CN111747974A - 一种双核笼状钇配合物及其制备方法和应用 - Google Patents

一种双核笼状钇配合物及其制备方法和应用 Download PDF

Info

Publication number
CN111747974A
CN111747974A CN202010625920.8A CN202010625920A CN111747974A CN 111747974 A CN111747974 A CN 111747974A CN 202010625920 A CN202010625920 A CN 202010625920A CN 111747974 A CN111747974 A CN 111747974A
Authority
CN
China
Prior art keywords
yttrium
binuclear
cage
complex
caged
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010625920.8A
Other languages
English (en)
Other versions
CN111747974B (zh
Inventor
李昶红
李薇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan Institute of Technology
Original Assignee
Hunan Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan Institute of Technology filed Critical Hunan Institute of Technology
Priority to CN202010625920.8A priority Critical patent/CN111747974B/zh
Publication of CN111747974A publication Critical patent/CN111747974A/zh
Application granted granted Critical
Publication of CN111747974B publication Critical patent/CN111747974B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/003Compounds containing elements of Groups 3 or 13 of the Periodic Table without C-Metal linkages
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N55/00Biocides, pest repellants or attractants, or plant growth regulators, containing organic compounds containing elements other than carbon, hydrogen, halogen, oxygen, nitrogen and sulfur
    • A01N55/02Biocides, pest repellants or attractants, or plant growth regulators, containing organic compounds containing elements other than carbon, hydrogen, halogen, oxygen, nitrogen and sulfur containing metal atoms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/13Crystalline forms, e.g. polymorphs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Environmental Sciences (AREA)
  • Oncology (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Plant Pathology (AREA)
  • Pest Control & Pesticides (AREA)
  • Agronomy & Crop Science (AREA)
  • Communicable Diseases (AREA)
  • Dentistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)

Abstract

一种双核笼状钇配合物及其制备方法和应用,涉及稀土金属配合物技术领域,本发明的双核笼状稀土钇(III)有机配合物具有双核笼状结构,具有稳定性好的特点,该双核笼状稀土钇(III)有机配合物以TMBA为主配体,1,10‑邻菲啰啉为辅配体,配体对稀土钇(III)的抗菌性能具有积极作用,能有效提高稀土钇(III)的抗菌性能;特别是将该双核笼状稀土钇(III)有机配合物应用于金黄葡萄球菌和大肠杆菌的抗菌活性研究具有良好的抑制效果。并且制备双核笼状稀土钇(III)有机配合物的方法操作简单、工艺流程短,产率高,得到晶体颗粒均匀性好,具备工业化生产应用价值。

