CN111739970A - 堆叠状的单片的正置变质的地面式的聚光太阳能电池 - Google Patents

堆叠状的单片的正置变质的地面式的聚光太阳能电池 Download PDF

Info

Publication number
CN111739970A
CN111739970A CN202010199946.0A CN202010199946A CN111739970A CN 111739970 A CN111739970 A CN 111739970A CN 202010199946 A CN202010199946 A CN 202010199946A CN 111739970 A CN111739970 A CN 111739970A
Authority
CN
China
Prior art keywords
subcell
solar cell
cell
lattice constant
sub
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010199946.0A
Other languages
English (en)
Other versions
CN111739970B (zh
Inventor
D·富尔曼
W·古特
M·莫伊泽尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azur Space Solar Power GmbH
Original Assignee
Azur Space Solar Power GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azur Space Solar Power GmbH filed Critical Azur Space Solar Power GmbH
Publication of CN111739970A publication Critical patent/CN111739970A/zh
Application granted granted Critical
Publication of CN111739970B publication Critical patent/CN111739970B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0687Multiple junction or tandem solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/065Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the graded gap type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/078Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers including different types of potential barriers provided for in two or more of groups H01L31/062 - H01L31/075
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03046Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Inorganic Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

一种堆叠状的、单片的、正置变质的、地面式的聚光太阳能电池,其具有恰好五个子电池且具有变质缓冲层,其中,第一子电池具有第一晶格常数G1,并且由锗组成,第二子电池具有第二晶格常数,并且具有GaInAs,第三子电池具有第二晶格常数G2,并且具有GaInAs,第四子电池具有第二晶格常数G2,并且具有InP,所述第五子电池具有第二晶格常数G2并且具有InP,G1<G2适用于所述晶格常数,变质缓冲层布置在第一子电池和第二子电池之间,并且在面向第一子电池的下侧上具有第一晶格常数G1,并且在面向第二子电池的上侧上具有第二晶格常数G2,聚光太阳能电池的布置在第一子电池上方的所有半导体层均在各个位于前面的子电池上外延产生。

Description

堆叠状的单片的正置变质的地面式的聚光太阳能电池
技术领域
本发明涉及一种堆叠状的、单片的(monolithisch)、正置变质的(aufrechtmetamorphe)、地面式的聚光太阳能电池(Konzentrator-Solarzelle),所述太阳能电池具有恰好五个子电池和一个变质缓冲层(Puffer)。
背景技术
为了更好地充分利用太阳光谱,多结太阳能电池通常包括三个或更多子电池,所述子电池具有不同且彼此协调的带隙,其中,最上方的子电池具有最大的带隙,而最下方的子电池具有最小的带隙,并且最上方的子电池位于该多结太阳能电池的面向太阳的一侧。
例如由DE 10 2015 016 047A1,EP 2 779 253A1和US 2012/0 216 858A1已知多结太阳能电池。
在锗衬底上晶格匹配的多结太阳能电池中,多结太阳能电池的最上方的子电池——以下也称为上电池(Oberzelle)——通常由InGaP组成,其带间距约为1.88eV。
InGaP上电池的开路端电压(offene Klemmspannung)Voc显示约为1.4V。为了提高多结太阳能电池的效率,正在寻求具有三个以上子电池的变质的且晶格匹配的设计。
为了实现更高的效率,有义务使用其间具有4个子电池的多结太阳能电池。然而,在正置变质的AlGaInP/AlGaInAs/GaInAs/Ge四结太阳能电池(也称为UMM)中存在以下问题:在上方的两个子电池中为了提高带隙所需使用大量的铝会导致材料特性的劣化,由此导致太阳能电池效率降低。由于少数电荷载流子
Figure BDA0002419005170000011
寿命短,相比于在例如晶格匹配的GaAs和GaInP太阳能电池的情况下,例如开路端电压(Voc)与能带间隙(Eg)之间的差异明显更高。
附加地,在最上方的子电池中使用铝导致最上方的子太阳能电池的发射极中的多数电荷载流子
Figure BDA0002419005170000021
的迁移率(Beweglichkeit)降低,并且因此导致多结太阳能电池中的层电阻明显增大。所提及的效应在聚光太阳能电池(其通常在500倍至1000倍的聚光因子下运行)中极其重要。在此,串联电阻略微增加到2倍大小,这已经导致多结太阳能电池在聚光的情况下的效率明显降低。
由此,至今已开发含Al的上电池的AlGaInP/AlGaInAs/GaInAs/Ge四结太阳能电池用于太空应用。相比于在聚光的情况下,对层电阻的要求由于缺失太阳光的聚光而低得多,使得串联电阻的损耗对多结太阳能电池的整体效率具有更小的影响。
附加地,在太空中使用太空太阳能电池时,太空太阳能电池由于存在于太空中的(由电子和质子组成的)高能粒子辐射总归会退化(degradieren),从而相比于先前使用的不含Al的上电池,在任务起始时较短的少数载流子寿命(英:beginning-of-life,缩写BOL,开始寿命)由于含Al材料的材料质量降低而对在任务终止时决定终止寿命(英:end-of-life,缩写EOL)的效率具有较少的影响。
由Strobl等人的文献《About AZUR's 3G30-advanced Space Solar Cell andNext Generation Product with 35%Efficiency》,ISBN 3-936338-28-0中已知例如这种正置变质的AlGaInP/AlGaInAs/GaInAs/Ge四结太阳能电池用于太空应用。由W.Guter等人的报告《Development of Upright Metamorphic 4J Space Solar Cells》,太空力量研讨会2017,曼哈顿海滩,加利福尼亚,已知一种相应的多结太阳能电池。
此外,由Meusel等人的文献《European Roadmap for the Development of III-VMulti-junction Space Solar Cells》,第19届EU-PVSEC,巴黎,2004年,第3581-3586页已知一种用于太空飞行应用的晶格匹配的五结太阳能电池,其具有材料组合AlGaInP/GaInP/AlGaInAs/GaInAs/Ge。
