形成金属硅化物层114,所述第一金属层109和第二金属层110分别对应第一金属硅化物层1141和第二金属硅化物层1142。Referring to FIG. 9, the first metal layer 109 and the second metal layer 110 are processed to form a metal silicide layer 114, and the first metal layer 109 and the second metal layer 110 respectively correspond to the first metal silicide layer 1141 and the second metal silicide layer 1142 .

所述金属硅化物层114用于减小后续形成的接触孔插塞和源漏掺杂层104之间的接触电阻。The metal silicide layer 114 is used to reduce the contact resistance between the subsequently formed contact hole plug and the source-drain doped layer 104 .

本实施例中,采用自对准金属硅化物工艺对所述第一金属层109和所述第二金属层110进行处理,分别形成所述第一金属硅化物层1141和第二金属硅化物层1142。In this embodiment, the first metal silicide layer 109 and the second metal layer 110 are processed by a self-aligned metal silicide process to form the first metal silicide layer 1141 and the second metal silicide layer respectively. 1142.

需要说明的是,所述第一金属层109和所述第二金属层110,还形成在所述栅极结构103的侧壁以及介电层106上,所述半导体结构的形成方法还包括:在形成金属硅化物层114后,去除未与源漏掺杂层104反应的所述第一金属层109和所述第二金属层110。其他实施例中,因为所述第一金属层为TI,Ti为扩散能力较弱的材料,所述第一金属层还可以被保留下来,所述第一金属层用于防止后续形成在所述第一金属层上的材料扩散至栅极结构以及源漏掺杂层中,有损于半导体结构的电学性能。It should be noted that the first metal layer 109 and the second metal layer 110 are also formed on the sidewall of the gate structure 103 and the dielectric layer 106, and the method for forming the semiconductor structure further includes: After the metal silicide layer 114 is formed, the first metal layer 109 and the second metal layer 110 that have not reacted with the source-drain doped layer 104 are removed. In other embodiments, because the first metal layer is TI, and Ti is a material with weak diffusion ability, the first metal layer can also be retained, and the first metal layer is used to prevent subsequent formation on the The material on the first metal layer diffuses into the gate structure and the source-drain doped layer, which damages the electrical performance of the semiconductor structure.

本实施例中,采用湿法刻蚀工艺去除未与源漏掺杂层104反应的所述第一金属层109和所述第二金属层110。湿法刻蚀工艺具有较高的刻蚀速率,且操作简单,工艺成本低。In this embodiment, a wet etching process is used to remove the first metal layer 109 and the second metal layer 110 that have not reacted with the source-drain doped layer 104 . The wet etching process has a high etching rate, simple operation and low process cost.

具体的,湿法刻蚀的溶液为氨水和双氧水的混合物。Specifically, the wet etching solution is a mixture of ammonia water and hydrogen peroxide.

如图10所示,在所述开口107(如图3所示)中形成接触孔插塞115。As shown in FIG. 10, a contact hole plug 115 is formed in the opening 107 (shown in FIG. 3).

接触孔插塞115除了用于实现半导体结构内的电连接,还用于实现半导体结构与半导体结构之间的电连接。The contact hole plug 115 is not only used to realize the electrical connection within the semiconductor structure, but also used to realize the electrical connection between the semiconductor structures.

本实施例中,所述导电材料的材料为W。在其他实施例中,所述导电材料的材料还可以是Al、Cu、Ag或Au等。In this embodiment, the material of the conductive material is W. In other embodiments, the material of the conductive material may also be Al, Cu, Ag or Au.

形成接触孔插塞115的步骤包括:向所述开口107内填充导电材料,去除高于所述开口107中的导电材料,位于所述开口107内的导电材料作为接触孔插塞115。The step of forming the contact hole plug 115 includes: filling the opening 107 with conductive material, removing the conductive material higher than the opening 107 , and the conductive material located in the opening 107 as the contact hole plug 115 .

相应的,本发明实施例还提供一种半导体结构。参考图10,示出了本发明半导体结构一实施例的结构示意图。Correspondingly, the embodiment of the present invention also provides a semiconductor structure. Referring to FIG. 10 , it shows a schematic structural view of an embodiment of the semiconductor structure of the present invention.

所述半导体结构包括:衬底100,栅极结构103,位于所述衬底100上;源漏掺杂层104,位于所述栅极结构103两侧的所述衬底100中;层间介质层105,覆盖于所述栅极结构103和源漏掺杂层104上,且所述层间介质层105露出所述栅极结构103的顶面;接触孔插塞115,贯穿所述层间介质层105,且用于与所述源漏掺杂层104电连接,所述接触孔插塞115包括中心区域,以及包围所述中心区域的边缘区域;金属硅化物层114,位于所述源漏掺杂层104和接触孔插塞115之间,所述金属硅化物层114包括第一金属硅化物层1141和第二金属硅化物层1142;所述第一金属硅化物层1141,位于所述源漏掺杂层104和接触孔插塞115边缘区域之间;所述第二金属硅化物层1142,位于所述源漏掺杂层104和接触孔插塞115中心区域之间;所述第二金属硅化物层1142的电阻值低于所述第一金属硅化物层1141的电阻值,且所述第二金属硅化物对应金属的材料扩散能力大于所述第一金属硅化物层1141对应金属的材料扩散能力。The semiconductor structure includes: a substrate 100, a gate structure 103 located on the substrate 100; a source-drain doped layer 104 located in the substrate 100 on both sides of the gate structure 103; an interlayer dielectric A layer 105 covers the gate structure 103 and the source-drain doped layer 104, and the interlayer dielectric layer 105 exposes the top surface of the gate structure 103; a contact hole plug 115 penetrates the interlayer Dielectric layer 105, and used for electrical connection with the source-drain doped layer 104, the contact hole plug 115 includes a central region, and an edge region surrounding the central region; a metal silicide layer 114, located at the source Between the drain doped layer 104 and the contact hole plug 115, the metal silicide layer 114 includes a first metal silicide layer 1141 and a second metal silicide layer 1142; the first metal silicide layer 1141 is located in the between the source-drain doped layer 104 and the edge region of the contact hole plug 115; the second metal silicide layer 1142 is located between the source-drain doped layer 104 and the center region of the contact hole plug 115; the The resistance value of the second metal silicide layer 1142 is lower than the resistance value of the first metal silicide layer 1141, and the material diffusion capacity of the metal corresponding to the second metal silicide layer is greater than that of the first metal silicide layer 1141. The material diffusion capacity of metals.