Description

一种双核笼状钇配合物及其制备方法和应用
技术领域
本发明涉及稀土金属配合物技术领域,特别涉及一种双核笼状钇配合物及其制备方法和应用。
背景技术
稀土金属离子含有未充满的f层电子,因而具有丰富的光、电、磁性质,人们利用稀土金属离子的一些性质作为各种药物以达到防治疾病的目的,如作抗菌、抗凝血、抗炎、抗肿瘤以及其它用途的药物,但稀土配合物在生物体组织中的作用机理至今尚无定论。因此研究稀土金属配合物的抑菌机理,探索稀土金属配合物在分子生物学、生物工程技术及其它相关领域的应用具有重要的研究价值。
目前普遍认同的一种抑菌机理是稀土金属离子与各种有机配体结合形成配合物后,配合物的抑菌作用一般增强,其主要原因是由于稀土金属离子与配体的螯合效应。因为稀土金属离子与配体螯合生成配合物后,稀土金属离子所带的正电荷部分转移到配体上,是螯合环上电子产生离域效应,导致稀土金属离子极性降低,这样就增强了配合物的溶脂性,以致配合物能更好的穿透微生物细胞膜的类脂层,从而影响细胞正常的生理过程。这种作用机理对于病原体而言可能包含不同的靶向目标,例如干扰细胞膜的合成从而破坏细胞膜,结果导致细胞的死亡凋零。稀土金属有机配合物另外的一个抑菌机理可能是,因为稀土金属配合物通过抑制微生物的呼吸作用或者断裂氧化性磷酸作用,从而抑制了微生物体内的能量制造过程或者ATP的制造过程,最终导致微生物的死亡。稀土钇元素由于无4f亚层,无电子跃迁,荧光性能较弱,对于其抗菌,抑菌的研究以成为当前研究的热点,但当前钇配合物的研究成果大部分集中在简单的席夫碱配合物。
发明内容
本发明的目的之一是提供一种具有双核笼状结构且结构非常稳定、抗菌效果较好的钇配合物。
为了实现上述目的,本发明提供一种双核笼状钇配合物,其具有下式的结构单元:
Figure BDA0002566531040000021
上式中,Tmb为三甲基苯。
其中,上述双核笼状钇配合物为晶体结构,其晶体学数据:晶体属于三斜晶系,空间群为P-1;晶胞参数:
Figure BDA0002566531040000022
Figure BDA0002566531040000023
α=104.977(4)°,β=111.750(4)°,γ=95.874(5)°,
Figure BDA0002566531040000024
Dc=1.363g/cm3,Z=1,F(000)=788.2.917≤θ≤25.000,μ(MoKa)=1.627,GooF=1.039,晶体尺寸:0.20mm×0.20mm×0.20mm,R1=0.0353,wR2=0.0826。
另外,本发明还提供一种制备上述双核笼状钇配合物的方法,其包括以下步骤:将2,4,6-三甲基苯甲酸,钇盐,邻菲啰啉加入聚四氟乙烯反应釜中,加入DMF和水混合溶剂,调节pH值至6~7,于120℃~160℃温度下反应48h~72h,之后按8℃~12℃/h程序降温,冷却至室温,开釜后得到无色晶体,即为所述双核笼状钇配合物。
其中,所述2,4,6-三甲基苯甲酸、钇盐和邻菲啰啉为反应物,三者的质量比为(2~5):(1~2):(2~4),所述DMF与水为反应溶剂,二者的体积比(1~3):(3~6)。
其中,所述钇盐为硝酸钇、氯化钇、硫酸钇、乙酸钇中的一种或多种。
在上述制备过程中,用碱调节pH值至6~7,调节pH值所用的碱为氨水,氢氧化钠、氢氧化钾、碳酸氢钠、三乙胺及碳酸钠中的一种或两种。
此外,本发明还提供上述双核笼状钇配合物作为制备抗菌剂的原料以及在制备抗菌材料中的应用。
最后,本发明还提供一种用于抑制金黄葡萄球菌和大肠杆菌的抗菌剂,其含有上述双核笼状钇配合物。
与现有的研究成果相比,本发明的进步之处主要体现在:1、本发明的双核笼状稀土钇(III)有机配合物具有双核笼状结构,具有稳定性好的特点。2、本发明的双核笼状稀土钇(III)有机配合物以TMBA为主配体,1,10-邻菲啰啉为辅配体,配体对稀土钇(III)的抗菌性能具有积极作用,能有效提高稀土钇(III)的抗菌性能;特别是将双核笼状稀土钇(III)有机配合物应用于金黄葡萄球菌和大肠杆菌的抗菌活性研究具有良好的抑制效果。4、本发明的双核笼状稀土钇(III)有机配合物制备方法操作简单、工艺流程短,产率高,得到晶体颗粒均匀性好,适合大规模工业化生产。
附图说明:
图1为实施例中制备的双核笼状钇配合物的晶体结构示意图;
图2为实施例中制备的双核笼状钇配合物的配位多面体图;
图3为实施例中制备的双核笼状钇配合物的热稳定性分析图。
具体实施方式
