CN111740701B - 一种新型的交叉耦合单片相干接收和发射系统 - Google Patents

一种新型的交叉耦合单片相干接收和发射系统 Download PDF

Info

Publication number
CN111740701B
CN111740701B CN201910224774.5A CN201910224774A CN111740701B CN 111740701 B CN111740701 B CN 111740701B CN 201910224774 A CN201910224774 A CN 201910224774A CN 111740701 B CN111740701 B CN 111740701B
Authority
CN
China
Prior art keywords
oscillator
antenna
inductors
terahertz
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910224774.5A
Other languages
English (en)
Other versions
CN111740701A (zh
Inventor
孙鹏林
马建国
张齐军
周绍华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University Marine Technology Research Institute
Original Assignee
Tianjin University Marine Technology Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University Marine Technology Research Institute filed Critical Tianjin University Marine Technology Research Institute
Priority to CN201910224774.5A priority Critical patent/CN111740701B/zh
Publication of CN111740701A publication Critical patent/CN111740701A/zh
Application granted granted Critical
Publication of CN111740701B publication Critical patent/CN111740701B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/08Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance
    • H03B5/12Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device
    • H03B5/1228Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device the amplifier comprising one or more field effect transistors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/35Details of non-pulse systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/35Details of non-pulse systems
    • G01S7/352Receivers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/08Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance
    • H03B5/12Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device
    • H03B5/1237Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device comprising means for varying the frequency of the generator

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

一种新型的交叉耦合单片相干接收和发射系统,接收和发射系统包括发射机和接收机,发射机和接收机集成在同一芯片上。发射机链路主要由振荡器和天线组成,接收机链路主要由振荡器、注入锁定、混频器和天线组成;该结构采用堆叠交叉耦合振荡器作为发射机和接收机的本地振荡信号,可以增加振荡器的负阻,提高振荡器输出信号的幅度和功率,振荡频率比较高的上端交叉耦合模块可以由振荡频率比较低的下端交叉耦合模块锁定,使振荡器输出信号更稳定;采用注入锁定技术能提高振荡器输出信号的稳定度,同时又能实现接收机的相干成像,提高成像质量和对比度;振荡器的输出信号能够直接传输到混频器当中,可以减少匹配网络的使用。

Description

一种新型的交叉耦合单片相干接收和发射系统
技术领域
本发明属于太赫兹波成像技术领域,更具体的涉及一种新型交叉耦合单片相干接收和发射系统。
背景技术
太赫兹射线是电磁波的一种,或称太赫兹波,介于微波和红外线之间,也叫T射线(T-Ray),它的频率范围一般为0.1THz-10THz[1]。在光学领域称之为远红外线辐射,无线电物理领域又根据其波长小于毫米级,称其为亚毫米波。目前,太赫兹波及其应用己经成为科学界的热点领域。太赫兹波可以应用于很多方面,例如包括安检成像[2]、生物医学[3][4]、环境监测和大容量数据通信等领域。
太赫兹成像系统是太赫兹波的重要应用之一,太赫兹源方面,很长时间以来,对于太赫兹射线,缺乏高发射率的太赫兹信号源,导致该波段的太赫兹射线一直处于待研究的状态,没能得到深入的探索和应用,而被称作“太赫兹空隙”。太赫兹接收机方面,可以分为非相干检测接收机和相干检测接收机。其中,非相干检测接收机,可以分为基于天线藕合的肖特基二极管接收机[5],基于天线藕合的FET(Field Effect Transistor)自混频接收机[6]和基于天线藕合的太赫兹热接收机[7]等,其具有系统简单,功耗低等优点,但是存在接收机响应度低,噪声等效功率性能不好等问题。而相干检测接收机,可以分为外差检测接收机和零差检测接收机,其具有响应度高,噪声等效功率性能好,可以接收非常微弱的太赫兹信号的优点,但是存在系统复杂,面积大等问题。
综上所述,针对太赫兹信号源性能不高,非相干检测接收机接收机响应度低,噪声等效功率性能不好,相干接收机系统复杂,面积大等问题。目前迫切需要提出一种新型的单片发射机和相干接收机,其结构相对简单,科学合理,可以自身向外辐射信号,不需要外部的太赫兹源,同时增加接收机的输出响应度,减少噪声等效功率,节约芯片面积,减小系统复杂度满足对太赫兹波的检测需求。
[1]P.H.Siegel,P.H.Siegel,“Terahertztechnology”,IEEE Transactions onMicrowave TheoryTechniques,50,910,(2002).
[2]K.Cooper,R.Dengler,N.Llombart,B.Thomas,G.Chattopadhyay,andP.Siegel,“THz imaging radar for standoffpersonnel screening,”IEEETrans.THz Sci.Technol.,vol.1,no.1,pp.169–182,Sep.2011.
[3]Z.Taylor,R.Singh,D.Bennett,P.Tewari,C.Kealey,N.Bajwa,M.Culjat,A.Stojadinovic,H.Lee,J.-P.Hubschman,E.Brown,andW.Grundfest,“THz medicalimaging:Invivo hydration sensing,”IEEE Trans.THz Sci.Technol.,vol.1,no.1,pp.201–219,Sep.
[4]K.Ajito,H.J.Song,A.Hirata,A.Wakatsuki,Y.Muramoto,N.Shigekawa,T.Kumashiro,D.Asa,T.Nagatsuma,N.Kukutsu,andY.Kado,“Continuous-wave terahertzs pectroscopic imag ing at over 1THz forpharmaceutical applications,”inProc.Int.Conf.Infrared,Millimeter,TerahertzWaves,Sep.2010,pp.1–2.
[5]R.Han,Y.Zhang,D.Coquillat,H.Videlier,W.Knap,E.Brown,and K.K.O,“A280-GHz Schottky diode detectorin 130-nmdigital CMOS,”IEEE J.Solid-StateCircuits,vol.46,no.11,pp.2602–2612,Nov.2011.
[6]R.Al Hadi,H.Sherry,J.Grzyb,N.Baktash,Y.Zhao,E.A.Kaiser,A.Cathelin,and U.Pfeiffer,“Abroadband 0.6to 1THz CMOS imaging detectorwith anintegrated lens,”in IEEEMTT-S Int.Microw.Symp.Dig.,Jun.2011,pp.1–4.
[7]Sin-HanYang,Li Su,I-Chun Huang,Chueh Ting,Ching-Kuang,C.Tzuang,”Monolithic 28.3THz Thermal Image Sensor Incorporating O.18-llm CMOS Foundry“,in 2010IEEE MTT-S International Microwave Symposium。
发明内容