本发明实施例所述接触孔插塞115包括中心区域,以及包围所述中心区域的边缘区域,所述边缘区域相比于中心区域距离栅极结构103下方的沟道区更近;所述第一金属硅化物层1141经第一金属层处理形成,所述第二金属硅化物层1142经第二金属层处理形成。所述第二金属层的材料扩散能力大于所述第一金属层的材料扩散能力,与金属硅化物层为第二金属硅化物层1142的情况相比,本实施例中,扩散至栅极结构103下方的沟道区中的第二金属层材料较少,使得源漏掺杂层104不易穿通,所述栅极结构103更易控制沟道。所述第二金属硅化物层1142的电阻率小于所述第一金属硅化物层1141的电阻率,相比于只采用第一金属硅化物层1141的情况相比,具有更低的阻值。综上,第二金属硅化物层1142位于所述中心区域,第一金属硅化物层1141位于所述边缘区域,保障了在源漏掺杂层104不易穿通的情况下,降低了接触孔插塞与115源漏掺杂层104的接触电阻,优化了半导体结构的电学性能。The contact hole plug 115 in the embodiment of the present invention includes a central region and an edge region surrounding the central region, and the edge region is closer to the channel region below the gate structure 103 than the central region; the second A metal silicide layer 1141 is formed by processing the first metal layer, and the second metal silicide layer 1142 is formed by processing the second metal layer. The material diffusion ability of the second metal layer is greater than the material diffusion ability of the first metal layer. Compared with the case where the metal silicide layer is the second metal silicide layer 1142, in this embodiment, diffusion to the gate structure The material of the second metal layer in the channel region below 103 is less, so that the source-drain doped layer 104 is not easy to penetrate, and the gate structure 103 is easier to control the channel. The resistivity of the second metal silicide layer 1142 is smaller than the resistivity of the first metal silicide layer 1141 , and has a lower resistance than the case of using only the first metal silicide layer 1141 . To sum up, the second metal silicide layer 1142 is located in the central area, and the first metal silicide layer 1141 is located in the edge area, which ensures that the source-drain doped layer 104 is not easy to penetrate, and the contact hole plug is reduced. The contact resistance with the source-drain doped layer 104 at 115 optimizes the electrical performance of the semiconductor structure.

本实施例中,所述第一金属硅化物层1141包括:钛硅化合物。In this embodiment, the first metal silicide layer 1141 includes: titanium silicon compound.

需要说明的是,所述第一金属硅化物层1141不宜过厚也不宜过薄。若所述第一金属硅化物层1141过厚,半导体结构工作时,易导致源漏掺杂层104不能为沟道提供足够的应力,所述半导体结构的性能不佳。若所述第一金属硅化物层1141过薄,导致不能起到减小接触电阻的作用,使得半导体结构的电学性能欠佳。本实施例中,所述第一金属硅化物层1141的厚度为2纳米至16纳米。It should be noted that the first metal silicide layer 1141 should neither be too thick nor too thin. If the first metal silicide layer 1141 is too thick, the source-drain doped layer 104 may not be able to provide sufficient stress for the channel when the semiconductor structure is working, and the performance of the semiconductor structure is poor. If the first metal silicide layer 1141 is too thin, it will not be able to reduce the contact resistance, resulting in poor electrical performance of the semiconductor structure. In this embodiment, the thickness of the first metal silicide layer 1141 is 2 nm to 16 nm.

本实施例中,所述第二金属硅化物层1142包括:镍硅化合物。In this embodiment, the second metal silicide layer 1142 includes: nickel silicon compound.

需要说明的是,所述第二金属硅化物层1142不宜过厚也不宜过薄。若所述第二金属硅化物层1142过厚,半导体结构工作时,易导致源漏掺杂层104不能为沟道提供足够的应力,所述半导体结构的性能不佳。若所述第二金属硅化物层1142过薄,导致不能起到减小接触电阻的作用,使得半导体结构的电学性能欠佳。本实施例中,所述第二金属硅化物层1142的厚度为2纳米至16纳米。It should be noted that the second metal silicide layer 1142 should neither be too thick nor too thin. If the second metal silicide layer 1142 is too thick, the source-drain doped layer 104 may not be able to provide sufficient stress for the channel when the semiconductor structure is working, and the performance of the semiconductor structure is poor. If the second metal silicide layer 1142 is too thin, it cannot reduce the contact resistance, and the electrical performance of the semiconductor structure is not good. In this embodiment, the thickness of the second metal silicide layer 1142 is 2 nm to 16 nm.