为了便于本领域技术人员的理解,下面结合实施例对本发明作进一步的说明,实施例提及的内容并非对本发明的限定。需要提前说明的是,以下实施例是在实验室完成的,本领域技术人员应当明白,实施例中给出的各组分用量仅代表了各组分之间的配比关系,而非具体的限定。
1.双核笼状钇配合物Y2(2,4,6-(Me)3-PhCOO)6(C12H8N2)2的制备。
将0.5mmol(约82.1mg)2,4,6-三甲基苯甲酸(TMBA)、0.2mmol(约76.6mg)钇盐(本实施例中采用六水合硝酸钇)、0.2mmol(约36.0mg)1,10-邻菲啰啉加入到聚四氟乙烯反应釜中,加入15ml DMF和水(体积比1:5)混合溶液,用碱(本实施例中采用氢氧化钠)调节pH值6~7,于120℃~160℃(本实施例中采用140℃)下反应48h~72h(本实施例中采用54h),按8℃~12℃/h(本实施例中采用10℃/h)程序降温,冷却至室温,开釜后得到无色晶体,产率58.67%,熔点:257~259℃。
应当指出的是,在上述制备双核笼状钇配合物的过程中,2,4,6-三甲基苯甲酸、钇盐和邻菲啰啉为反应物,三者的质量比可以在(2~5):(1~2):(2~4)的范围内,DMF与水为反应溶剂,二者的体积比可以在(1~3):(3~6)的范围内。钇盐可以选自硝酸钇、氯化钇、硫酸钇、乙酸钇中的一种或多种。在上述制备过程中,用碱调节pH值至6~7,调节pH值所用的碱为氨水,氢氧化钠、氢氧化钾、碳酸氢钠、三乙胺及碳酸钠中的一种或两种。反应温度、反应时间、降温速度根据反应物的类型不同作适当调整。
元素分析(C84H82N4O12Y2):理论值(%):C,66.49;H,5.45;N,3.69;测定值(%):C,66.35;H,5.43;N,3.71。
IR主要吸收峰为:2924(s),1621(vs),1538(m),1486(m),1429(vs),1279(m),1240(w),1063(m),857(m),726(m),682(w),558(w),478(w)。
13C NMR(100Hz,CDCl3)δ(ppm):18.7(27.0)(Ar–COO),147.1(1369.3)(–COO),21.5,15.6(–CH3),135.3(136.4)(C–CH3);126.6(127.1)(C–C–CH3)。
产物结构式为:
Figure BDA0002566531040000051
上式中,Tmb为三甲基苯。
上述配合物为晶体结构,其晶体学数据:晶体属于三斜晶系,空间群为P-1;晶胞参数:
Figure BDA0002566531040000061
Figure BDA0002566531040000062
α=104.977(4)°,β=111.750(4)°,γ=95.874(5)°,
Figure BDA0002566531040000063
Dc=1.363g/cm3,Z=1,F(000)=788.2.917≤θ≤25.000,μ(MoKa)=0.797,GooF=1.039,晶体尺寸:0.20mm×0.20mm×0.20mm,R1=0.0353,wR2=0.0826。
2.双核笼状钇配合物晶体结构测定。
在显微镜下选取尺寸约为0.20mm×0.20mm×0.20mm的单晶,置于a Bruker APEX-II CCD单晶衍射仪上进行衍射实验,在296(2)K下用MoKα射线(λ=0.071073nm),以
Figure BDA0002566531040000065
扫描方式在2.917≤θ≤25.00°范围内共收集22328个衍射点,其中5394个独立衍射点[Rint=0.0466,Rsigma=0.0545],6503个可观察衍射点[I>2σ(I)]用于结构分析和结构修正。全部数据经Lp因子和经验吸收校正。晶体结构采用SHELXS-97程序由直接法解出,结构精修采用SHELXL-97程序,对氢原子和非氢原子分别采用各向同性和各向异性温度因子进行全矩阵最小二乘法修正。最终偏离因子R=0.0457,wR=0.0974(w=1/S2(F0 2)+(0.0486P)2+3.8244P],P=(Fo 2+2Fc 2)/3);(Δ/σ)max=0.00,S=1.039,(Δρ)max=0.0353和(Δρ)
Figure BDA0002566531040000064
配合物分子结构见图1。从晶体结构图1可知,该配合物分子是由2个钇(III)离子、6个TMBA-1、2个邻菲啰啉分子组成。两个钇(III)离子通过4个TMBA-1桥联形成四桥双核笼状结构,其中羧酸配体与中心原子通过双齿桥联和双齿螯合两种形式配位。而类似结构的钐配合物[Sm2(C7H5ClCOO)6(C12H8N2)2(H2O)2](W.Li,et al.Chin.J.Struct.Chem.2020,39(2):(2):350–355.W.Li,et al.CN106928260B)中有水分子参与配位,且其羧酸通过双齿桥联和单齿配位与中心离子配位,结构上与图1存在明显的不同。此外,图1与现有的一些双核笼状铜(B.S.Zhang,et al.CN107382702A)也在结构上差异较大,现有的双核铜配合物大多只含2-氟苯甲酸一种配体,没有含氮配体;且配位原子数及配位体结构也完全不同,并且铜为六配位的变形八面体结构,而上述实施例中制备的钇配合物为八配位的四方反棱柱体,这点从钇(III)离子的配位多面体图2可以看出。Y-N的平均键长为
Figure BDA0002566531040000071
略短于同类结构的
Figure BDA0002566531040000072
Y(1)-Ocarb的平均键长为
Figure BDA0002566531040000073
略短于同类结构的
Figure BDA0002566531040000074
这是由于Y的原子半径小于Sm的缘故。
3.双核笼状钇配合物的热稳定性能分析。
图3为图1所示双核笼状钇配合物的热稳定性分析(TG-DTA)图,从图中可以看出,该配合物在空气气氛中,在100℃以下失重几乎为0,即在100℃以下具有良好的热稳定性。在100℃至600℃范围内的失重分二个阶段进行。160℃~220℃为第一阶段,失重率约23.70%,对应所失去的产物可能是2个邻菲啰啉(理论值为23.75%);270℃~450℃为第二阶段,失重率累积约61.40%,对应所失去的产物可能是6个TMBA-1(累积理论值为61.37%);由于在空气气氛中,最终产物为氧化钇,最后的残余物残留率约14.90%(理论值为14.88%)。根据以上推断,该配合物的热分解过程可分为以下几个阶段:
Figure BDA0002566531040000081
4.双核笼状钇配合物的抗菌活性测定。
实验方法:本实验的抗菌性能测试采用培养基扩散法和营养肉汤稀释法两处方法来测试,抑菌能力大小,结果以抑菌直径和最小抑菌浓度的形式列于表1中。
表1双核笼状钇配合物与其它对比物的抑菌直径和最小抑菌浓度
Figure BDA0002566531040000082
其中由培养基扩散法测定的结果经抑菌圈的直径大小表示;而由营养肉汤稀释法测定的结果以配合物的最小抑菌浓度(MIC)来表示,一般当样品的MIC小于800mg/L,就可认为样品具有抑菌作用。抑菌实验结果显示:(1)其中TMBA对大肠杆菌和金黄葡萄球菌的抑菌作用较差;1,10-邻菲啰啉对对大肠杆菌和金黄葡萄球菌的抑菌直径分别为23mm和13mm,对应的最小抑菌浓度为80mg/L-1和350mg/L-1,充分说明1,10-邻菲啰啉对对大肠杆菌有抑菌作用,而对金黄葡萄球菌只有中等强度的抑菌;(2)双核笼状钇配合物对大肠杆菌和金黄葡萄球菌都具有较好的抑制作用,抑菌圈直径分别为28nm和24nm,均大于20mm。最小抑菌浓度分别为40和100mg/L-1,均小于100mg/L-1,配合物的抑菌作用增强,这是由于稀土金属离子与配体的螯合效应;说明配合物对大肠杆菌和金黄葡萄球菌的抑菌作用强,可以作为抗菌剂的原料或直接作为抗菌剂使用,当然也可以用于制作抗菌材料,例如利用该配合物通过浸渗的方式来制备抗菌海绵等工业材料。
综上所述,在上述实施例中,双核笼状稀土钇(III)有机配合物具有双核笼状结构,具有稳定性好的特点。该双核笼状稀土钇(III)有机配合物以TMBA为主配体,1,10-邻菲啰啉为辅配体,配体对稀土钇(III)的抗菌性能具有积极作用,能有效提高稀土钇(III)的抗菌性能;特别是将该双核笼状稀土钇(III)有机配合物应用于金黄葡萄球菌和大肠杆菌的抗菌活性研究具有良好的抑制效果。从上述制备双核笼状稀土钇(III)有机配合物的过程可以看出,其制备方法操作简单、工艺流程短,产率高,得到晶体颗粒均匀性好,具备大规模工业化生产价值。
上述实施例为本发明较佳的实现方案,除此之外,本发明还可以其它方式实现,在不脱离本技术方案构思的前提下任何显而易见的替换均在本发明的保护范围之内。
最后,应该强调的是,为了让本领域普通技术人员更方便地理解本发明相对于现有技术的改进之处,本发明的一些描述已经被简化,并且为了清楚起见,本申请文件还省略了一些其它元素,本领域技术人员应该意识到这些省略的元素也可构成本发明的内容。

Claims (9)

1.一种双核笼状钇配合物,其特征在于,具有下式的结构单元:
Figure FDA0002566531030000011
上式中,Tmb为三甲基苯。
2.根据权利要求1所述的双核笼状钇配合物,其特征在于:所述双核笼状钇配合物为晶体结构,其晶体学数据:晶体属于三斜晶系,空间群为P-1;晶胞参数:
Figure FDA0002566531030000012
Figure FDA0002566531030000013
α=104.977(4)°,β=111.750(4)°,γ=95.874(5)°,
Figure FDA0002566531030000014
Figure FDA0002566531030000015
Dc=1.363g/cm3,Z=1,F(000)=788.2.917≤θ≤25.000,μ(MoKa)=1.627,GooF=1.039,晶体尺寸:0.20mm×0.20mm×0.20mm,R1=0.0353,wR2=0.0826。
3.权利要求1所述双核笼状钇配合物的制备方法,其特征在于,包括以下步骤:将2,4,6-三甲基苯甲酸,钇盐,邻菲啰啉加入聚四氟乙烯反应釜中,加入DMF和水混合溶剂,调节pH值至6~7,于120℃~160℃温度下反应48h~72h,之后按8℃~12℃/h程序降温,冷却至室温,开釜后得到无色晶体,即为所述双核笼状钇配合物。
4.根据权利3所述的双核笼状钇配合物的制备方法,其特征在于:所述2,4,6-三甲基苯甲酸、钇盐和邻菲啰啉为反应物,三者的质量比为(2~5):(1~2):(2~4),所述DMF与水为反应溶剂,二者的体积比(1~3):(3~6)。
5.根据权利要求4所述的双核笼状钇配合物的制备方法,其特征在于:所述钇盐为硝酸钇、氯化钇、硫酸钇、乙酸钇中的一种或多种。
6.根据权利要求3-5中任意一项所述的双核笼状钇配合物的制备方法,其特征在于:用碱调节pH值至6~7,调节pH值所用的碱为氨水,氢氧化钠、氢氧化钾、碳酸氢钠、三乙胺及碳酸钠中的一种或两种。
7.权利要求1或2所述双核笼状钇配合物作为制备抗菌剂的原料。
8.权利要求1或2所述双核笼状钇配合物在制备抗菌材料中的应用。
9.一种用于抑制金黄葡萄球菌和大肠杆菌的抗菌剂,其特征在于:含有权利要求1或2所述的双核笼状钇配合物。
CN202010625920.8A 2020-07-02 2020-07-02 一种双核笼状钇配合物及其制备方法和应用 Active CN111747974B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010625920.8A CN111747974B (zh) 2020-07-02 2020-07-02 一种双核笼状钇配合物及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010625920.8A CN111747974B (zh) 2020-07-02 2020-07-02 一种双核笼状钇配合物及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN111747974A true CN111747974A (zh) 2020-10-09
CN111747974B CN111747974B (zh) 2023-05-05

Family

ID=72678560

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010625920.8A Active CN111747974B (zh) 2020-07-02 2020-07-02 一种双核笼状钇配合物及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN111747974B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101235048A (zh) * 2008-02-29 2008-08-06 河北师范大学 萘酸、1,10-邻菲啰啉稀土配合物、制备方法及其抗真菌的应用
CN101456875A (zh) * 2008-10-31 2009-06-17 上海华明高技术(集团)有限公司 氢键型稀土金属配合物及其制备方法
CN106893110A (zh) * 2017-02-27 2017-06-27 衡阳师范学院 一种一维链状铕(iii)有机配位聚合物及其制备方法和应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101235048A (zh) * 2008-02-29 2008-08-06 河北师范大学 萘酸、1,10-邻菲啰啉稀土配合物、制备方法及其抗真菌的应用
CN101456875A (zh) * 2008-10-31 2009-06-17 上海华明高技术(集团)有限公司 氢键型稀土金属配合物及其制备方法
CN106893110A (zh) * 2017-02-27 2017-06-27 衡阳师范学院 一种一维链状铕(iii)有机配位聚合物及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHEN, Z. M. ET AL.: "Synthesis, structure, and antibacterial properties of ternary rare-earth complexes with o-methylbenzoic Acid and 1,10-phenanthroline", 《RUSSIAN JOURNAL OF COORDINATION CHEMISTRY》 *

Also Published As

Publication number Publication date
CN111747974B (zh) 2023-05-05

Similar Documents

Publication Publication Date Title
Joseyphus et al. Synthesis, characterization and biological studies of some Co (II), Ni (II) and Cu (II) complexes derived from indole-3-carboxaldehyde and glycylglycine as Schiff base ligand
CN107417921A (zh) 一种金属有机框架化合物的合成及应用
CN110878102B (zh) 一种双三氮唑配体调控5-硝基间苯二甲酸镉配合物及其制备方法和作为荧光探针的应用
Luo et al. A single-ligand-protected Eu 60− n Gd (Tb) n cluster: a reasonable new approach to expand lanthanide aggregations
Yan et al. Self-assembly and characterization of copper 3, 4-pyridinedicarboxylate complexes based on a variety of polynuclear hydroxo clusters
Semerci et al. Construction of homo-and heterometallic-pyridine-2, 3-dicarboxylate metallosupramolecular networks with structural diversity: 1D T5 (2) water tape and unexpected coordination mode of pyridine-2, 3-dicarboxylate
CN107827914B (zh) 一种铜席夫碱配合物及其制备方法和应用
CN111747974A (zh) 一种双核笼状钇配合物及其制备方法和应用
El-Gamel Silver (I) complexes as precursors to produce silver nanowires: structure characterization, antimicrobial activity and cell viability
Zhuang et al. Position of substituent dependent dimensionality in Ln–Cu heterometallic coordination polymers
Zhang et al. Assembly of two pharmaceutical salts of sparfloxacin with pyrocatechuic acid: Enhancing in vitro antibacterial activity of sparfloxacin by improving the solubility and permeability
Che et al. Wheel-like Gd 42 polynuclear complexes with significant magnetocaloric effect
Malandrino et al. Yttrium β‐Diketonate Glyme MOCVD Precursors: Effects of the Polyether Length on Stabilities, Mass Transport Properties and Coordination Spheres
CN110862549A (zh) 一种基于延胡索酸及4,4’-联吡啶的三维金属-有机骨架晶体材料及其制备方法
CN108129675B (zh) 一种一维链状含硫希夫碱Co–Na配位聚合物及其制备方法与应用
CN111228276B (zh) 一种具有抗菌活性的溴代草酰胺双核铜配合物及其组合物
Li et al. Four homochiral coordination polymers contain N-acetyl-L-tyrosine and different N-donor ligand: Influence of metal cations, ancillary ligands and coordination modes
CN111747973B (zh) 一种双核锌配合物及其制备方法和应用
Burkovskaya et al. New cobalt-and sodium-containing heteronuclear phosphonate clusters: Synthesis, structure and properties
Negoiu et al. Synthesis and Characterisation of complex Cu (II) combinations with Schiff base ligands derived from 4-amino-1-phenyl-2, 3-dimethyl-3-pyrazole-5-one (4-amino-antipyrine) and Pentaatomic Heterocyclic Aldehydes
CN106939023A (zh) 基于手性席夫碱配体的锰离子配合物及制备方法与应用
Tanasković et al. Binuclear biologically active Co (II) complexes with octazamacrocycle and aliphatic dicarboxylates
Yang et al. Long-range ferromagnetic ordering in a 3D CuII-tetracarboxylate framework assisted by an unprecedented bidentate μ 2-O1, N4 hypoxanthine nucleobase
Huang et al. Metal (II)-organic coordination polymers with two distinct atropisomeric building units from an axially prochiral inner salt through interchain C–H⋯ X hydrogen bonds (X= O, Cl; metal= cobalt, nickel)
Li et al. Structural transformation of copper coordination complexes accompanied with chiral transformation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
OL01 Intention to license declared
OL01 Intention to license declared