为了解决上述技术问题,本发明提出一种新型的交叉耦合单片相干接收和发射系统,目的主要有以下三点:1、不需要外部的太赫兹源辐射,自身可以向外辐射信号;2、解决非相干检测接收机响应度低,噪声等效功率性能不好的问题;3、减小相干检测接收机的芯片面积和复杂度。
一种新型的交叉耦合单片相干接收和发射系统,接收和发射系统包括发射机和接收机,发射机和接收机集成在同一芯片上。
发射机链路主要由振荡器和天线组成,振荡器能够将直流信号转换成太赫兹信号并传输给天线,天线能够将振荡器产生的太赫兹信号辐射到空气中;天线组成如图1所示,最顶层金属作为天线和馈线,最底层金属作为反射板,天线的馈线与交叉耦合振荡器电路相连接;振荡器组成如图2所示,包括N型的MOS晶体管Q1、Q2、Q3和Q4,以及电感L1、L2、L3;晶体管Q1、Q2能够产生上端振荡频率比较高的交叉耦合模块所需要的负阻,电感L1、L2和晶体管Q1、Q2的寄生电容决定了振荡频率;晶体管Q3、Q4能够产生下端振荡频率比较低的交叉耦合模块所需要的负阻,电感L3和晶体管Q3、Q4的寄生电容决定了振荡频率;上端振荡频率比较高的交叉耦合模块可以由下面振荡频率比较低的交叉耦合模块锁定。
接收机链路主要由振荡器、注入锁定、混频器和天线组成;振荡器将直流信号转换成太赫兹信号,外部信号通过注入锁定跟振荡器达到频率和相位同步;振荡器产生的本地振荡器信号跟天线接收的太赫兹信号在混频器中混频,混频器利用晶体管在太赫兹频率下的分布式自混频原理产生需要的中频信号;其中注入锁定组成如图2所示,包括N型的MOS晶体管Q5和Q6,单端信号转差分信号耦合器B1,晶体管Q5、Q6跟单端信号转差分信号耦合器B1相连,能够将外部高稳定度的信号注入到交叉耦合振荡器当中;混频器组成如图2所示,包括晶体管Q7、Q8和微带线TL1、TL2,晶体管能够将振荡器输出的信号与天线接收的信号进行混频,产生中频信号;微带线能够阻塞耦合到输出端的高频太赫兹波信号,减小耦合到输出端的太赫兹信号对测试的影响。
电路的具体连接为:Q1的源极S分别接电感L3和Q3、Q5的漏极D;
Q1的漏极D分别与电感L1、Q7的栅极G和Q2的栅极G相连接;
Q1的栅极G分别与电感L2和Q8的栅极G相连接;
Q2的源极S分别接电感L3和Q4、Q6的漏极D;
Q2的漏极D分别与电感L2、Q8的栅极G和Q1的栅极G相连接;
Q2的栅极G分别与电感L1和Q7的栅极G相连接;Q3、Q4、Q5、Q6的源极S分别接地;
Q3的栅极G分别与电感L3和Q2的漏极相连接;
Q4的栅极G分别与电感L3和Q1的漏极相连接;
Q5、Q6的栅极G分别接B1的两端;B1的另外两端分别接地和GSG端口;Q7、Q8的源极S接地;
Q7、Q8的漏极D通过通过微带线TL1、TL2汇合后接输出点;电感L1、L2接偏置点和天线的馈线。
一种新型的交叉耦合单片相干接收和发射系统,工作原理如下:
天线的工作原理:天线和反射板之间的距离远小于太赫兹波段波长λ,因此在垂直方向的电场可以视为均匀分布。垂直分量的电场方向相反,大小相等,可以相互抵消,两平行分量方向相同可以叠加。由于接地板的反射,天线是一个单辐射方向的天线。
混频器的工作原理:晶体管Q7、Q8的IV方程满足
Id=μCoxW/L(Vgs-Vth)2/2 (1)
天线接收的射频信号VRF和本地振荡器信号VLO都加到晶体管栅极则有
Vgs=Vbais+VRF+VLO (2)
将(2)式带到(1)式得
Id=μCoxW/L[(Vbais-Vth)2]/2+2(Vbais-Vth)(VRF+VLO)+VRF 2+VLO 2+2VRFVLO (3)
从(3)式可以看出,存在需要的混频成分VRFVLO
一种新型的交叉耦合单片相干接收和发射系统,具有如下创新和有益效果:(1)发明采用堆叠交叉耦合振荡器作为发射机和接收机的本地振荡信号,可以增加振荡器的负阻,提高振荡器输出信号的幅度和功率,振荡频率比较高的上端交叉耦合模块可以由振荡频率比较低的下端交叉耦合模块锁定,使振荡器输出信号更稳定;(2)采用注入锁定技术能提高振荡器输出信号的稳定度,同时又能实现接收机的相干成像,提高成像质量和对比度;(3)振荡器的输出信号能够直接传输到混频器当中,可以减少匹配网络的使用。
附图说明
图1是贴片天线结构示意图;
图2是交叉耦合单片相干接收机和发射机等效电路图;
图3是上端交叉耦合振荡器振荡频率及输出功率仿真结果图;
图4是下端交叉耦合振荡器振荡频率及输出功率仿真结果图;
图5是注入信号给工作频率和功率仿真结果图。
具体实施方式
为了使本技术领域的人员更好地理解本发明方案,下面结合附图和实施方式对本发明作进一步的详细说明。
在交叉耦合振荡器设计当中,首先要确定晶体Q1、Q2、Q3、Q4的宽长比W/L,晶体管的宽长比决定了起振条件,宽长比W/L越大,越容易起振,但是晶体管Q1、Q2、Q3、Q4的宽长比越大寄生电容越大,在相同电感L1、L2、L3的情况下振荡频率越低。振荡器起振之后,根据工作频率,确定电感L1、L2、L3的值。使上端振荡器的振荡频率是下端振荡器振荡频率的二倍。注入锁定晶体管Q5、Q6的尺寸远小于振荡器晶体管Q1、Q2、Q3、Q4。仿真结果:如图3、图4、图5。

Claims (1)

1.一种新型的交叉耦合单片相干接收和发射系统,其特征在于:接收和发射系统包括发射机和接收机,发射机和接收机集成在同一芯片上;
发射机链路主要由振荡器和天线组成,振荡器能够将直流信号转换成太赫兹信号并传输给天线,天线能够将振荡器产生的太赫兹信号辐射到空气中;天线最顶层金属作为天线和馈线,最底层金属作为反射板,天线的馈线与交叉耦合振荡器电路相连接;振荡器包括N型的MOS晶体管Q1、Q2、Q3和Q4,以及电感L1、L2、L3;晶体管Q1、Q2能够产生上端振荡频率比较高的交叉耦合模块所需要的负阻,电感L1、L2和晶体管Q1、Q2的寄生电容决定了振荡频率;晶体管Q3、Q4能够产生下端振荡频率比较低的交叉耦合模块所需要的负阻,电感L3和晶体管Q3、Q4的寄生电容决定了振荡频率;上端振荡频率比较高的交叉耦合模块可以由下面振荡频率比较低的交叉耦合模块锁定;
接收机链路主要由振荡器、注入锁定、混频器和天线组成;振荡器将直流信号转换成太赫兹信号,外部信号通过注入锁定跟振荡器达到频率和相位同步;振荡器产生的本地振荡器信号跟天线接收的太赫兹信号在混频器中混频,混频器利用晶体管在太赫兹频率下的分布式自混频原理产生需要的中频信号;注入锁定包括N型的MOS晶体管Q5和Q6,单端信号转差分信号耦合器B1,晶体管Q5、Q6跟单端信号转差分信号耦合器B1相连,能够将外部高稳定度的信号注入到交叉耦合振荡器当中;混频器包括晶体管Q7、Q8和微带线TL1、TL2,晶体管能够将振荡器输出的信号与天线接收的信号进行混频,产生中频信号;微带线能够阻塞耦合到输出端的高频太赫兹波信号,减小耦合到输出端的太赫兹信号对测试的影响;
电路的具体连接为:Q1的源极S分别接电感L3和Q3、Q5的漏极D;
Q1的漏极D分别与电感L1、Q7的栅极G和Q2的栅极G相连接;Q1的栅极G分别与电感L2和Q8的栅极G相连接;
Q2的源极S分别接电感L3和Q4、Q6的漏极D;
Q2的漏极D分别与电感L2、Q8的栅极G和Q1的栅极G相连接;Q2的栅极G分别与电感L1和Q7的栅极G相连接;
Q3、Q4、Q5、Q6的源极S分别接地;
Q3的栅极G分别与电感L3和Q2的漏极相连接;
Q4的栅极G分别与电感L3和Q1的漏极相连接;
Q5、Q6的栅极G分别接B1的两端;
B1的另外两端分别接地和GSG端口;
Q7、Q8的源极S接地;
Q7、Q8的漏极D通过通过微带线TL1、TL2汇合后接输出点;
电感L1、L2接偏置点和天线的馈线。
CN201910224774.5A 2019-03-24 2019-03-24 一种新型的交叉耦合单片相干接收和发射系统 Active CN111740701B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910224774.5A CN111740701B (zh) 2019-03-24 2019-03-24 一种新型的交叉耦合单片相干接收和发射系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910224774.5A CN111740701B (zh) 2019-03-24 2019-03-24 一种新型的交叉耦合单片相干接收和发射系统

Publications (2)

Publication Number Publication Date
CN111740701A CN111740701A (zh) 2020-10-02
CN111740701B true CN111740701B (zh) 2024-02-09

Family

ID=72646159

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910224774.5A Active CN111740701B (zh) 2019-03-24 2019-03-24 一种新型的交叉耦合单片相干接收和发射系统

Country Status (1)

Country Link
CN (1) CN111740701B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113394574B (zh) * 2021-06-17 2023-03-24 网络通信与安全紫金山实验室 一种集成差分天线的太赫兹振荡器及其场路融合方法
CN113746429B (zh) * 2021-09-06 2024-03-19 芯灵通(天津)科技有限公司 一种基于变压器耦合的堆叠压控振荡器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7376403B1 (en) * 2005-04-25 2008-05-20 Sandia Corporation Terahertz radiation mixer
DE102009029051A1 (de) * 2009-09-01 2011-03-03 Robert Bosch Gmbh Verfahren und Vorrichtung zum Bereitstellen eines Reflexionssignals
CN103884922A (zh) * 2014-03-26 2014-06-25 中国科学院紫金山天文台 单接收机太赫兹矢量场形测量装置及其测量方法
CN104660290A (zh) * 2015-03-11 2015-05-27 武汉大学苏州研究院 一种电流可复用低功耗射频前端接收电路
WO2016134384A1 (en) * 2015-02-20 2016-08-25 Cornell University Device for terahertz signal generation and transmitter
CN106026920A (zh) * 2016-05-11 2016-10-12 复旦大学 一种应用于太赫兹皮肤成像领域的cmos集成电路太赫兹检测器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7376403B1 (en) * 2005-04-25 2008-05-20 Sandia Corporation Terahertz radiation mixer
DE102009029051A1 (de) * 2009-09-01 2011-03-03 Robert Bosch Gmbh Verfahren und Vorrichtung zum Bereitstellen eines Reflexionssignals
CN103884922A (zh) * 2014-03-26 2014-06-25 中国科学院紫金山天文台 单接收机太赫兹矢量场形测量装置及其测量方法
WO2016134384A1 (en) * 2015-02-20 2016-08-25 Cornell University Device for terahertz signal generation and transmitter
CN104660290A (zh) * 2015-03-11 2015-05-27 武汉大学苏州研究院 一种电流可复用低功耗射频前端接收电路
CN106026920A (zh) * 2016-05-11 2016-10-12 复旦大学 一种应用于太赫兹皮肤成像领域的cmos集成电路太赫兹检测器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
一种低噪声交叉耦合结构集成石英晶体振荡器’;谢海情;曾承伟;曾健平;唐俊龙;贾新亮;彭永达;王超;湖南大学学报. 自然科学版;第44卷(第2期);全文 *

Also Published As

Publication number Publication date
CN111740701A (zh) 2020-10-02

Similar Documents

Publication Publication Date Title
Pohl et al. An ultra-wideband 80 GHz FMCW radar system using a SiGe bipolar transceiver chip stabilized by a fractional-N PLL synthesizer
Abbasi et al. Single-chip 220-GHz active heterodyne receiver and transmitter MMICs with on-chip integrated antenna
Kim et al. 300 GHz integrated heterodyne receiver and transmitter with on-chip fundamental local oscillator and mixers
Lin et al. Active integrated antennas
Jahn et al. A four-channel 94-GHz SiGe-based digital beamforming FMCW radar
Bredendiek et al. A 240 GHz single-chip radar transceiver in a SiGe bipolar technology with on-chip antennas and ultra-wide tuning range
Gunnarsson et al. A 220 GHz single-chip receiver MMIC with integrated antenna
CN111740701B (zh) 一种新型的交叉耦合单片相干接收和发射系统
Hansen et al. A compact harmonic radar system with active tags at 61/122 GHz ISM band in SiGe BiCMOS for precise localization
Statnikov et al. A 240 GHz circular polarized FMCW radar based on a SiGe transceiver with a lens-integrated on-chip antenna
Starke et al. A fully integrated 0.48 THz FMCW radar transceiver MMIC in a SiGe-technology
Zeinolabedinzadeh et al. A 314 GHz, fully-integrated SiGe transmitter and receiver with integrated antenna
Zhu et al. A 430GHz CMOS Concurrent Transceiver Pixel Array for High Angular Resolution Reflection-Mode Active Imaging
CN109390702B (zh) 基于基片集成波导天线的锗硅异质结双极晶体管探测器
Taba et al. A compact CMOS 363 GHz autodyne FMCW radar with 57 GHz bandwidth for dental imaging
Lo et al. A single-chip W-band transceiver with front-end switching receiver for FMCW radar applications
Wang et al. A low cost 24-GHz FMCW radar for automobile application
Byreddy et al. Lensless Short-Range Reflection-Mode Imaging at 275 GHz Using CMOS Concurrent Transceivers
Niu et al. The design of 850GHz subharmonic mixer based on Schottky diodes
Mitomo et al. A 77 GHz 90 nm CMOS transceiver for FMCW radar applications
Jahn et al. A SiGe-based 140-GHz four-channel radar sensor with digital beamforming capability
Lai RF Front-End CMOS Receiver with Antenna for Millimeter-Wave Applications
Zirath et al. Integrated receivers up to 220 GHz utilizing GaAs-mHEMT technology
Winkler et al. 24 GHz transceiver front-end with two RX-channels
Ma et al. A 151-to-173 GHz FMCW Transmitter Achieving 14 dBm P sat with synchronized Injection-Locked Power Amplifiers and Five in-Phase Power Combining Doublers in 65nm CMOS

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant