CN111754453A - 基于胸透图像的肺结核检测方法、系统和存储介质 - Google Patents
基于胸透图像的肺结核检测方法、系统和存储介质 Download PDFInfo
- Publication number
- CN111754453A CN111754453A CN202010394058.4A CN202010394058A CN111754453A CN 111754453 A CN111754453 A CN 111754453A CN 202010394058 A CN202010394058 A CN 202010394058A CN 111754453 A CN111754453 A CN 111754453A
- Authority
- CN
- China
- Prior art keywords
- chest
- image
- images
- preprocessed
- feature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 94
- 238000002601 radiography Methods 0.000 title claims abstract description 41
- 208000008128 pulmonary tuberculosis Diseases 0.000 title claims abstract description 18
- 210000004072 lung Anatomy 0.000 claims abstract description 53
- 238000000034 method Methods 0.000 claims abstract description 30
- 238000002594 fluoroscopy Methods 0.000 claims abstract description 22
- 238000011976 chest X-ray Methods 0.000 claims abstract description 20
- 230000011218 segmentation Effects 0.000 claims abstract description 20
- 238000007781 pre-processing Methods 0.000 claims abstract description 19
- 238000003709 image segmentation Methods 0.000 claims abstract description 8
- 238000012549 training Methods 0.000 claims description 43
- 201000008827 tuberculosis Diseases 0.000 claims description 18
- 230000006835 compression Effects 0.000 claims description 9
- 238000007906 compression Methods 0.000 claims description 9
- 238000010606 normalization Methods 0.000 claims description 7
- 230000002159 abnormal effect Effects 0.000 claims description 5
- 238000004590 computer program Methods 0.000 claims description 5
- 238000003745 diagnosis Methods 0.000 abstract description 6
- 238000012545 processing Methods 0.000 abstract description 6
- 230000008569 process Effects 0.000 abstract description 4
- 238000013527 convolutional neural network Methods 0.000 description 11
- 230000006870 function Effects 0.000 description 11
- 230000000694 effects Effects 0.000 description 5
- 238000000605 extraction Methods 0.000 description 3
- 230000014509 gene expression Effects 0.000 description 3
- 239000003086 colorant Substances 0.000 description 2
- 201000010099 disease Diseases 0.000 description 2
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 208000015181 infectious disease Diseases 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012216 screening Methods 0.000 description 2
- 241000193830 Bacillus <bacterium> Species 0.000 description 1
- 208000035473 Communicable disease Diseases 0.000 description 1
- 241000725303 Human immunodeficiency virus Species 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000001684 chronic effect Effects 0.000 description 1
- 238000013135 deep learning Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- 208000015355 drug-resistant tuberculosis Diseases 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 230000003902 lesion Effects 0.000 description 1
- 238000007477 logistic regression Methods 0.000 description 1
- 201000009671 multidrug-resistant tuberculosis Diseases 0.000 description 1
- 238000003062 neural network model Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000005180 public health Effects 0.000 description 1
- 230000002685 pulmonary effect Effects 0.000 description 1
- 210000002345 respiratory system Anatomy 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0012—Biomedical image inspection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/214—Generating training patterns; Bootstrap methods, e.g. bagging or boosting
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/11—Region-based segmentation
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H30/00—ICT specially adapted for the handling or processing of medical images
- G16H30/40—ICT specially adapted for the handling or processing of medical images for processing medical images, e.g. editing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30004—Biomedical image processing
- G06T2207/30061—Lung
- G06T2207/30064—Lung nodule
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- Computer Vision & Pattern Recognition (AREA)
- General Health & Medical Sciences (AREA)
- Radiology & Medical Imaging (AREA)
- Evolutionary Computation (AREA)
- Medical Informatics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Artificial Intelligence (AREA)
- General Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Computational Linguistics (AREA)
- Molecular Biology (AREA)
- Mathematical Physics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Computing Systems (AREA)
- Evolutionary Biology (AREA)
- Software Systems (AREA)
- Biophysics (AREA)
- Epidemiology (AREA)
- Biomedical Technology (AREA)
- Primary Health Care (AREA)
- Public Health (AREA)
- Quality & Reliability (AREA)
- Image Analysis (AREA)
- Apparatus For Radiation Diagnosis (AREA)
Abstract
Description
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010394058.4A CN111754453A (zh) | 2020-05-11 | 2020-05-11 | 基于胸透图像的肺结核检测方法、系统和存储介质 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010394058.4A CN111754453A (zh) | 2020-05-11 | 2020-05-11 | 基于胸透图像的肺结核检测方法、系统和存储介质 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111754453A true CN111754453A (zh) | 2020-10-09 |
Family
ID=72673723
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010394058.4A Pending CN111754453A (zh) | 2020-05-11 | 2020-05-11 | 基于胸透图像的肺结核检测方法、系统和存储介质 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111754453A (zh) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112308853A (zh) * | 2020-10-20 | 2021-02-02 | 平安科技(深圳)有限公司 | 电子设备、医学图像指标生成方法、装置及存储介质 |
CN112382360A (zh) * | 2020-12-03 | 2021-02-19 | 卫宁健康科技集团股份有限公司 | 一种诊断报告自动生成系统、存储介质及电子设备 |
CN112651333A (zh) * | 2020-12-24 | 2021-04-13 | 世纪龙信息网络有限责任公司 | 静默活体检测方法、装置、终端设备和存储介质 |
CN112766333A (zh) * | 2021-01-08 | 2021-05-07 | 广东中科天机医疗装备有限公司 | 医学影像处理模型训练方法、医学影像处理方法及装置 |
CN113052227A (zh) * | 2021-03-22 | 2021-06-29 | 山西三友和智慧信息技术股份有限公司 | 一种基于SE-ResNet的肺结核识别方法 |
CN113256579A (zh) * | 2021-05-19 | 2021-08-13 | 扬州大学 | 基于预训练模型的肺结核识别系统 |
CN113409306A (zh) * | 2021-07-15 | 2021-09-17 | 推想医疗科技股份有限公司 | 一种检测装置、训练方法、训练装置、设备和介质 |
CN114219755A (zh) * | 2021-11-02 | 2022-03-22 | 佛山市第四人民医院(佛山市结核病防治所) | 基于图像和临床数据的肺结核智能检测方法及系统 |
CN114758755A (zh) * | 2022-06-14 | 2022-07-15 | 数聚(山东)医疗科技有限公司 | 基于大数据分析的医疗数据协同管理平台 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108898595A (zh) * | 2018-06-27 | 2018-11-27 | 慧影医疗科技(北京)有限公司 | 一种胸部疾病检测模型的构建方法及应用 |
CN110084237A (zh) * | 2019-05-09 | 2019-08-02 | 北京化工大学 | 肺结节的检测模型构建方法、检测方法和装置 |
WO2019200740A1 (zh) * | 2018-04-20 | 2019-10-24 | 平安科技(深圳)有限公司 | 肺结节的检测方法、装置、计算机设备和存储介质 |
CN110459303A (zh) * | 2019-06-27 | 2019-11-15 | 浙江工业大学 | 基于深度迁移的医疗影像异常检测装置 |
CN110766682A (zh) * | 2019-10-29 | 2020-02-07 | 慧影医疗科技(北京)有限公司 | 肺结核定位筛查装置及计算机设备 |
CN111127466A (zh) * | 2020-03-31 | 2020-05-08 | 上海联影智能医疗科技有限公司 | 医学图像检测方法、装置、设备及存储介质 |
-
2020
- 2020-05-11 CN CN202010394058.4A patent/CN111754453A/zh active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019200740A1 (zh) * | 2018-04-20 | 2019-10-24 | 平安科技(深圳)有限公司 | 肺结节的检测方法、装置、计算机设备和存储介质 |
CN108898595A (zh) * | 2018-06-27 | 2018-11-27 | 慧影医疗科技(北京)有限公司 | 一种胸部疾病检测模型的构建方法及应用 |
CN110084237A (zh) * | 2019-05-09 | 2019-08-02 | 北京化工大学 | 肺结节的检测模型构建方法、检测方法和装置 |
CN110459303A (zh) * | 2019-06-27 | 2019-11-15 | 浙江工业大学 | 基于深度迁移的医疗影像异常检测装置 |
CN110766682A (zh) * | 2019-10-29 | 2020-02-07 | 慧影医疗科技(北京)有限公司 | 肺结核定位筛查装置及计算机设备 |
CN111127466A (zh) * | 2020-03-31 | 2020-05-08 | 上海联影智能医疗科技有限公司 | 医学图像检测方法、装置、设备及存储介质 |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112308853A (zh) * | 2020-10-20 | 2021-02-02 | 平安科技(深圳)有限公司 | 电子设备、医学图像指标生成方法、装置及存储介质 |
CN112382360A (zh) * | 2020-12-03 | 2021-02-19 | 卫宁健康科技集团股份有限公司 | 一种诊断报告自动生成系统、存储介质及电子设备 |
CN112382360B (zh) * | 2020-12-03 | 2024-05-31 | 卫宁健康科技集团股份有限公司 | 一种诊断报告自动生成系统、存储介质及电子设备 |
CN112651333A (zh) * | 2020-12-24 | 2021-04-13 | 世纪龙信息网络有限责任公司 | 静默活体检测方法、装置、终端设备和存储介质 |
CN112651333B (zh) * | 2020-12-24 | 2024-02-09 | 天翼数字生活科技有限公司 | 静默活体检测方法、装置、终端设备和存储介质 |
CN112766333B (zh) * | 2021-01-08 | 2022-09-23 | 广东中科天机医疗装备有限公司 | 医学影像处理模型训练方法、医学影像处理方法及装置 |
CN112766333A (zh) * | 2021-01-08 | 2021-05-07 | 广东中科天机医疗装备有限公司 | 医学影像处理模型训练方法、医学影像处理方法及装置 |
CN113052227A (zh) * | 2021-03-22 | 2021-06-29 | 山西三友和智慧信息技术股份有限公司 | 一种基于SE-ResNet的肺结核识别方法 |
CN113256579A (zh) * | 2021-05-19 | 2021-08-13 | 扬州大学 | 基于预训练模型的肺结核识别系统 |
CN113409306A (zh) * | 2021-07-15 | 2021-09-17 | 推想医疗科技股份有限公司 | 一种检测装置、训练方法、训练装置、设备和介质 |
CN114219755A (zh) * | 2021-11-02 | 2022-03-22 | 佛山市第四人民医院(佛山市结核病防治所) | 基于图像和临床数据的肺结核智能检测方法及系统 |
CN114219755B (zh) * | 2021-11-02 | 2024-09-13 | 佛山市第四人民医院(佛山市卫生应急医院) | 基于图像和临床数据的肺结核智能检测方法及系统 |
CN114758755B (zh) * | 2022-06-14 | 2022-08-16 | 数聚(山东)医疗科技有限公司 | 基于大数据分析的医疗数据协同管理平台 |
CN114758755A (zh) * | 2022-06-14 | 2022-07-15 | 数聚(山东)医疗科技有限公司 | 基于大数据分析的医疗数据协同管理平台 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111754453A (zh) | 基于胸透图像的肺结核检测方法、系统和存储介质 | |
US12056880B2 (en) | Method of classifying lesion of chest x-ray radiograph based on data normalization and local patch and apparatus thereof | |
WO2021017372A1 (zh) | 一种基于生成对抗网络的医学图像分割方法、系统及电子设备 | |
Roth et al. | A new 2.5 D representation for lymph node detection using random sets of deep convolutional neural network observations | |
WO2020107847A1 (zh) | 基于骨骼点的跌倒检测方法及其跌倒检测装置 | |
CN109087703B (zh) | 基于深度卷积神经网络的腹腔ct图像腹膜转移标记方法 | |
Huang et al. | Lesion-based contrastive learning for diabetic retinopathy grading from fundus images | |
CN112150442A (zh) | 基于深度卷积神经网络及多实例学习的新冠诊断系统 | |
CN111275686B (zh) | 用于人工神经网络训练的医学图像数据的生成方法及装置 | |
CN112950546B (zh) | 一种钡餐造影图像的食道癌检测方法及系统 | |
Basha et al. | An effective and robust cancer detection in the lungs with BPNN and watershed segmentation | |
Ramkumar et al. | Multi res U-Net based image segmentation of pulmonary tuberculosis using CT images | |
Wen et al. | Pulmonary nodule detection based on convolutional block attention module | |
Zhang et al. | A study on tuberculosis classification in chest X-ray using deep residual attention networks | |
Ada | Using some data mining techniques to predict the survival year of lung cancer patient | |
CN113724185B (zh) | 用于图像分类的模型处理方法、装置及存储介质 | |
CN114140437A (zh) | 一种基于深度学习的眼底硬渗出物分割方法 | |
Wang et al. | A ROI extraction method for wrist imaging applied in smart bone-age assessment system | |
Kumar et al. | Gannet devil optimization-based deep learning for skin lesion segmentation and identification | |
CN111027368A (zh) | 基于人脸特征的癌症筛查方法及筛查系统 | |
Xiong et al. | Lung field segmentation using weighted sparse shape composition with robust initialization | |
Alam et al. | AMFP-net: Adaptive multi-scale feature pyramid network for diagnosis of pneumoconiosis from chest X-ray images | |
CN113222989A (zh) | 一种图像分级方法、装置、存储介质及电子设备 | |
Li et al. | PMJAF-Net: Pyramidal multi-scale joint attention and adaptive fusion network for explainable skin lesion segmentation | |
Xu et al. | A Tuberculosis Detection Method Using Attention and Sparse R-CNN. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB02 | Change of applicant information | ||
CB02 | Change of applicant information |
Country or region after: China Address after: 528041 No. 106, Lanshi Jinlan South Road, Chancheng District, Foshan City, Guangdong Province Applicant after: Foshan Fourth People's Hospital (Foshan Tuberculosis Control Institute) Applicant after: Foshan University Address before: 528041 No. 106, Lanshi Jinlan South Road, Chancheng District, Foshan City, Guangdong Province Applicant before: Foshan Fourth People's Hospital (Foshan Tuberculosis Control Institute) Country or region before: China Applicant before: FOSHAN University |