由Patel等人的文献《Experimental Results from Performance Improvementand Radiation Hardening of Inverted Metamorphic Multi-Junction Solar Cells》,IEEE光伏杂志,2012年7月已知一种倒置变质(invertiert metamorphe)的五结太阳能电池用于太空飞行应用。子电池的能带间隙为0.89eV、1.13eV、1.43eV、1.74eV和2.05eV,其中,上方的两个子电池由晶格匹配的材料形成。
然而,相比于使用不含Al的InGaP上电池,在使用InAlGaP上电池时的缺点尤其在于,与InGaP上电池相比,在此出现大约五倍大的层电阻。这导致在用于CPV应用的多结太阳能电池中(即在聚光器应用中),在安培范围内的较高电流下会产生较大的串联电阻损耗。
如此,由Wanlass等人的文献《Progress toward an advanced four-subcellinverted metamorphic multi-junction(IMM)solar cell》,光伏会议:Res.Appl.2016,24:139-149DOI:10.1002/pip.2609中已知,由于InAlGaP材料中的串联电阻损耗,在InAlGaP太阳能电池中在高于10倍太阳聚光的聚光的情况下,填充因子显著下降。
此外,由Cornfeld等人的文献《Evolution of a 2.05eV AlGaInP Top Subcellfor 5and 6J-IMM Applications》,2012年,第38届IEEE光伏专家会议,10.1109/PVSC.2012.6318171中已知,堆叠状的多结太阳能电池的最上方的子电池的开路端电压Voc可能由于添加Al而增大。在此,材料质量由于添加Al而明显变差,使得少数电荷载流子的扩散长度减小。同时,串联电阻增大,在聚光因子为一的应用中进行测量时,这已经导致含Al的太阳能电池的填充因子降低。
然而对于聚光器应用(即CPV应用),必须使高电流下的损耗保持得尽可能低。已知降低较高的串联电阻损耗的替代的可能性在于,相对于InGaP上电池,显著降低InAlGaP上电池的上侧的金属指(Metallfinger)之间的间距。尽管由此原则上可以补偿电阻损耗,但是该方案会导致较高的阴影(Abschattung),并因此同样导致整个太阳能电池效率降低。
因此,特别是在CPV应用(即具有因子100或更高的聚光器应用)中,必须确保足够的电容性电纳
Figure BDA0002419005170000031
以便使由于多个金属指(即栅极指(Gridfinger))导致的阴影损耗保持得尽可能低。在此,CPV应用通常具有500与1500之间的聚光因子。
由此,具有超过3个子电池的变质多结太阳能电池的设计不适用于聚光器应用。
通过变质缓冲层来提高晶格常数,由此降低所有含In的子电池的带隙。
与所应用的多结太阳能电池设计无关,为了高的总效率仍然需要具有高带隙的上电池。即使对于正置变质的太阳能电池,也能够通过添加Al来实现这一点,然而,由于相比于晶格匹配的设计或倒置变质的设计上电池的更高的In含量,必须选择高得多的Al含量,以便实现可比较的带隙。
然而,上电池的较高的Al含量导致在含Al的上电池中出现的关于层电阻和材料质量问题进一步加剧。
发明内容
在这些背景下,本发明的任务在于说明一种进一步改进现有技术的设备。
该任务通过具有本发明的技术方案的设备来解决。本发明的有利构型是优选的实施方式。
根据本发明的主题,提供具有恰好五个子电池且具有一个变质缓冲层的堆叠状的、单片的、正置变质的、地面式的聚光太阳能电池。
第一子电池具有第一晶格常数G1和第一带隙B1,并且由锗组成。
第二子电池布置在第一子电池上方,并且具有第二晶格常数G2和第二带隙B2,并且包括由GaInAs组成的化合物或由GaInAs组成。
第三子电池布置在第二子电池上方,并且具有第二晶格常数G2和第三带隙B3,并且包括AlGaInAs或由AlGaInAs组成。
第四子电池布置在第三子电池上方,并且具有第二晶格常数G2和第四带隙B4,并且包括由InP组成的化合物。
第五子电池布置在第四子电池上方,并且具有第二晶格常数G2和第五带隙B5,并且包括InP。
对于带隙适用B1<B2<B3<B4<B5,而对于晶格常数适用G1<G2。
变质缓冲层布置在第一子电池和第二子电池之间,并且在面向第一子电池的下侧处具有第一晶格常数G1,并且在面向第二子电池的上侧处具有第二晶格常数G2。可以理解,第一晶格常数G1等于
Figure BDA0002419005170000041
即相应于Ge的晶格常数。
此外,聚光太阳能电池的布置在第一子电池上方的所有半导体层均在各个位于前面的子电池上外延地产生。
五个子电池和变质缓冲层分别是层状的,即构造为半导体层。
子电池和变质缓冲层以及必要时其他层(例如隧道二极管)一起形成堆叠。
第一子电池例如构造为衬底。所有其他的半导体层、即尤其四个其他子电池和变质缓冲层分别在堆叠的紧接在前的半导体层上(例如借助MOVPE或借助LPE或MBE)外延地产生。
根据本发明的聚光太阳能电池的堆叠尤其不包括半导体键合(Halbleiterbond)。
可以理解,术语“聚光太阳能电池”在本文中可理解为具有恰好五个子电池的多结太阳能电池,其中,使用具有超过500的聚光因子的太阳能电池用于聚光器应用。
应注意,相应的子电池构造成“n在p上”子电池(nüber p-Teilzellen),即子电池分别具有n掺杂发射极层和p掺杂的基极层。在此,发射极优选与基极材料锁合地连接。
还应注意,在两个直接彼此相继的子电池之间构造有隧道二极管。不仅能够将构造在第一和第二子电池之间的隧道二极管布置在第一子电池与变质缓冲层之间,或能够将其布置在变质缓冲层与第二子电池之间。
发射极层优选地布置在基极层上方,使得光首先穿透发射极层,然后穿透基极层。可以理解,隧道二极管分别由一个高n掺杂的薄层和一个高p掺杂的薄层组成,并且隧道二极管的两个层彼此上下地布置。
此外应注意,相应的子电池的n发射极和p基极优选地由相同的材料(但是具有不同的掺杂)组成。在此,术语“材料”应理解为由III-V族元素组成的给定的化合物。
在一种替代的实施方式中,子电池的发射极层和基极层具有不同的III-V族化合物。该类型的子电池被称为异质电池(Heterozellen)。
用于聚光应用的多结太阳能电池的根据本发明的实施方案的优点是,通过使用正置变质的生长,可以在生长过程中单片地制造整个5结太阳能电池。由此,与其他多结太阳能电池设计(例如倒置变质或晶圆键合的设计)相比能够显著降低成本,并且可以借助先前建立的标准过程来执行将外延沉积的层结构加工成太阳能电池。
具有五个子电池的布置的优点在于,在第四子电池中未添置(einbauen)Al或仅添置低于1%的Al。
具有五个子电池的布置的另一优点在于,在第五子电池中未添置Al,或仅添置低于5%的Al,或仅添置低于35%的Al,其中,仍然尤其实现小于1500Ω/cm2或小于1000Ω/cm2的较低的层电阻。
应注意,表述由所提及的元素或由例如两个、三个或四个元素的所提及的化合物“组成”意味着,相应的半导体层(例如子电池)基本上由所提及的材料组成,或除了所提及的元素之外必要时还具有杂质和/或掺杂剂,例如锌或硅或锡或碳。
反之,表述“包括”所提及的元素或元素的化合物(例如InP)意味着,除了明确提及的元素之外,半导体层必要时还具有或包括其他元素,尤其是III主族和/或V主族的其他元素(例如铝),即由所提及的元素与尤其III主族和/或V主族的其他元素的化合物组成。因此,具有InP的半导体层(例如子电池)例如包括InGaP层或AlInGaP层。
由锗构造第一子电池的一个优点在于,例如在有机金属气相外延(MOVPE)过程中借助As扩散和/或P扩散来激活锗衬底,由此能够简单且成本有利地制造第一子电池。
为了构造第一子电池,尤其需要外延地沉积没有几微米的厚度的由锗构成的层(即所谓的Bulk层),用以吸收光子。由此,第一子电池具有低的制造开销。
可以理解,在层或子电池上可能存在晶格常数的(尤其第二晶格常数的)制造限定的波动,或第二晶格常数逐层地或逐子电池地可能发生至少略微的改变。换句话说,第二、第三、第四和第五子电池的第二晶格常数彼此分别有小于0.2%的变化。
此外应注意,在聚光太阳能电池中,光总是首先入射穿过第五子电池。
根据本发明的聚光太阳能电池的优点在于,由于材料组合,一方面特别好地充分利用地面的太阳光谱,另一方面在最上方的子电池中确保足够高的电容性电纳。为此,由于变质缓冲层,可以由Ge的晶格常数如此设置第二晶格常数,使得相比于先前的含Al的子电池,即使在由于高于500的聚光因子而导致的高电流负载的情况下,尤其几百纳米厚的最上方的子电池(即第五子电池)具有阻性低得多的电容性电纳。由此提高整个聚光电池的效率。
在第一实施方式中,第四子电池和/或第五子电池具有GaInP或由GaInP组成。
在一种扩展方案中,第四子电池具有0%或小于3%或小于1%的铝含量。根据另一扩展方案,第五子电池分别关于III族元素具有小于10%或小于25%或小于35%的铝含量。
例如,第四子电池由GaInP组成,而第五子电池由AlGaInP组成并且分别关于III族元素相应地具有低于10%或低于25%或低于35%的低铝含量。
根据另一实施方式,第二子电池的层厚度和/或第三子电池的层厚度大于1μm且小于3.5μm。
第四子电池的层厚度和/或第五子电池的层厚度优选大于100nm且小于1.5μm。
在另一扩展方案中,变质缓冲层具有至少三层且至多十层的序列和/或至少0.5μm且最高4μm的层厚度。
变质缓冲层优选地是高n掺杂的或高p掺杂的并且例如由InGaAs构成。
变质缓冲层序列尤其优选具有大于5·1017N/cm3的掺杂剂浓度和大于0.5μm且小于20μm的层厚度。
在一种实施方式中,变质缓冲层由多个InxGa1-xAs层组成,其中,x逐层地不同和/或保持相同。
可以理解,晶格常数在缓冲层内变化至少一次。根据第一实施方式,例如从序列的具有第一晶格常数的最下方的层出发,直到序列的具有第二晶格常数的最上方的层,晶格常数逐层地增大。
替代地,从序列的最下方的层出发,晶格常数逐层地首先增大然后减小,或者首先减小然后增大。晶格常数在整个序列上的增大或减小的走向要么是阶梯状的,要么是线性的,要么以任何其他形式。
在另一实施方式中,第二子电池具有大于5.72·10-10m的晶格常数,即大于
Figure BDA0002419005170000071
和/或大于1.07eV的带隙和/或小于24.5%的铟含量。
根据另一实施方式,第三子电池具有在1.34eV与1.45eV之间或在1.3eV与1.5eV之间的带隙。
第四子电池优选具有在1.61eV与1.69eV之间或在1.58eV与1.72eV之间的带隙。
第五子电池优选地具有在1.8eV与小于2.05eV或小于1.98eV之间且优选地大于1.75eV的带隙。
根据另一扩展方案,聚光太阳能电池具有窗口层,其中,该窗口层布置在第五子电池以上并且具有比第二晶格常数小至少0.5%或至少0.7%的晶格常数。稍微应变的窗口层有助于实现太阳能电池堆叠的尽可能光学透明的上侧。
附图说明
以下参考附图详细地阐述本发明。在此,同类的部分以相同的标志来标记。所示出的实施方式是极其示意性的,也就是说,间距以及横向和垂直的延伸不是按比例的并且只要未另外说明,也互相不具有能推导的几何关系。附图示出:
图1示出根据本发明的堆叠状的聚光太阳能电池的第一实施方式的示意性截面图;
图2示出根据本发明的堆叠状的聚光太阳能电池的第二实施方式的示意性截面图。
具体实施方式
图1的附图示出一种堆叠状的、单片的、正置变质的、地面式的聚光太阳能电池S,其具有恰好五个子电池SC1、SC2、SC3、SC4和SC5,并且在第一子电池SC1和第二子电池SC2之间布置有变质缓冲层MP1。
第一子电池SC1由锗组成并且具有相应的第一晶格常数和第一带隙。其他的子电池SC2、SC3、SC4和SC5均具有第二晶格常数G2,其中,第二晶格常数G2大于第一晶格常数G1。
借助变质缓冲层MP1实现堆叠的两个不同晶格常数G1和G2之间的过渡,其中,变质缓冲层MP1为此在面向第一子电池SC1的下侧处具有第一晶格常数G1,并且在面向第二子电池SC2的上侧处具有第二晶格常数G2。
基于相应的半导体层的宽度示出晶格常数。
第二、第三、第四和第五子电池SC2、SC3、SC4和SC5分别具有带隙B2、B3、B4和B5,其中,适用B1<B2<B3<B4<B5。
在图2的附图中示出另一实施方式。下面仅阐述与图1的附图的不同之处。
聚光太阳能电池S的每个子电池SC1至SC5具有发射极层和基极层,其分别在图2中通过虚线表示。此外,在聚光太阳能电池S的各两个彼此相继的子电池之间分别布置有隧道二极管TD。布置在第一子电池SC1与第二子电池SC2之间的隧道二极管TD布置在变质缓冲层MP1以下。
变质缓冲层MP1由三个半导体层的序列组成,其中,下层具有第一晶格常数G1,上层具有第二晶格常数G2,中间层具有第三晶格常数G3,其中G1<G2<G3。
根据未示出的替代的实施方式,序列包括超过三个半导体层,和/或晶格常数逐层地增加直至最大值,随后又逐层地减小,直到减小到第二晶格常数G2的值。
根据未示出的另一实施方式,布置在第一子电池SC1与第二子电池SC2之间的隧道二极管TD布置在变质缓冲层MP1以上。

Claims (14)

1.一种堆叠状的、单片的、正置变质的、地面式的聚光太阳能电池(S),所述太阳能电池具有恰好五个子电池并且具有一个变质缓冲层(MP1),其中,
第一子电池(SC1)具有第一晶格常数G1和第一带隙B1并且由锗组成,
第二子电池(SC2)布置在所述第一子电池(SC1)上方,所述第二子电池具有第二晶格常数G2和第二带隙B2并且包括GaInAs或由GaInAs组成,
第三子电池(SC3)布置在所述第二子电池(SC2)上方,所述第三子电池具有第二晶格常数G2和第三带隙B3并且包括AlGaInAs或由AlGaInAs组成,
第四子电池(SC4)布置在所述第三子电池(SC3)上方,所述第四子电池具有第二晶格常数G2和第四带隙B4并且包括InP,
第五子电池(SC5)布置在所述第四子电池(SC4)上方,所述第五子电池具有第二晶格常数G2和第五带隙B5并且包括InP,
对于所述带隙,适用B1<B2<B3<B4<B5,
对于所述晶格常数,适用G1<G2,
所述变质缓冲层(MP1)布置在所述第一子电池(SC1)与所述第二子电池(SC2)之间,并且在面向所述第一子电池(SC1)的下侧处具有所述第一晶格常数G1,而在面向所述第二子电池的上侧处具有所述第二晶格常数G2,
所述聚光太阳能电池(S)的布置在所述第一子电池(SC1)上方的所有半导体层在各个位于前面的子电池上外延地产生;
其特征在于,
所述第五子电池(SC5)由AlInGaP组成,其中,铟含量大于63%,并且所述第五子电池具有小于1500Ω/cm2或小于1000Ω/cm2的发射极层电阻。
2.根据权利要求1所述的聚光太阳能电池(S),其特征在于,所述第四子电池(SC4)和/或所述第五子电池(SC5)具有GaInP或由GaInP组成。
3.根据权利要求2所述的聚光太阳能电池(S),其特征在于,所述第四子电池(SC4)和/或所述第五子电池(SC5)关于III族元素具有0%或小于5%或小于1%的铝含量。
4.根据以上权利要求中任一项所述的聚光太阳能电池(S),其特征在于,所述第五子电池(SC5)由AlInGaP组成,并且所述第五子电池(SC5)分别关于III族元素具有大于63%的铟含量和小于25%或小于37%的铝含量。
5.根据以上权利要求中任一项所述的聚光太阳能电池(S),其特征在于,所述第五子电池(SC5)实施为异质电池,其中,基极的铝含量高于发射极的铝含量。
6.根据以上权利要求中任一项所述的聚光太阳能电池(S),其特征在于,所述第五子电池(SC5)实施为异质电池,其中,所述基极由AlInGaP形成,而所述发射极由InGaP形成。
7.根据以上权利要求中任一项所述的聚光太阳能电池(S),其特征在于,所述第二子电池(SC2)的层厚度(S2)和/或所述第三子电池(SC3)的层厚度(S3)大于1μm且小于5μm。
8.根据以上权利要求中任一项所述的聚光太阳能电池(S),其特征在于,所述第四子电池(SC4)的层厚度(S4)和/或所述第五子电池(SC5)的层厚度(S5)大于100nm并且小于500nm或小于1.5μm。
9.根据以上权利要求中任一项所述的聚光太阳能电池(S),其特征在于,所述变质缓冲层(MP1)具有至少三层且最高十层的序列,和/或所述变质缓冲层(MP1)具有至少0.5μm且最高4μm的层厚度。
10.根据以上权利要求中任一项所述的聚光太阳能电池(S),其特征在于,所述第二子电池(SC2)具有大于5.72·10-10m的晶格常数,和/或所述第二子电池(SC2)具有大于1.07eV的带隙,和/或所述第二子电池(SC2)具有小于24.5%的铟含量。
11.根据以上权利要求中任一项所述的聚光太阳能电池(S),其特征在于,所述第三子电池(SC3)具有1.34eV与1.45eV之间的带隙或1.3eV与1.5eV之间的带隙。
12.根据以上权利要求中任一项所述的聚光太阳能电池(S),其特征在于,所述第四子电池(SC4)具有1.61eV与1.69eV之间的带隙或1.58eV与1.72eV之间的带隙。
13.根据以上权利要求中任一项所述的聚光太阳能电池(S),其特征在于,所述第五子电池(SC5)具有小于2.05eV或小于1.98eV且尤其大于1.74eV的带隙。
14.根据以上权利要求中任一项所述的聚光太阳能电池(S),其特征在于,所述聚光太阳能电池(S)具有窗口层(SWin5),其中,所述窗口层(SWin5)布置在所述第五子电池(SC5)以上并且具有比第四晶格常数(G4)小至少0.5%或至少0.7%的晶格常数。
CN202010199946.0A 2019-03-22 2020-03-20 堆叠状的单片的正置变质的地面式的聚光太阳能电池 Active CN111739970B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102019002034.0A DE102019002034A1 (de) 2019-03-22 2019-03-22 Stapelförmige, monolithische, aufrecht metamorphe, terrestrische Konzentrator-Solarzelle
DE102019002034.0 2019-03-22

Publications (2)

Publication Number Publication Date
CN111739970A true CN111739970A (zh) 2020-10-02
CN111739970B CN111739970B (zh) 2024-01-23

Family

ID=69902956

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010199946.0A Active CN111739970B (zh) 2019-03-22 2020-03-20 堆叠状的单片的正置变质的地面式的聚光太阳能电池

Country Status (4)

Country Link
US (2) US11984523B2 (zh)
EP (1) EP3712965A1 (zh)
CN (1) CN111739970B (zh)
DE (1) DE102019002034A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4235817A1 (en) * 2022-02-28 2023-08-30 SolAero Technologies Corp., a corporation of the state of Delaware Multijunction metamorphic solar cells

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2251912A1 (de) * 2009-05-11 2010-11-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Tunneldioden aus spannungskompensierten Verbindungshalbleiterschichten
US20120138130A1 (en) * 2009-05-11 2012-06-07 Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. Tunnel diodes comprising stress-compensated compound semiconductor layers
US20120285519A1 (en) * 2011-05-10 2012-11-15 Emcore Solar Power, Inc. Grid design for iii-v compound semiconductor cell
CN202816962U (zh) * 2012-06-21 2013-03-20 厦门乾照光电股份有限公司 一种宽带隙多异质结隧穿结结构
CN103151414A (zh) * 2013-04-03 2013-06-12 中国科学院苏州纳米技术与纳米仿生研究所 正装三结级联太阳电池及其制备方法
US20150104898A1 (en) * 2013-10-11 2015-04-16 Emcore Solar Power, Inc. Method for manufacturing inverted metamorphic multijunction solar cells
US20160133775A1 (en) * 2014-11-10 2016-05-12 Azur Space Solar Power Gmbh Solar cell stack
US20170069779A1 (en) * 2013-03-14 2017-03-09 The Boeing Company Solar cell structures for improved current generation and collection
US20170110610A1 (en) * 2015-10-19 2017-04-20 Solaero Technologies Corp. Lattice matched multijunction solar cell assemblies for space applications
US20170110613A1 (en) * 2015-10-19 2017-04-20 Solar Junction Corporation High efficiency multijunction photovoltaic cells
US20180366609A1 (en) * 2017-06-16 2018-12-20 Alta Devices, Inc. Growth structure under a release layer for manufacturing of optoelectronic devices

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7148463B2 (en) * 2003-07-16 2006-12-12 Triquint Semiconductor, Inc. Increased responsivity photodetector
US20090188554A1 (en) 2008-01-25 2009-07-30 Emcore Corporation III-V Compound Semiconductor Solar Cell for Terrestrial Solar Array
US8962991B2 (en) * 2011-02-25 2015-02-24 Solar Junction Corporation Pseudomorphic window layer for multijunction solar cells
US9153724B2 (en) * 2012-04-09 2015-10-06 Solar Junction Corporation Reverse heterojunctions for solar cells
US20150280025A1 (en) 2014-04-01 2015-10-01 Sharp Kabushiki Kaisha Highly efficient photovoltaic energy harvesting device
DE102015016047A1 (de) 2015-12-10 2017-06-14 Azur Space Solar Power Gmbh Mehrfach-Solarzelle
DE102017005950A1 (de) * 2017-06-21 2018-12-27 Azur Space Solar Power Gmbh Solarzellenstapel

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2251912A1 (de) * 2009-05-11 2010-11-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Tunneldioden aus spannungskompensierten Verbindungshalbleiterschichten
US20120138130A1 (en) * 2009-05-11 2012-06-07 Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. Tunnel diodes comprising stress-compensated compound semiconductor layers
US20120285519A1 (en) * 2011-05-10 2012-11-15 Emcore Solar Power, Inc. Grid design for iii-v compound semiconductor cell
CN202816962U (zh) * 2012-06-21 2013-03-20 厦门乾照光电股份有限公司 一种宽带隙多异质结隧穿结结构
US20170069779A1 (en) * 2013-03-14 2017-03-09 The Boeing Company Solar cell structures for improved current generation and collection
CN103151414A (zh) * 2013-04-03 2013-06-12 中国科学院苏州纳米技术与纳米仿生研究所 正装三结级联太阳电池及其制备方法
US20150104898A1 (en) * 2013-10-11 2015-04-16 Emcore Solar Power, Inc. Method for manufacturing inverted metamorphic multijunction solar cells
US20160133775A1 (en) * 2014-11-10 2016-05-12 Azur Space Solar Power Gmbh Solar cell stack
US20170110610A1 (en) * 2015-10-19 2017-04-20 Solaero Technologies Corp. Lattice matched multijunction solar cell assemblies for space applications
US20170110613A1 (en) * 2015-10-19 2017-04-20 Solar Junction Corporation High efficiency multijunction photovoltaic cells
US20180366609A1 (en) * 2017-06-16 2018-12-20 Alta Devices, Inc. Growth structure under a release layer for manufacturing of optoelectronic devices

Also Published As

Publication number Publication date
CN111739970B (zh) 2024-01-23
US20240258450A1 (en) 2024-08-01
EP3712965A1 (de) 2020-09-23
US20200303579A1 (en) 2020-09-24
US11984523B2 (en) 2024-05-14
DE102019002034A1 (de) 2020-09-24

Similar Documents

Publication Publication Date Title
US9985152B2 (en) Lattice matchable alloy for solar cells
TWI600173B (zh) 在中間電池中具有低能隙吸收層之多接面太陽能電池及其製造方法
EP2779253A1 (en) Solar cell structures for improved current generation and collection
US20090173373A1 (en) Group III-Nitride Solar Cell with Graded Compositions
US20100282307A1 (en) Multijunction Solar Cells with Group IV/III-V Hybrid Alloys for Terrestrial Applications
JP2010534922A (ja) 高効率の縦列太陽電池用の低抵抗トンネル接合
US20240258450A1 (en) Stacked, monolithic, upright metamorphic, terrestrial concentrator solar cell
CN113921644B (zh) 单片的变质的多结太阳能电池
CN113990975B (zh) 单片的变质的多结太阳能电池
CN113921645B (zh) 单片的变质的多结太阳能电池
US9660126B2 (en) Photovoltaic device with three dimensional charge separation and collection
CN112582494B (zh) 具有恰好四个子电池的单片的多结太阳能电池
CN111788699B (zh) 多结太阳能电池
Sodabanlu et al. Lattice-matched 3-junction cell with 1.2-eV InGaAs/GaAsP superlattice middle cell for improved current matching
Andreev et al. GaSb structures with quantum dots in space charge region

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant