CN111736084A - Valve-regulated lead-acid storage battery health state prediction method based on improved LSTM neural network - Google Patents
Valve-regulated lead-acid storage battery health state prediction method based on improved LSTM neural network Download PDFInfo
- Publication number
- CN111736084A CN111736084A CN202010605779.5A CN202010605779A CN111736084A CN 111736084 A CN111736084 A CN 111736084A CN 202010605779 A CN202010605779 A CN 202010605779A CN 111736084 A CN111736084 A CN 111736084A
- Authority
- CN
- China
- Prior art keywords
- storage battery
- neural network
- state
- network
- input
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 48
- 238000013528 artificial neural network Methods 0.000 title claims abstract description 42
- 230000036541 health Effects 0.000 title claims abstract description 32
- 239000002253 acid Substances 0.000 title claims abstract description 28
- 230000001105 regulatory effect Effects 0.000 title claims description 19
- 238000012549 training Methods 0.000 claims abstract description 47
- 239000011159 matrix material Substances 0.000 claims abstract description 20
- 238000003062 neural network model Methods 0.000 claims abstract description 20
- 230000008569 process Effects 0.000 claims abstract description 16
- 238000012806 monitoring device Methods 0.000 claims abstract description 5
- 230000003203 everyday effect Effects 0.000 claims abstract description 3
- 210000002569 neuron Anatomy 0.000 claims description 41
- 230000004913 activation Effects 0.000 claims description 21
- 239000013598 vector Substances 0.000 claims description 16
- 238000012360 testing method Methods 0.000 claims description 13
- 238000005457 optimization Methods 0.000 claims description 9
- 230000006870 function Effects 0.000 claims description 7
- 238000004146 energy storage Methods 0.000 claims description 6
- 238000007781 pre-processing Methods 0.000 claims description 6
- 238000004364 calculation method Methods 0.000 claims description 5
- 238000005259 measurement Methods 0.000 claims description 5
- 238000007599 discharging Methods 0.000 claims description 3
- 210000004027 cell Anatomy 0.000 claims description 2
- 230000007480 spreading Effects 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 7
- 238000007667 floating Methods 0.000 description 6
- 230000008901 benefit Effects 0.000 description 4
- 238000012423 maintenance Methods 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- 238000013473 artificial intelligence Methods 0.000 description 2
- 238000003912 environmental pollution Methods 0.000 description 2
- 230000014509 gene expression Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000006386 memory function Effects 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000002354 daily effect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000012804 iterative process Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/392—Determining battery ageing or deterioration, e.g. state of health
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/367—Software therefor, e.g. for battery testing using modelling or look-up tables
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/378—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC] specially adapted for the type of battery or accumulator
- G01R31/379—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC] specially adapted for the type of battery or accumulator for lead-acid batteries
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/049—Temporal neural networks, e.g. delay elements, oscillating neurons or pulsed inputs
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/084—Backpropagation, e.g. using gradient descent
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Computational Linguistics (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- Artificial Intelligence (AREA)
- Biomedical Technology (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Health & Medical Sciences (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
- Supply And Distribution Of Alternating Current (AREA)
Abstract
Description
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010605779.5A CN111736084B (en) | 2020-06-29 | 2020-06-29 | Valve-regulated lead-acid storage battery health state prediction method based on improved LSTM neural network |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010605779.5A CN111736084B (en) | 2020-06-29 | 2020-06-29 | Valve-regulated lead-acid storage battery health state prediction method based on improved LSTM neural network |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111736084A true CN111736084A (en) | 2020-10-02 |
CN111736084B CN111736084B (en) | 2022-05-20 |
Family
ID=72652142
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010605779.5A Active CN111736084B (en) | 2020-06-29 | 2020-06-29 | Valve-regulated lead-acid storage battery health state prediction method based on improved LSTM neural network |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111736084B (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112381316A (en) * | 2020-11-26 | 2021-02-19 | 华侨大学 | Electromechanical equipment health state prediction method based on hybrid neural network model |
CN112418496A (en) * | 2020-11-10 | 2021-02-26 | 国网四川省电力公司经济技术研究院 | Power distribution station energy storage configuration method based on deep learning |
CN112763929A (en) * | 2020-12-31 | 2021-05-07 | 华东理工大学 | Method and device for predicting health of battery monomer of energy storage power station system |
CN113093021A (en) * | 2021-03-22 | 2021-07-09 | 复旦大学 | Method for improving health state of valve-controlled lead-acid storage battery based on resonant current pulse |
CN113447823A (en) * | 2021-05-31 | 2021-09-28 | 国网山东省电力公司滨州供电公司 | Method for health prediction of storage battery pack |
CN113533965A (en) * | 2021-06-18 | 2021-10-22 | 天生桥二级水力发电有限公司 | Storage battery performance analysis platform and method |
CN114896865A (en) * | 2022-04-20 | 2022-08-12 | 北京航空航天大学 | Digital twin-oriented self-adaptive evolutionary neural network health state online prediction method |
CN116298947A (en) * | 2023-03-07 | 2023-06-23 | 中国铁塔股份有限公司黑龙江省分公司 | Storage battery nuclear capacity monitoring device |
CN116609676A (en) * | 2023-07-14 | 2023-08-18 | 深圳先进储能材料国家工程研究中心有限公司 | Method and system for monitoring state of hybrid energy storage battery based on big data processing |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101067644A (en) * | 2007-04-20 | 2007-11-07 | 杭州高特电子设备有限公司 | Storage battery performance analytical expert diagnosing method |
CN103217651A (en) * | 2013-04-18 | 2013-07-24 | 中国科学院广州能源研究所 | Method and system for estimating charge state of storage battery |
CN109410575A (en) * | 2018-10-29 | 2019-03-01 | 北京航空航天大学 | A kind of road network trend prediction method based on capsule network and the long Memory Neural Networks in short-term of nested type |
US20200011932A1 (en) * | 2018-07-05 | 2020-01-09 | Nec Laboratories America, Inc. | Battery capacity fading model using deep learning |
-
2020
- 2020-06-29 CN CN202010605779.5A patent/CN111736084B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101067644A (en) * | 2007-04-20 | 2007-11-07 | 杭州高特电子设备有限公司 | Storage battery performance analytical expert diagnosing method |
CN103217651A (en) * | 2013-04-18 | 2013-07-24 | 中国科学院广州能源研究所 | Method and system for estimating charge state of storage battery |
US20200011932A1 (en) * | 2018-07-05 | 2020-01-09 | Nec Laboratories America, Inc. | Battery capacity fading model using deep learning |
CN109410575A (en) * | 2018-10-29 | 2019-03-01 | 北京航空航天大学 | A kind of road network trend prediction method based on capsule network and the long Memory Neural Networks in short-term of nested type |
Non-Patent Citations (2)
Title |
---|
明彤彤 等: "基于LSTM神经网络的锂离子电池荷电状态估算", 《广东电力》 * |
耿攀 等: "基于LSTM循环神经网络的电池SOC预测方法", 《上海海事大学学报》 * |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112418496A (en) * | 2020-11-10 | 2021-02-26 | 国网四川省电力公司经济技术研究院 | Power distribution station energy storage configuration method based on deep learning |
CN112381316A (en) * | 2020-11-26 | 2021-02-19 | 华侨大学 | Electromechanical equipment health state prediction method based on hybrid neural network model |
CN112381316B (en) * | 2020-11-26 | 2022-11-25 | 华侨大学 | Electromechanical equipment health state prediction method based on hybrid neural network model |
CN112763929B (en) * | 2020-12-31 | 2024-03-08 | 华东理工大学 | Method and device for predicting health of battery monomer of energy storage power station system |
CN112763929A (en) * | 2020-12-31 | 2021-05-07 | 华东理工大学 | Method and device for predicting health of battery monomer of energy storage power station system |
CN113093021A (en) * | 2021-03-22 | 2021-07-09 | 复旦大学 | Method for improving health state of valve-controlled lead-acid storage battery based on resonant current pulse |
CN113093021B (en) * | 2021-03-22 | 2022-02-01 | 复旦大学 | Method for improving health state of valve-controlled lead-acid storage battery based on resonant current pulse |
CN113447823A (en) * | 2021-05-31 | 2021-09-28 | 国网山东省电力公司滨州供电公司 | Method for health prediction of storage battery pack |
CN113447823B (en) * | 2021-05-31 | 2022-06-21 | 国网山东省电力公司滨州供电公司 | Method for health prediction of storage battery pack |
CN113533965A (en) * | 2021-06-18 | 2021-10-22 | 天生桥二级水力发电有限公司 | Storage battery performance analysis platform and method |
CN114896865A (en) * | 2022-04-20 | 2022-08-12 | 北京航空航天大学 | Digital twin-oriented self-adaptive evolutionary neural network health state online prediction method |
CN114896865B (en) * | 2022-04-20 | 2024-07-23 | 北京航空航天大学 | Digital twinning-oriented self-adaptive evolutionary neural network health state online prediction method |
CN116298947B (en) * | 2023-03-07 | 2023-11-03 | 中国铁塔股份有限公司黑龙江省分公司 | Storage battery nuclear capacity monitoring device |
CN116298947A (en) * | 2023-03-07 | 2023-06-23 | 中国铁塔股份有限公司黑龙江省分公司 | Storage battery nuclear capacity monitoring device |
CN116609676A (en) * | 2023-07-14 | 2023-08-18 | 深圳先进储能材料国家工程研究中心有限公司 | Method and system for monitoring state of hybrid energy storage battery based on big data processing |
CN116609676B (en) * | 2023-07-14 | 2023-09-15 | 深圳先进储能材料国家工程研究中心有限公司 | Method and system for monitoring state of hybrid energy storage battery based on big data processing |
Also Published As
Publication number | Publication date |
---|---|
CN111736084B (en) | 2022-05-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111736084B (en) | Valve-regulated lead-acid storage battery health state prediction method based on improved LSTM neural network | |
CN112241608B (en) | Lithium battery life prediction method based on LSTM network and transfer learning | |
CN111680848A (en) | Battery life prediction method based on prediction model fusion and storage medium | |
CN103018673B (en) | Method for predicating life of aerospace Ni-Cd storage battery based on improved dynamic wavelet neural network | |
CN113064093A (en) | Energy storage battery state of charge and state of health joint estimation method and system | |
CN112733417B (en) | Abnormal load data detection and correction method and system based on model optimization | |
CN108960321B (en) | Battery fault prediction method for large lithium battery energy storage power station | |
CN113128672B (en) | Lithium ion battery pack SOH estimation method based on transfer learning algorithm | |
CN109002781B (en) | Fault prediction method for energy storage converter | |
CN112834927A (en) | Lithium battery residual life prediction method, system, device and medium | |
CN111210049B (en) | LSTM-based method for predicting degradation trend of lead-acid valve-controlled storage battery of transformer substation | |
CN113516271A (en) | Wind power cluster power day-ahead prediction method based on space-time neural network | |
CN113361692A (en) | Lithium battery residual life combined prediction method | |
CN113344288A (en) | Method and device for predicting water level of cascade hydropower station group and computer readable storage medium | |
CN113705086A (en) | Ultra-short-term wind power prediction method based on Elman error correction | |
CN115730525A (en) | Rail transit UPS storage battery health state prediction method | |
CN114429248A (en) | Transformer apparent power prediction method | |
CN114357670A (en) | Power distribution network power consumption data abnormity early warning method based on BLS and self-encoder | |
CN115453399A (en) | Battery pack SOH estimation method considering inconsistency | |
CN114726045A (en) | Lithium battery SOH estimation method based on IPEA-LSTM model | |
CN113093014A (en) | Online collaborative estimation method and system for SOH and SOC based on impedance parameters | |
CN117151770A (en) | Attention mechanism-based LSTM carbon price prediction method and system | |
CN114219126B (en) | Small hydropower infiltration area network load supply prediction method based on residual error correction | |
Alharbi et al. | Short-term wind speed and temperature forecasting model based on gated recurrent unit neural networks | |
CN114357865A (en) | Hydropower station runoff and associated source load power year scene simulation and prediction method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20240722 Address after: 1003, Building A, Zhiyun Industrial Park, No. 13 Huaxing Road, Tongsheng Community, Dalang Street, Longhua District, Shenzhen City, Guangdong Province, 518000 Patentee after: Shenzhen Wanzhida Enterprise Management Co.,Ltd. Country or region after: China Address before: 443002 No. 8, University Road, Xiling District, Yichang, Hubei Patentee before: CHINA THREE GORGES University Country or region before: China |
|
TR01 | Transfer of patent right |
Effective date of registration: 20240918 Address after: 461000 in Xuji smart grid industrial park, east of Weiwu Avenue and south of Shangji street, Xuchang City, Henan Province Patentee after: HENAN XUJI METERING Co.,Ltd. Country or region after: China Address before: 1003, Building A, Zhiyun Industrial Park, No. 13 Huaxing Road, Tongsheng Community, Dalang Street, Longhua District, Shenzhen City, Guangdong Province, 518000 Patentee before: Shenzhen Wanzhida Enterprise Management Co.,Ltd. Country or region before: China |