需要说明的是,所述垂直于所述栅极结构103的侧壁方向,所述第二金属硅化物层1142的宽度不宜过大也不宜过小。若所述第二金属硅化物层1142的宽度过小,导致垂直于栅极结构103侧壁的方向上所述第二金属硅化物层1142宽度过小,不利于减小的接触孔插塞115与源漏掺杂层104的电阻。若所述第二金属硅化物层1142的宽度过大,所述第二金属硅化物层1142对应的第二金属层材料的扩散能力大于所述第一金属硅化物层1141对应的第一金属层材料的扩散能力,若所述第二金属层的宽度过大,会导致在将第二金属层处理形成第二金属硅化物层1142的过程中,所述第二金属层材料易扩散至沟道中,导致源漏掺杂层104易穿通,导致半导体结构性能不佳。本实施例中,在垂直于所述栅极结构103侧壁的方向,所述第二金属硅化物层1142的宽度为10纳米至20纳米。It should be noted that, in the direction perpendicular to the sidewall of the gate structure 103 , the width of the second metal silicide layer 1142 should not be too large or too small. If the width of the second metal silicide layer 1142 is too small, the width of the second metal silicide layer 1142 in the direction perpendicular to the sidewall of the gate structure 103 is too small, which is not conducive to the reduced contact hole plug 115. and the resistance of the source-drain doped layer 104 . If the width of the second metal silicide layer 1142 is too large, the diffusion capacity of the material of the second metal layer corresponding to the second metal silicide layer 1142 is greater than that of the first metal layer corresponding to the first metal silicide layer 1141 Diffusion ability of the material, if the width of the second metal layer is too large, the material of the second metal layer will easily diffuse into the channel during the process of processing the second metal layer to form the second metal silicide layer 1142 , causing the source-drain doped layer 104 to easily punch through, resulting in poor performance of the semiconductor structure. In this embodiment, in a direction perpendicular to the sidewall of the gate structure 103 , the width of the second metal silicide layer 1142 is 10 nm to 20 nm.

需要说明的是,在垂直于所述栅极结构103侧壁的方向,所述第一金属硅化物层1141和第二金属硅化物层1142的长度比不宜过大,也不宜过小。所述第二金属硅化物层1142的电阻值低于所述第一金属硅化物层1141的电阻值,若所述比值过大,也就是说,所述第二金属硅化物层1142过短,不利于减小接触孔插塞115与源漏掺杂层104的接触电阻,不利于优化半导体结构的电学性能。所述第二金属硅化物层1142是由第二金属层经过处理形成的,若所述比值过小,也就是说,第二金属硅化物层1142的长度过长,第二金属硅化物层1142过于靠近沟道区,会导致形成所述第二金属硅化物层1142的过程中,第二金属层的材料易扩散至所述沟道区中,易导致源漏掺杂层104的穿通。本实施例中,在垂直于所述栅极结构103侧壁的方向,所述第一金属硅化物层1141的长度和第二金属硅化物层1142的长度比值为2至3。It should be noted that, in the direction perpendicular to the sidewall of the gate structure 103 , the length ratio between the first metal silicide layer 1141 and the second metal silicide layer 1142 should not be too large or too small. The resistance value of the second metal silicide layer 1142 is lower than the resistance value of the first metal silicide layer 1141, if the ratio is too large, that is, the second metal silicide layer 1142 is too short, It is not conducive to reducing the contact resistance between the contact hole plug 115 and the source-drain doped layer 104, and is not conducive to optimizing the electrical performance of the semiconductor structure. The second metal silicide layer 1142 is formed by processing the second metal layer. If the ratio is too small, that is to say, the length of the second metal silicide layer 1142 is too long, the second metal silicide layer 1142 Too close to the channel region will cause the material of the second metal layer to easily diffuse into the channel region during the process of forming the second metal silicide layer 1142 , which will easily lead to the breakthrough of the source-drain doped layer 104 . In this embodiment, the ratio of the length of the first metal silicide layer 1141 to the length of the second metal silicide layer 1142 is 2 to 3 in a direction perpendicular to the sidewall of the gate structure 103 .

需要说明的是,针对鳍部100a延伸方向的两端的所述源漏掺杂层104,只有一端靠近沟道区,因此,所述第一金属硅化物层1141只位于所述源漏掺杂层104上靠近所述沟道区的部分区域,所述剩余源漏掺杂层104上形成有第二金属硅化物层1142。在远离所述沟道区的源漏掺杂层104上形成的第二金属硅化物层1142可以减小源漏掺杂层104与接触孔插塞115的接触电阻。其他实施例中,针对鳍部延伸方向的两端的源漏掺杂层,还可以中心区域的源漏掺杂层上形成有第二金属硅化物层,边缘区域的源漏掺杂层上形成有第一金属硅化物层。It should be noted that, for the doped source and drain layers 104 at both ends of the extending direction of the fin portion 100a, only one end is close to the channel region. Therefore, the first metal silicide layer 1141 is only located in the doped source and drain layers. A second metal silicide layer 1142 is formed on the remaining source-drain doped layer 104 in a part of the region close to the channel region on the layer 104 . The second metal silicide layer 1142 formed on the source-drain doped layer 104 away from the channel region can reduce the contact resistance between the source-drain doped layer 104 and the contact hole plug 115 . In other embodiments, for the source-drain doped layers at both ends of the fin extension direction, a second metal silicide layer may be formed on the source-drain doped layer in the central region, and a second metal silicide layer may be formed on the source-drain doped layer in the edge region. The first metal silicide layer.

衬底100为形成半导体结构提供工艺基础。The substrate 100 provides a process basis for forming a semiconductor structure.

本实施例以半导体结构为鳍式场效应晶体管(FinFET)为例,所述衬底100为具有鳍部100a的衬底100。在其他实施例中,半导体结构还可以为平面结构,相应的,衬底为平面衬底。In this embodiment, the semiconductor structure is a Fin Field Effect Transistor (FinFET) as an example, and the substrate 100 is a substrate 100 having a fin portion 100a. In other embodiments, the semiconductor structure may also be a planar structure, and correspondingly, the substrate is a planar substrate.

本实施例中,衬底100的材料为硅。在其他实施例中,衬底的材料还可以为锗、锗化硅、碳化硅、砷化镓或镓化铟,衬底还能够为绝缘体上的硅衬底或者绝缘体上的锗衬底。衬底100表面还能够形成有界面层,界面层的材料为氧化硅、氮化硅或氮氧化硅等。In this embodiment, the material of the substrate 100 is silicon. In other embodiments, the material of the substrate may also be germanium, silicon germanium, silicon carbide, gallium arsenide or indium gallium, and the substrate may also be a silicon-on-insulator substrate or a germanium-on-insulator substrate. An interface layer can also be formed on the surface of the substrate 100, and the material of the interface layer is silicon oxide, silicon nitride, or silicon oxynitride.

所述栅极结构103横跨所述鳍部100a且覆盖所述鳍部100a的部分顶壁和侧壁。所述栅极结构103用于在半导体结构工作时控制沟道的开启与断开。The gate structure 103 spans the fin portion 100a and covers part of the top wall and the side wall of the fin portion 100a. The gate structure 103 is used to control the opening and closing of the channel when the semiconductor structure is working.

本实施例中,所述栅极结构103为金属栅极结构。In this embodiment, the gate structure 103 is a metal gate structure.

本实施例中,栅极结构103为叠层结构,包括保形覆盖鳍部100a的部分顶面和部分侧壁的栅介质层1031和位于栅介质层1031上的栅极层1032。其他实施例中,栅极结构还可以为单层结构,即栅极结构仅包括栅极层。In this embodiment, the gate structure 103 is a stacked structure, including a gate dielectric layer 1031 conformally covering part of the top surface and part of the sidewall of the fin 100 a and a gate layer 1032 on the gate dielectric layer 1031 . In other embodiments, the gate structure may also be a single-layer structure, that is, the gate structure only includes a gate layer.

栅介质层1031的材料为高k介质层,高k介质层的材料是指相对介电常数大于氧化硅相对介电常数的介质材料。本实施例中,栅介质层1031的材料为HfO2。其他实施例中,栅介质层的材料还可以选自ZrO2、HfSiO、HfSiON、HfTaO、HfTiO、HfZrO或Al2O3中的一种或几种。The material of the gate dielectric layer 1031 is a high-k dielectric layer, and the material of the high-k dielectric layer refers to a dielectric material with a relative dielectric constant greater than that of silicon oxide. In this embodiment, the material of the gate dielectric layer 1031 is HfO 2 . In other embodiments, the material of the gate dielectric layer may also be selected from one or more of ZrO 2 , HfSiO, HfSiON, HfTaO, HfTiO, HfZrO or Al 2 O 3 .

栅极层1032作为电极,用于实现与外部电路的电连接。在本实施例中,栅极层1032的材料为镁钨合金。其他实施例中,栅极层的材料还可以为W、Al、Cu、Ag、Au、Pt、Ni或Ti等。The gate layer 1032 is used as an electrode for realizing electrical connection with an external circuit. In this embodiment, the material of the gate layer 1032 is magnesium-tungsten alloy. In other embodiments, the material of the gate layer may also be W, Al, Cu, Ag, Au, Pt, Ni or Ti, etc.

其他实施例中,所述栅极结构还可以为多晶硅栅极结构。相应的,所述栅极结构包括栅氧化层以及位于所述栅氧化层上的栅极层。In other embodiments, the gate structure may also be a polysilicon gate structure. Correspondingly, the gate structure includes a gate oxide layer and a gate layer on the gate oxide layer.

所述基底还包括侧墙层108。The substrate also includes a sidewall layer 108 .

有关所述侧墙层108的材料在此不再赘述。The materials of the side wall layer 108 will not be repeated here.

源漏掺杂层104,位于所述栅极结构103两侧的所述鳍部100a中。所述源漏掺杂层104在半导体结构工作时,为栅极结构103下方的沟道提供应力,提高载流子的迁移率。The source-drain doped layer 104 is located in the fin portion 100 a on both sides of the gate structure 103 . The source-drain doped layer 104 provides stress to the channel under the gate structure 103 when the semiconductor structure is working, and improves the mobility of carriers.

本实施例中,所述半导体结构用于形成PMOS(Positive Channel Metal OxideSemiconductor)晶体管,即所述源漏掺杂层104的材料为掺杂P型离子的锗化硅。本实施例通过在锗化硅中掺杂P型离子,使P型离子取代晶格中硅原子的位置,掺入的P型离子越多,多子的浓度就越高,导电性能也就越强。具体的,P型离子包括B、Ga或In。In this embodiment, the semiconductor structure is used to form a PMOS (Positive Channel Metal Oxide Semiconductor) transistor, that is, the material of the source-drain doped layer 104 is silicon germanium doped with P-type ions. In this embodiment, by doping P-type ions in silicon germanium, the P-type ions replace the positions of silicon atoms in the crystal lattice. The more P-type ions doped, the higher the concentration of multiple children and the better the conductivity. powerful. Specifically, the P-type ions include B, Ga or In.

其他实施例中,所述半导体结构用于形成NMOS(Negative channel Metal OxideSemiconductor)晶体管,即所述源漏掺杂层的材料相应为掺杂N型离子的碳化硅或磷化硅。通过在碳化硅或磷化硅中掺杂N型离子,使N型离子取代晶格中硅原子的位置,掺入的N型离子越多,多子的浓度就越高,导电性能也就越强。具体的,N型离子包括P、As或Sb。In other embodiments, the semiconductor structure is used to form an NMOS (Negative channel Metal Oxide Semiconductor) transistor, that is, the material of the doped source and drain layers is silicon carbide or silicon phosphide doped with N-type ions. By doping N-type ions in silicon carbide or silicon phosphide, N-type ions replace the positions of silicon atoms in the crystal lattice. The more N-type ions doped, the higher the concentration of many children and the better the conductivity. powerful. Specifically, the N-type ions include P, As or Sb.

需要说明的是,所述基底还包括:刻蚀停止层(Contact Etch Stop Layer,CESL)(图中未示出),位于所述源漏掺杂层104上。It should be noted that, the substrate further includes: an etch stop layer (Contact Etch Stop Layer, CESL) (not shown in the figure), located on the source-drain doped layer 104 .

所述刻蚀停止层的材料采用低K介电常数的材料。The material of the etching stop layer is a material with a low K dielectric constant.

所述刻蚀停止层的材料包括氮化硅、氮氧化硅、碳化硅、氮碳化硅、氮化硼、氮化硼硅和氮化硼碳硅中的一种或多种。本实施例中,所述刻蚀停止层的材料为氮化硅。The material of the etching stop layer includes one or more of silicon nitride, silicon oxynitride, silicon carbide, silicon carbide nitride, boron nitride, silicon boron nitride and silicon boron nitride. In this embodiment, the material of the etching stop layer is silicon nitride.

需要说明的是,所述源漏掺杂层104的顶部中形成有非晶区,所述非晶区采用非晶化前注入(PAI)工艺形成。PAI工艺包括使用从硅、锗或其组合中选取的离子进行离子注入,使得源漏掺杂层104顶部非晶化,虽然已知非晶硅化布植工艺可用来减缓应力迟滞反应(stress-retarded reaction)和增加晶核形成的密度,使得所述第一金属硅化物层1141和第二金属硅化物层1142更加的均匀更加的厚。在不改变源漏掺杂层104导电性的情况下选择所述离子。It should be noted that an amorphous region is formed on the top of the source-drain doped layer 104 , and the amorphous region is formed by a pre-amorphization implantation (PAI) process. The PAI process includes ion implantation using ions selected from silicon, germanium, or a combination thereof, so that the top of the source-drain doped layer 104 is amorphized, although it is known that the amorphous silicon implantation process can be used to slow down the stress-retarded reaction. reaction) and increase the density of crystal nucleus formation, so that the first metal silicide layer 1141 and the second metal silicide layer 1142 are more uniform and thicker. The ions are selected without changing the conductivity of the source-drain doped layer 104 .

具体的注入离子包括:Ge或Si中的一种或两种。Specific implanted ions include: one or two of Ge or Si.

层间介质层105用于实现相邻半导体结构之间的电隔离,因此,层间介质层105的材料为绝缘材料。The interlayer dielectric layer 105 is used to realize electrical isolation between adjacent semiconductor structures, therefore, the material of the interlayer dielectric layer 105 is an insulating material.

所述层间介质层105露出所述栅极结构103的顶壁。The interlayer dielectric layer 105 exposes the top wall of the gate structure 103 .

具体的,层间介质层105的材料为氧化硅。氧化硅是工艺常用、成本较低的介电材料,且具有较高的工艺兼容性,有利于降低形成所述层间介质层105的工艺难度和工艺成本,且氧化硅的去除工艺简单。其他实施例中,层间介质层的材料还可以为氮化硅、氮氧化硅、碳氧化硅、碳氮化硅和碳氮氧化硅中的一种或多种。Specifically, the material of the interlayer dielectric layer 105 is silicon oxide. Silicon oxide is a commonly used dielectric material with low cost, and has high process compatibility, which is beneficial to reduce the process difficulty and process cost of forming the interlayer dielectric layer 105, and the silicon oxide removal process is simple. In other embodiments, the material of the interlayer dielectric layer may also be one or more of silicon nitride, silicon oxynitride, silicon oxycarbide, silicon carbonitride and silicon oxycarbonitride.

需要说明的是,所述基底还包括:介电层106,位于所述层间介质层105上。It should be noted that the substrate further includes: a dielectric layer 106 located on the interlayer dielectric layer 105 .

所述介电层106用于实现相邻器件之间的电隔离,所述介电层106的材料为绝缘材料。The dielectric layer 106 is used to realize electrical isolation between adjacent devices, and the material of the dielectric layer 106 is an insulating material.

本实施例中,所述介电层106的材料为氧化硅。氧化硅是工艺常用、成本较低的介电材料,且具有较高的工艺兼容性,有利于降低形成所述介电层106的工艺难度和工艺成本,且氧化硅的去除工艺简单。其他实施例中,所述介电层的材料还可以为氮化硅或氮氧化硅等其他的绝缘材料。In this embodiment, the material of the dielectric layer 106 is silicon oxide. Silicon oxide is a commonly used dielectric material with low cost, and has high process compatibility, which is beneficial to reduce the process difficulty and process cost of forming the dielectric layer 106, and the silicon oxide removal process is simple. In other embodiments, the material of the dielectric layer may also be other insulating materials such as silicon nitride or silicon oxynitride.

接触孔插塞115除了用于实现半导体结构内的电连接,还用于实现半导体结构与半导体结构之间的电连接。The contact hole plug 115 is not only used to realize the electrical connection within the semiconductor structure, but also used to realize the electrical connection between the semiconductor structures.

本实施例中,所述导电材料的材料为W。在其他实施例中,所述导电材料的材料还可以是Al、Cu、Ag或Au等。In this embodiment, the material of the conductive material is W. In other embodiments, the material of the conductive material may also be Al, Cu, Ag or Au.

所述半导体结构可以采用前述实施例所述的形成方法所形成,也可以采用其他形成方法所形成。对本实施例所述半导体结构的具体描述,可参考前述实施例中的相应描述,本实施例在此不再赘述。The semiconductor structure may be formed using the forming methods described in the foregoing embodiments, or may be formed using other forming methods. For the specific description of the semiconductor structure described in this embodiment, reference may be made to the corresponding description in the preceding embodiments, and details will not be repeated here in this embodiment.

虽然本发明实施例披露如上,但本发明实施例并非限定于此。任何本领域技术人员,在不脱离本发明实施例的精神和范围内,均可作各种更动与修改,因此本发明实施例的保护范围应当以权利要求所限定的范围为准。Although the embodiments of the present invention are disclosed above, the embodiments of the present invention are not limited thereto. Any person skilled in the art can make various changes and modifications without departing from the spirit and scope of the embodiments of the present invention. Therefore, the protection scope of the embodiments of the present invention should be defined by the claims.

Claims (21)

1.一种半导体结构的形成方法,其特征在于,包括:1. A method for forming a semiconductor structure, comprising: 提供基底,所述基底包括衬底、位于所述衬底上的栅极结构,位于所述栅极结构两侧所述衬底中的源漏掺杂层以及覆盖所述栅极结构侧壁和源漏掺杂层的层间介质层,且所述层间介质层露出所述栅极结构的顶壁;A base is provided, the base includes a substrate, a gate structure on the substrate, a source-drain doped layer in the substrate on both sides of the gate structure and covering the side walls of the gate structure and an interlayer dielectric layer of the source-drain doped layer, and the interlayer dielectric layer exposes the top wall of the gate structure; 在所述层间介质层中形成露出所述源漏掺杂层的开口,所述开口底部包括中心区域,以及包围所述中心区域的边缘区域;forming an opening exposing the source-drain doped layer in the interlayer dielectric layer, the bottom of the opening includes a central region, and an edge region surrounding the central region; 在所述开口底部形成第一金属层;forming a first metal layer at the bottom of the opening; 去除所述开口底部中心区域的第一金属层,形成开孔;removing the first metal layer in the central area of the bottom of the opening to form an opening; 在所述开孔中形成第二金属层,所述第二金属层的材料扩散能力大于所述第一金属层的材料扩散能力,且所述第二金属层对应硅化物的电阻率小于所述第一金属层对应硅化物的电阻率;A second metal layer is formed in the opening, the material diffusion capacity of the second metal layer is greater than the material diffusion capacity of the first metal layer, and the resistivity of the second metal layer corresponding to silicide is smaller than the The first metal layer corresponds to the resistivity of the silicide; 对所述第一金属层和第二金属层进行处理,形成金属硅化物层,所述第一金属层和第二金属层分别对应第一金属硅化物层和第二金属硅化物层;Processing the first metal layer and the second metal layer to form a metal silicide layer, the first metal layer and the second metal layer correspond to the first metal silicide layer and the second metal silicide layer respectively; 形成金属硅化物层后,在所述开口中形成接触孔插塞。After forming the metal silicide layer, a contact hole plug is formed in the opening. 2.如权利要求1所述的半导体结构的形成方法,其特征在于,所述第一金属层的材料包括:Ti。2. The method for forming a semiconductor structure according to claim 1, wherein the material of the first metal layer comprises: Ti. 3.如权利要求1所述的半导体结构的形成方法,其特征在于,所述第一金属层的厚度为2纳米至8纳米。3. The method for forming a semiconductor structure according to claim 1, wherein the thickness of the first metal layer is 2 nm to 8 nm. 4.如权利要求1所述的半导体结构的形成方法,其特征在于,采用原子层沉积或者低压化学气相沉积工艺在所述开口底部形成所述第一金属层。4. The method for forming a semiconductor structure according to claim 1, wherein the first metal layer is formed at the bottom of the opening by atomic layer deposition or low pressure chemical vapor deposition. 5.如权利要求1所述的半导体结构的形成方法,其特征在于,垂直于所述栅极结构的侧壁方向,所述第二金属层的宽度为10纳米至20纳米。5 . The method for forming a semiconductor structure according to claim 1 , wherein the width of the second metal layer is 10 nanometers to 20 nanometers perpendicular to the sidewall direction of the gate structure. 6.如权利要求1所述的半导体结构的形成方法,其特征在于,所述第二金属层的材料包括:Ni。6. The method for forming a semiconductor structure according to claim 1, wherein the material of the second metal layer comprises: Ni. 7.如权利要求1所述的半导体结构的形成方法,其特征在于,所述第二金属层的厚度为2纳米至8纳米。7. The method for forming a semiconductor structure according to claim 1, wherein the second metal layer has a thickness of 2 nm to 8 nm. 8.如权利要求1所述的半导体结构的形成方法,其特征在于,采用原子层沉积或者低压化学气相沉积工艺在所述开孔中形成所述第二金属层。8. The method for forming a semiconductor structure according to claim 1, wherein the second metal layer is formed in the opening by atomic layer deposition or low pressure chemical vapor deposition. 9.如权利要求1所述的半导体结构的形成方法,其特征在于,形成所述开孔的步骤包括:9. The method for forming a semiconductor structure according to claim 1, wherein the step of forming the opening comprises: 在所述开口的侧壁上形成牺牲层;forming a sacrificial layer on sidewalls of the opening; 以所述牺牲层为掩膜去除所述牺牲层露出的所述第一金属层,形成由所述第一金属层和源漏掺杂层围成的所述开孔;Using the sacrificial layer as a mask to remove the first metal layer exposed by the sacrificial layer to form the opening surrounded by the first metal layer and the source-drain doped layer; 所述半导体结构的形成方法还包括:形成所述开孔后,形成第二金属层前,去除所述牺牲层;或者,形成所述金属硅化物层后,去除所述牺牲层。The method for forming the semiconductor structure further includes: removing the sacrificial layer after forming the opening and before forming the second metal layer; or removing the sacrificial layer after forming the metal silicide layer. 10.如权利要求9所述的半导体结构的形成方法,其特征在于,所述牺牲层的材料包括:low-K材料、金属化合物、无定型碳和无定型锗中的一种或多种。10 . The method for forming a semiconductor structure according to claim 9 , wherein the material of the sacrificial layer comprises one or more of low-K materials, metal compounds, amorphous carbon and amorphous germanium. 11 . 11.如权利要求10所述的半导体结构的形成方法,其特征在于,所述金属化合物为Al化合物。11. The method for forming a semiconductor structure according to claim 10, wherein the metal compound is an Al compound. 12.如权利要求1所述的半导体结构的形成方法,其特征在于,在垂直于所述栅极结构侧壁的方向,所述第一金属层的长度和第二金属层的长度比值为2至3。12. The method for forming a semiconductor structure according to claim 1, wherein, in a direction perpendicular to the sidewall of the gate structure, the ratio of the length of the first metal layer to the length of the second metal layer is 2 to 3. 13.如权利要求1所述的半导体结构的形成方法,其特征在于,采用自对准金属硅化物工艺对所述第一金属层和所述第二金属层进行处理,分别形成所述第一金属硅化物层和所述第二金属硅化物层。13. The method for forming a semiconductor structure according to claim 1, wherein the first metal layer and the second metal layer are processed by a salicide process to form the first metal layer and the second metal layer respectively. a metal silicide layer and the second metal silicide layer. 14.如权利要求1所述的半导体结构的形成方法,其特征在于,所述衬底为具有鳍部的衬底;14. The method for forming a semiconductor structure according to claim 1, wherein the substrate is a substrate with fins; 所述栅极结构横跨所述鳍部且覆盖所述鳍部的部分顶壁和侧壁;The gate structure spans the fin and covers part of the top and side walls of the fin; 所述源漏掺杂层位于所述栅极结构两侧的所述鳍部中。The source-drain doped layer is located in the fins on both sides of the gate structure. 15.一种半导体结构,其特征在于,包括:15. A semiconductor structure, characterized in that, comprising: 衬底,substrate, 栅极结构,位于所述衬底上;a gate structure located on the substrate; 源漏掺杂层,位于所述栅极结构两侧的所述衬底中;a source-drain doped layer located in the substrate on both sides of the gate structure; 层间介质层,覆盖于所述栅极结构和源漏掺杂层上,且所述层间介质层露出所述栅极结构的顶面;an interlayer dielectric layer covering the gate structure and the source-drain doped layer, and the interlayer dielectric layer exposes the top surface of the gate structure; 接触孔插塞,贯穿所述层间介质层,且用于与所述源漏掺杂层电连接,所述接触孔插塞包括中心区域,以及包围所述中心区域的边缘区域;a contact hole plug that penetrates the interlayer dielectric layer and is used for electrical connection with the source-drain doped layer, the contact hole plug includes a central region, and an edge region surrounding the central region; 金属硅化物层,位于所述源漏掺杂层和接触孔插塞之间,所述金属硅化物层包括第一金属硅化物层和第二金属硅化物层;所述第一金属硅化物层,位于所述源漏掺杂层和接触孔插塞边缘区域之间;所述第二金属硅化物层,位于所述源漏掺杂层和接触孔插塞中心区域之间;所述第二金属硅化物层的电阻值低于所述第一金属硅化物层的电阻值,且所述第二金属硅化物层对应金属的材料扩散能力大于所述第一金属硅化物对应金属的材料扩散能力。A metal silicide layer, located between the source-drain doped layer and the contact hole plug, the metal silicide layer includes a first metal silicide layer and a second metal silicide layer; the first metal silicide layer , located between the source-drain doped layer and the edge region of the contact hole plug; the second metal silicide layer, located between the source-drain doped layer and the center region of the contact hole plug; the second The resistance value of the metal silicide layer is lower than the resistance value of the first metal silicide layer, and the material diffusion ability of the second metal silicide layer corresponding to the metal is greater than the material diffusion ability of the first metal silicide layer corresponding to the metal . 16.如权利要求15所述的半导体结构,其特征在于,所述第一金属硅化物层包括:钛硅化合物。16. The semiconductor structure of claim 15, wherein the first metal silicide layer comprises: titanium silicon compound. 17.如权利要求15所述的半导体结构,其特征在于,所述第一金属硅化物层的厚度为2纳米至16纳米。17. The semiconductor structure according to claim 15, wherein the thickness of the first metal silicide layer is 2 nm to 16 nm. 18.如权利要求15所述的半导体结构,其特征在于,所述第二金属硅化物层包括:镍硅化合物。18. The semiconductor structure of claim 15, wherein the second metal silicide layer comprises: nickel silicon compound. 19.如权利要求15所述的半导体结构,其特征在于,所述第二金属硅化物层的厚度为2纳米至16纳米。19. The semiconductor structure according to claim 15, wherein the thickness of the second metal silicide layer is 2 nm to 16 nm. 20.如权利要求15所述的半导体结构,其特征在于,在垂直于所述栅极结构侧壁的方向,所述第一金属硅化物层的长度和第二金属硅化物层的长度比值为2至3。20. The semiconductor structure according to claim 15, wherein in a direction perpendicular to the sidewall of the gate structure, the ratio of the length of the first metal silicide layer to the length of the second metal silicide layer is 2 to 3. 21.如权利要求15所述的半导体结构,其特征在于,在垂直于所述栅极结构侧壁的方向,所述第二金属硅化物层的宽度为10纳米至20纳米。21 . The semiconductor structure according to claim 15 , wherein, in a direction perpendicular to the sidewall of the gate structure, the width of the second metal silicide layer is 10 nanometers to 20 nanometers.
CN201910236722.XA 2019-03-27 2019-03-27 Semiconductor structure and forming method thereof Active CN111755513B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910236722.XA CN111755513B (en) 2019-03-27 2019-03-27 Semiconductor structure and forming method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910236722.XA CN111755513B (en) 2019-03-27 2019-03-27 Semiconductor structure and forming method thereof

Publications (2)

Publication Number Publication Date
CN111755513A CN111755513A (en) 2020-10-09
CN111755513B true CN111755513B (en) 2023-05-05

Family

ID=72671566

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910236722.XA Active CN111755513B (en) 2019-03-27 2019-03-27 Semiconductor structure and forming method thereof

Country Status (1)

Country Link
CN (1) CN111755513B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114063322B (en) * 2020-07-31 2024-03-22 中芯国际集成电路制造(上海)有限公司 Semiconductor structure and forming method thereof
CN116547787A (en) * 2020-10-23 2023-08-04 华为技术有限公司 Packaging structure and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0845878A (en) * 1994-08-02 1996-02-16 Sony Corp Method for manufacturing semiconductor device
US6486067B1 (en) * 1999-10-29 2002-11-26 Taiwan Semiconductor Manufacturing Company Method for improving the electrical isolation between the contact and gate in a self-aligned contact MOSFET device structure
CN104681603A (en) * 2013-12-03 2015-06-03 上海华虹宏力半导体制造有限公司 Longitudinal bipolar transistor in BCD (Bipolar complementary metal-oxide-semiconductor double-diffusion metal-oxide-semiconductor) technology

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140029058A (en) * 2012-08-31 2014-03-10 에스케이하이닉스 주식회사 Semiconductor device and method for forming the semiconductor device
US20170194454A1 (en) * 2016-01-06 2017-07-06 International Business Machines Corporation NiPt AND Ti INTERSECTING SILICIDE PROCESS AND STRUCTURE
US9954100B2 (en) * 2016-03-24 2018-04-24 Taiwan Semiconductor Manufacturing Company, Ltd. Method and apparatus for high voltate transistors

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0845878A (en) * 1994-08-02 1996-02-16 Sony Corp Method for manufacturing semiconductor device
US6486067B1 (en) * 1999-10-29 2002-11-26 Taiwan Semiconductor Manufacturing Company Method for improving the electrical isolation between the contact and gate in a self-aligned contact MOSFET device structure
CN104681603A (en) * 2013-12-03 2015-06-03 上海华虹宏力半导体制造有限公司 Longitudinal bipolar transistor in BCD (Bipolar complementary metal-oxide-semiconductor double-diffusion metal-oxide-semiconductor) technology

Also Published As

Publication number Publication date
CN111755513A (en) 2020-10-09

Similar Documents

Publication Publication Date Title
CN112309860B (en) Semiconductor structures and methods of forming them
CN107785422B (en) Semiconductor structure and method of making the same
CN112151377B (en) Semiconductor structure and forming method thereof
CN112017963B (en) Semiconductor structure and forming method thereof
CN107785261A (en) Semiconductor structure and its manufacture method
CN110364483B (en) Semiconductor structure and method of forming the same
CN110534433A (en) Semiconductor structure and forming method thereof
US20230387024A1 (en) Semiconductor device and manufacturing method thereof
CN111106009A (en) Semiconductor structure and method of forming the same
CN111463275B (en) Semiconductor structure and forming method thereof
CN111755513B (en) Semiconductor structure and forming method thereof
CN111341661B (en) Transistors and methods of forming them
CN110364570A (en) Semiconductor device, method of forming the same, and semiconductor structure
CN108206157A (en) Semiconductor structure and forming method thereof
CN110808286B (en) Semiconductor structures and methods of forming them
US11011608B2 (en) Semiconductor structure and method for forming the same
CN111627814B (en) Semiconductor structure and forming method thereof
CN112309862B (en) Semiconductor structure and method for forming the same
CN112289746B (en) Semiconductor structure and forming method thereof
CN117293087A (en) Semiconductor structure and forming method thereof
CN112151607B (en) Semiconductor structure and forming method thereof
CN114649261A (en) Semiconductor structure and forming method thereof
CN113327857B (en) Semiconductor structure and forming method thereof
CN113745114B (en) Semiconductor structure and method for forming the same
CN111128880B (en) Semiconductor structure and forming method thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant