CN111718996A - 一种特征lincRNA表达谱组合及胃癌早期预测方法 - Google Patents

一种特征lincRNA表达谱组合及胃癌早期预测方法 Download PDF

Info

Publication number
CN111718996A
CN111718996A CN202010776378.6A CN202010776378A CN111718996A CN 111718996 A CN111718996 A CN 111718996A CN 202010776378 A CN202010776378 A CN 202010776378A CN 111718996 A CN111718996 A CN 111718996A
Authority
CN
China
Prior art keywords
lincrna
prediction
expression
sample
characteristic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN202010776378.6A
Other languages
English (en)
Inventor
贺轲
李文兴
向国安
陈小勋
黄许森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong No 2 Peoples Hospital
Original Assignee
Guangdong No 2 Peoples Hospital
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong No 2 Peoples Hospital filed Critical Guangdong No 2 Peoples Hospital
Priority to CN202010776378.6A priority Critical patent/CN111718996A/zh
Publication of CN111718996A publication Critical patent/CN111718996A/zh
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B25/00ICT specially adapted for hybridisation; ICT specially adapted for gene or protein expression
    • G16B25/10Gene or protein expression profiling; Expression-ratio estimation or normalisation
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B35/00ICT specially adapted for in silico combinatorial libraries of nucleic acids, proteins or peptides
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B40/00ICT specially adapted for biostatistics; ICT specially adapted for bioinformatics-related machine learning or data mining, e.g. knowledge discovery or pattern finding
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B5/00ICT specially adapted for modelling or simulations in systems biology, e.g. gene-regulatory networks, protein interaction networks or metabolic networks
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/20ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/112Disease subtyping, staging or classification
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/178Oligonucleotides characterized by their use miRNA, siRNA or ncRNA

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Biotechnology (AREA)
  • Evolutionary Biology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Molecular Biology (AREA)
  • Public Health (AREA)
  • Pathology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Immunology (AREA)
  • Epidemiology (AREA)
  • Analytical Chemistry (AREA)
  • Databases & Information Systems (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • Data Mining & Analysis (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Oncology (AREA)
  • Physiology (AREA)
  • Hospice & Palliative Care (AREA)
  • Primary Health Care (AREA)
  • Artificial Intelligence (AREA)
  • Bioethics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Software Systems (AREA)

Abstract

本发明公开了一种特征lincRNA表达谱组合及胃癌早期预测方法,所述特征miRNA表达谱组合的核苷酸探针序列如SEQ ID NO.1‑20所示。本发明的基于lincRNA表达谱组合特征评估胃癌早期风险具有很高的精确度和准确率(ROC曲线下面积AUC=0.985)。只需要获取上述20种lincRNA的相对表达量,通过支持向量机模型计算给出胃癌早期患病概率,可作为胃癌早期预测的参考依据。

Description

一种特征lincRNA表达谱组合及胃癌早期预测方法
技术领域
本发明属于生物技术和医学领域,具体地说,涉及一种特征lincRNA表达谱组合及胃癌早期预测方法。
背景技术
胃癌(gastric cancer)是起源于胃黏膜上皮细胞的恶性肿瘤。其中,胃腺癌和胃上皮细胞癌占所有胃癌的约95%,其余5%包括腺鳞癌,鳞状细胞癌和未分化癌。胃癌的发病年龄一般在50岁以上,男女发病率之比为2:1。胃癌早期无明显症状,常与胃炎、胃溃疡等胃慢性疾病症状相似,易被忽略。因此,目前胃癌的早期诊断率仍较低。全球疾病负担(Global Burden of Disease,GBD)数据显示,2017年全球患有胃癌的人数超过280万,其中中国患病人数超过140万。2017年全球患有胃癌的死亡人数约为86万,占总死亡人数的1.55%。中国2017年死亡患者数约为36万,占总死亡人数的3.40%。统计结果显示,从1990年到2017年全球胃癌患病率持续增长,死亡率增长较缓。近十几年来中国胃癌患病率增长较快,死亡率一直维持在较高水平。
支持向量机(Support Vector Machine,SVM)是一类按监督学习方式对数据进行二元分类的广义线性分类器,其决策边界是对学习样本求解的最大边距超平面。SVM模型是将实例表示为空间中的点,这样映射就使得单独类别的实例被尽可能宽的明显的间隔分开。然后,将新的实例映射到同一空间,并基于它们落在间隔的哪一侧来预测所属类别。当训练数据是线性可分时,SVM通过硬间隔最大化学习进行分类。当训练数据线性不可分时,SVM通过使用核技巧以及软间隔最大化学习进行分类。SVM对于特征含义相似的中等大小的数据集很强大,也适用于小型数据集。通常情况下,对样本量小于1万的数据集SVM都有很好的预测效果。SVM在疾病诊断、肿瘤分类、肿瘤基因识别等有着广泛的应用。
肿瘤早期诊断一直是医学界的难题。现有的早期诊断方法多是观测某一个或一类标志物的表达水平,难以达到理想的诊断效果。由于这些标志物在肿瘤患者和正常人群中的表达分布有部分重叠,难以界定标志物的临界值将肿瘤患者和正常人群较好地分开。因此,利用多个标志物表达特征组合可能是肿瘤早期诊断的一种有效方法。长链基因间非编码RNA(long intergenic non-coding RNA,lincRNA)是一类位于基因间非编码序列的长度大于200个核苷酸的非编码单链RNA分子。lincRNA不具有编码潜力并且在不同物种之间不保守。研究表明lincRNA参与多个基因的表达调控,在人体内表达相对稳定且容易检测。由于单个lincRNA分子在肿瘤和正常人群中表达分布有重叠,难以界定早期诊断的临界值。
因此,有必要建立一种有助于胃癌的早期预测的更稳定的多个差异lincRNA表达特征组合的诊断模型。
发明内容
有鉴于此,本发明针对上述的问题,提供了一种特征lincRNA表达谱组合及胃癌早期预测方法。
为了解决上述技术问题,本发明公开了一种特征lincRNA表达谱组合,包括AC005261.1、AC026401.3、AC048341.1、AC055713.1、AC060780.1、AC092171.3、AC093297.2、AC106782.2、AC145207.5、AF117829.1、AL390728.6、CASC15、CYTOR、LINC00265、LINC00467、MIR22HG、MIR4435-2HG、PVT1、SNHG15和ZNF667-AS1,其核苷酸探针序列为SEQ ID NO.1-20所示。
本发明还公开了一种基于特征lincRNA表达谱组合的胃癌早期预测方法,包括以下步骤:
步骤1、获取胃癌早期患者稳定差异表达的特征lincRNA;
步骤2、选取特征lincRNA表达数据,对每个样本进行数据标准化;
步骤3、使用支持向量机对标准化后的数据构建早期预测模型;
步骤4、根据患者特征lincRNA的表达水平进行早期预测;
本方法用于非疾病的诊断和治疗目的。
可选地,所述步骤1中的获取胃癌早期患者稳定差异表达的特征lincRNA,具体为:
步骤1.1、从Genomic Data Commons Data Portal数据库中下载胃癌患者肿瘤组织和癌旁组织转录组数据以及临床数据,获得胃癌患者肿瘤组织基因表达谱read counts数值,即为测序读段数值,进行对数转换;
步骤1.2、选取具有一定表达丰度的lincRNA,即在所有样本中lincRNA的测序读段数值大于等于10;再对所有lincRNA的read counts取对数,设样本总数为n,筛选后lincRNA总数为m,v为lincRNA的read counts,u为取对数之后的表达值,则有;
uij=log2 vij,i∈(1,n),j∈(1,m) (1)
其中,i为样本编号,j为lincRNA编号,uij为第i个样本、第j个lincRNA编号取对数之后的表达值,vij为第i个样本、第j个lincRNA编号的read counts数值;
步骤1.3、选取疾病分期为I期和II期的胃癌患者,将这些患者记为胃癌早期患者,胃癌早期患者总数记为n′;
步骤1.4、选取肿瘤和正常样本中稳定表达的lincRNA,即在肿瘤和正常样本中变异系数均小于0.2的lincRNA,设μ为所有样本中lincRNA的表达均值,σ为标准差,变异系数的计算公式为:
Figure BDA0002617842580000031
其中,j为lincRNA编号,cv为变异系数,cvj为第j个样本的变异系数,σj为第j个lincRNA编号的标准差,μj为第j个lincRNA编号的lincRNA的表达均值,设m1为稳定表达的lincRNA总数,则有:
Figure BDA0002617842580000032
步骤1.5、选取肿瘤和正常样本中差异表达的lincRNA。使用取对数后的表达值计算肿瘤和正常样本lincRNA取对数后的倍数变化f,公式为:
Figure BDA0002617842580000041
其中,j为lincRNA编号,fj为第j个lincRNA编号的倍数变化,μ1j为第j个lincRNA编号的肿瘤样本的表达均值,μ2j为第j个lincRNA编号的正常样本的表达均值;
然后使用独立样本t检验比较肿瘤和正常样本中lincRNA的表达差异,独立样本t检验公式为:
Figure BDA0002617842580000042
其中n1为肿瘤样本数,n2为正常样本数,μ1为肿瘤样本lincRNA表达均值,μ2为正常样本lincRNA表达均值,
Figure BDA0002617842580000044
为肿瘤样本lincRNA方差,
Figure BDA0002617842580000045
为正常样本lincRNA方差;
对所有t检验得出的p值进行错误发现率(false discovery rate,FDR)校正,定义q为FDR校正后的数值,r为p值在m1个lincRNA中排序后的位置,则有:
Figure BDA0002617842580000043
其中,j为lincRNA编号,qj代表第j个lincRNA编号的FDR校正后的数值,pj代表第j个lincRNA编号的t检验得出的p值,rj代表第j个lincRNA编号的p值在m1个lincRNA中排序后的位置;
最后选取倍数变化f的绝对值大于1且FDR校正后q值小于等于0.05的lincRNA,记为特征lincRNA,设特征lincRNA总数为m2,则有:
m2=m1{|fj|≥1,qx≤0.05},j∈(1,m1) (7)
可选地,所述步骤2中的选取特征lincRNA表达数据,对每个样本进行数据标准化,公式为:
Figure BDA0002617842580000051
其中i为样本编号,j为特征lincRNA编号。μi为第i个样本所有特征lincRNA表达均值,σi为第i个样本所有特征lincRNA标准差,uij为取对数后的特征lincRNA表达值,uij′为标准化后的lincRNA数值。
可选地,所述步骤3中的使用支持向量机对标准化后的数据构建早期预测模型,具体为:
步骤3.1、先对所有样本进行分组,将全部样本中80%划分为训练集+验证集,余下20%划分为测试集;训练集+验证集用于5折交叉验证,即将训练集+验证集分为相等的5组,按顺序将其中一组作为验证集,其余4组作为训练集;给定参数,训练集用于构建模型,验证集用于检验模型精确度;
步骤3.2、最优参数筛选,SVM中参数gamma控制高斯核的宽度,C是正则化参数,限制每个点的重要性;参数网格设置为:
gamma=[0.001,0.01,0,1,1,10,100] (9)
C=[0.001,0.01,0.1,1,10,100] (10)
在交叉验证中,依次使用每两个参数gamma和C的组合构建模型,然后用验证集检验模型精确度;对每个参数组合,5折交叉验证的每次验证产生1个精确度,共进行5次验证即产生5个精确度;选取5次验证的平均精确度最高的参数组合作为最优参数;
步骤3.3、使用最优参数和训练集+验证集的数据构建模型,最后用测试集对模型进行评估,评估指标包括精确度(accuracy)、准确率(precision)、召回率(recall)、特异性(specificity)、F1分数(F1 score)、马修斯相关系数(Matthews correlationcoefficient,MCC)和受试者工作曲线(receiver operating curve,ROC)下面积(areaunder the curve,AUC);在测试集中,定义实际为肿瘤且预测为肿瘤计数为true positive(TP),实际为正常但预测为肿瘤计数为false positive(FP),实际为肿瘤但预测为正常为false negative(FN),实际为正常且预测为正常为true negative(TN);以上评估指标计算公式为:
Figure BDA0002617842580000061
Figure BDA0002617842580000062
Figure BDA0002617842580000063
Figure BDA0002617842580000064
Figure BDA0002617842580000065
Figure BDA0002617842580000066
Figure BDA0002617842580000067
以上评估指标中精确度、准确率、召回率、特异性、F1分数和AUC返回介于(0,1)之间的值;精确度越高表示模型总体预测效率越高;准确率越高说明犯I类错误越小;召回率越高说明犯II类错误越小;特异性高说明在预测为正例的样本中很少有负例混入;F1分数是一个综合指标,为准确率和召回率的调和平均;MCC是观察到的和预测的二元分类之间的相关系数,返回介于(-1,1)之间的值,其中1表示完美预测,0表示不比随机预测好,-1表示预测和观察之间的完全不一致;AUC越高表明分类器预测的正实例概率越高;因此,以上指标越接近1表明模型整体的预测效果越好;
步骤3.4、若以上评估指标都大于0.9,说明模型具有较好的预测效果;则使用所有数据,用最优参数组合构建最终预测模型。
可选地,所述步骤4中的根据患者特征lincRNA的表达水平进行早期预测,具体为:
步骤4.1、对预测样本的特征lincRNA表达数据进行标准化,设u为预测样本特征lincRNA表达值,μ为预测样本特征lincRNA表达均值,σ为预测样本特征lincRNA标准差,公式为:
Figure BDA0002617842580000071
其中j为特征lincRNA编号,uj′为标准化后的lincRNA数值;
步骤4.2、将预测样本标准化后的lincRNA数值代入最终预测进行预测;预测结果为1表示患有胃癌,预测结果为0表示正常。
与现有技术相比,本发明可以获得包括以下技术效果:
1)预测速度快:使用本发明构建的预测模型可以对大规模样本进行快速预测,100个样本的预测时间只需要几秒钟。
2)准确度高:本发明构建的预测模型预测精确度和准确率较高,都达到90%以上,ROC曲线下面积AUC可达0.985。
3)平台异质性影响较小:由于不同分析平台测定的lincRNA表达值有较大差异,本发明预测使用标准化后的特征lincRNA表达值,因此受平台异质性的影响较小。
当然,实施本发明的任一产品并不一定需要同时达到以上所述的所有技术效果。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本发明的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是本发明数据筛选和模型构建的流程;
图2是本发明支持向量机模型交叉验证参数优化过程;
图3是本发明支持向量机模型测试集评估指标;
图4是本发明支持向量机模型测试集ROC曲线。
具体实施方式
以下将配合实施例来详细说明本发明的实施方式,藉此对本发明如何应用技术手段来解决技术问题并达成技术功效的实现过程能充分理解并据以实施。
本发明公开了一种基于特征lincRNA表达谱组合的胃癌早期预测方法,能够准确地进行胃癌I/II期预测。
包括以下步骤:
步骤1、获取胃癌早期患者稳定差异表达的lincRNA(特征lincRNA),具体为:
步骤1.1、从Genomic Data Commons Data Portal数据库中下载胃癌患者肿瘤组织和癌旁组织转录组数据以及临床数据,获得胃癌患者肿瘤组织基因表达谱read counts数值,即为测序读段数值,进行对数转换;
步骤1.2、选取具有一定表达丰度的lincRNA,即在所有样本中lincRNA的readcounts大于等于10。再对所有lincRNA的read counts取对数,设样本总数为n,筛选后lincRNA总数为m,v为lincRNA的read counts,u为取对数之后的表达值,则有;
uij=log2 vij,i∈(1,n),j∈(1,m) (1)
其中,i为样本编号,j为lincRNA编号,uij为第i个样本、第j个lincRNA编号取对数之后的表达值,vij为第i个样本、第j个lincRNA编号的read counts数值。
步骤1.3、选取疾病分期为I期和II期的胃癌患者,将这些患者记为胃癌早期患者,胃癌早期患者总数记为n′;
步骤1.4、选取肿瘤和正常样本中稳定表达的lincRNA,即在肿瘤和正常样本中变异系数均小于0.2的lincRNA,设μ为所有样本中lincRNA的表达均值,σ为标准差,变异系数的计算公式为:
Figure BDA0002617842580000091
其中,j为lincRNA编号,cv为变异系数,cvj为第j个样本的变异系数,σj为第j个lincRNA编号的标准差,μj为第j个lincRNA编号的lincRNA的表达均值,设m1为稳定表达的lincRNA总数,则有:
Figure BDA0002617842580000096
步骤1.5、选取肿瘤和正常样本中差异表达的lincRNA。使用取对数后的表达值计算肿瘤和正常样本lincRNA取对数后的倍数变化f,公式为:
Figure BDA0002617842580000092
其中,j为lincRNA编号,fj为第j个lincRNA编号的倍数变化,μ1j为第j个lincRNA编号的肿瘤样本的表达均值,μ2j为第j个lincRNA编号的正常样本的表达均值。
然后使用独立样本t检验比较肿瘤和正常样本中lincRNA的表达差异,独立样本t检验公式为:
Figure BDA0002617842580000093
其中n1为肿瘤样本数,n2为正常样本数,μ1为肿瘤样本lincRNA表达均值,μ2为正常样本lincRNA表达均值,
Figure BDA0002617842580000094
为肿瘤样本lincRNA方差,
Figure BDA0002617842580000095
为正常样本lincRNA方差。
对所有t检验得出的p值进行错误发现率(false discovery rate,FDR)校正,定义q为FDR校正后的数值,r为p值在m1个lincRNA中排序后的位置,则有:
Figure BDA0002617842580000101
其中,j为lincRNA编号,qj代表第j个lincRNA编号的FDR校正后的数值,pj代表第j个lincRNA编号的t检验得出的p值,rj代表第j个lincRNA编号的p值在m1个lincRNA中排序后的位置。
最后选取倍数变化f的绝对值大于1且FDR校正后q值小于等于0.05的lincRNA,记为特征lincRNA,设特征lincRNA总数为m2,则有:
m2=m1{|fj|≥1,qj≤0.05},j∈(1,m1) (7)
步骤2、选取特征lincRNA表达数据,对每个样本进行数据标准化,公式为:
Figure BDA0002617842580000102
其中i为样本编号,j为特征lincRNA编号。μi为第i个样本所有特征lincRNA表达均值,σi为第i个样本所有特征lincRNA标准差,uij为取对数后的特征lincRNA表达值,uij′为标准化后的lincRNA数值。
步骤3、使用支持向量机对标准化后的数据构建早期预测模型,具体为:
步骤3.1、先对所有样本进行分组。将全部样本中80%划分为训练集+验证集,余下20%划分为测试集。训练集+验证集用于5折交叉验证,即将训练集+验证集分为相等的5组,按顺序将其中一组作为验证集,其余4组作为训练集。给定参数,训练集用于构建模型,验证集用于检验模型精确度。
步骤3.2、最优参数筛选。SVM中参数gamma控制高斯核的宽度,C是正则化参数,限制每个点的重要性。参数网格设置为:
gamma=[0.001,0.01,0.1,1,10,100] (9)
C=[0.001,0.01,0.1,1,10,100] (10)
在交叉验证中,依次使用每两个参数gamma和C的组合构建模型,然后用验证集检验模型精确度。对每个参数组合,5折交叉验证的每次验证产生1个精确度,共进行5次验证即产生5个精确度。选取5次验证的平均精确度最高的参数组合作为最优参数。
步骤3.3、使用最优参数和训练集+验证集的数据构建模型,最后用测试集对模型进行评估。评估指标包括精确度(accuracy)、准确率(precision)、召回率(recall)、特异性(specificity)、F1分数(F1 score)、马修斯相关系数(Matthews correlationcoefficient,MCC)和受试者工作曲线(receiver operating curve,ROC)下面积(areaunder the curve,AUC)。在测试集中,定义实际为肿瘤且预测为肿瘤计数为true positive(TP),实际为正常但预测为肿瘤计数为false positive(FP),实际为肿瘤但预测为正常为false negative(FN),实际为正常且预测为正常为true negative(TN)。以上评估指标计算公式为:
Figure BDA0002617842580000111
Figure BDA0002617842580000112
Figure BDA0002617842580000113
Figure BDA0002617842580000114
Figure BDA0002617842580000121
Figure BDA0002617842580000122
Figure BDA0002617842580000123
以上评估指标中精确度、准确率、召回率、特异性、F1分数和AUC返回介于(0,1)之间的值。精确度越高表示模型总体预测效率越高;准确率越高说明犯I类错误越小;召回率越高说明犯II类错误越小;特异性高说明在预测为正例的样本中很少有负例混入;F1分数是一个综合指标,为准确率和召回率的调和平均;MCC是观察到的和预测的二元分类之间的相关系数,返回介于(-1,1)之间的值,其中1表示完美预测,0表示不比随机预测好,-1表示预测和观察之间的完全不一致;AUC越高表明分类器预测的正实例概率越高。因此,以上指标越接近1表明模型整体的预测效果越好。
步骤3.4、若以上评估指标都大于0.9,说明模型具有较好的预测效果。则使用所有数据,用最优参数组合构建最终预测模型。
步骤4、根据患者特征lincRNA的表达水平进行早期预测,具体为:
步骤4.1、对预测样本的特征lincRNA表达数据进行标准化,设u为预测样本特征lincRNA表达值,μ为预测样本特征lincRNA表达均值,σ为预测样本特征lincRNA标准差,公式为:
Figure BDA0002617842580000124
其中j为特征lincRNA编号,uj′为标准化后的lincRNA数值。
步骤4.2、将预测样本标准化后的lincRNA数值代入最终预测进行预测。预测结果为1表示患有胃癌,预测结果为0表示正常。
实施例1
一种基于特征lincRNA表达谱组合的胃癌早期预测方法,包括以下步骤:
步骤1、获取胃癌早期患者稳定差异表达的lincRNA(特征lincRNA),详细流程见图1。
步骤1.1、从Genomic Data Commons Data Portal数据库中下载胃癌患者肿瘤组织和癌旁组织转录组数据以及临床数据,获得胃癌患者肿瘤组织基因表达谱read counts数值,进行对数转换。
步骤1.2、选取具有一定表达丰度的lincRNA,即在所有样本中lincRNA的readcounts大于等于10,详见公式(1)。
步骤1.3、选取疾病分期为I期和II期的胃癌患者,详见公式(2)-(3),将这些患者记为胃癌早期患者。
步骤1.4、选取肿瘤和正常样本中稳定表达的lincRNA,即在肿瘤和正常样本中变异系数均小于0.2的lincRNA。
步骤1.5、选取肿瘤和正常样本中差异表达的lincRNA,详见公式(4)-(7)。记为特征lincRNA。
经过以上筛选,最终获得20个胃癌特征lincRNA,见表1。20个胃癌特征lincRNA的核苷酸探针序列见表2。
表1.胃癌特征lincRNA
Figure BDA0002617842580000131
Figure BDA0002617842580000141
表2.胃癌特征lincRNA的核苷酸探针序列
Figure BDA0002617842580000142
步骤2、对每个样本进行数据标准化,详见公式(8)。
步骤3、使用支持向量机对标准化后的数据构建早期诊断模型。
步骤3.1、先对所有样本进行分组。将全部样本中80%划分为训练集+验证集,余下20%划分为测试集。训练集+验证集用于5折交叉验证,即将训练集+验证集分为相等的5组,按顺序将其中一组作为验证集,其余4组作为训练集。给定参数,训练集用于构建模型,验证集用于检验模型精确度。详见图1。
步骤3.2、最优参数筛选。SVM参数网格设置见公式(9)-(10)。在交叉验证中,依次使用每两个参数gamma和C的组合构建模型,然后用验证集检验模型精确度。对每个参数组合,5折交叉验证的每次验证产生1个精确度,共进行5次验证即产生5个精确度。选取5次验证的平均精确度最高的参数组合作为最优参数。图2所示为交叉验证参数优化过程,当参数gamma=0.1,参数C=10时模型交叉验证精确度最高:0.962。因此该模型的最优参数为:gamma=0.1,C=10。
步骤3.3、使用最优参数和训练集+验证集的数据构建模型,最后用测试集对模型进行评估。评估指标包括精确度(accuracy)、准确率(precision)、召回率(recall)、特异性(specificity)、F1分数(F1 score)、马修斯相关系数(Matthews correlationcoefficient,MCC)和受试者工作曲线(receiver operating curve,ROC)下面积(areaunder the curve,AUC)。评估指标详见公式(11)-(17)。
步骤3.4、图3所示为以上评估指标中的精确度、准确率、召回率、特异性、F1分数和MCC,这6个指标均大于0.91;图4所示为ROC曲线和AUC,测试集中AUC为0.985。说明以上评估指标说明该模型有很好的预测效果。因此使用所有数据,用最优参数组合构建最终预测模型。
步骤4、根据患者特征lincRNA的表达水平进行早期预测:
步骤4.1、对预测样本的特征lincRNA表达数据进行标准化,详见公式18。本发明随机选取10例样本进行预测,并在构建最终预测模型时将这10例样本剔除。所选取的10例样本编号和标准化后特征lincRNA数值见表3。
表3. 10例样本编号和特征lincRNA标准化后的数值
Figure BDA0002617842580000151
Figure BDA0002617842580000161
步骤4.2、将预测样本标准化后的lincRNA数值代入最终预测进行预测。预测结果为1表示患有胃癌,预测结果为0表示正常。10例样本编号,对应的TCGA编号,实际状态和预测结果见表4。10例样本中有9例预测结果与实际状态完全符合,说明本发明可以对胃癌进行精确的早期预测。
表4. 10例样本编号,对应的TCGA编号,实际和预测的状态
Figure BDA0002617842580000162
综上所述,本发明的特征lincRNA表达谱组合具有很高的预测准确性,能够有效地进行胃癌的早期预测。此外,本发明没有平台依赖性,能够对多种来源的数据进行预测。
上述说明示出并描述了发明的若干优选实施例,但如前所述,应当理解发明并非局限于本文所披露的形式,不应看作是对其他实施例的排除,而可用于各种其他组合、修改和环境,并能够在本文所述发明构想范围内,通过上述教导或相关领域的技术或知识进行改动。而本领域人员所进行的改动和变化不脱离发明的精神和范围,则都应在发明所附权利要求的保护范围内。
Figure BDA0002617842580000171
Figure BDA0002617842580000181
Figure BDA0002617842580000191
Figure BDA0002617842580000201
SEQUENCE LISTING
<110> 广东省第二人民医院
<120> 一种特征lincRNA表达谱组合及胃癌早期预测方法
<130> 2020
<160> 20
<170> PatentIn version 3.3
<210> 1
<211> 30
<212> DNA
<213> 人工序列(Artificial sequence)
<400> 1
gtaccatttt gatttctcac cagtattttg 30
<210> 2
<211> 30
<212> DNA
<213> 人工序列(Artificial sequence)
<400> 2
aacggggttt caccatgttg gccatgctgg 30
<210> 3
<211> 30
<212> DNA
<213> 人工序列(Artificial sequence)
<400> 3
ggttatctga aattccaatt taactgggcg 30
<210> 4
<211> 30
<212> DNA
<213> 人工序列(Artificial sequence)
<400> 4
agactgtaat agttgatcgc taaattctta 30
<210> 5
<211> 30
<212> DNA
<213> 人工序列(Artificial sequence)
<400> 5
cgtttcctag cactccatgt tcccaagaca 30
<210> 6
<211> 30
<212> DNA
<213> 人工序列(Artificial sequence)
<400> 6
cttgggctga aaccacagcg ctttgttttc 30
<210> 7
<211> 30
<212> DNA
<213> 人工序列(Artificial sequence)
<400> 7
gtagtttctt ttgctgcgca gaggctcttt 30
<210> 8
<211> 30
<212> DNA
<213> 人工序列(Artificial sequence)
<400> 8
aggaagctgg cagccaggag gcctccagga 30
<210> 9
<211> 30
<212> DNA
<213> 人工序列(Artificial sequence)
<400> 9
tgtagtccca gctactgggg aggctgaggc 30
<210> 10
<211> 30
<212> DNA
<213> 人工序列(Artificial sequence)
<400> 10
tcactgccat ttgggctcta gagcccgctt 30
<210> 11
<211> 30
<212> DNA
<213> 人工序列(Artificial sequence)
<400> 11
gcctcaacct cccgagtagc tgggactaca 30
<210> 12
<211> 30
<212> DNA
<213> 人工序列(Artificial sequence)
<400> 12
ggagtgaaca gctcatacat tgtcccagga 30
<210> 13
<211> 30
<212> DNA
<213> 人工序列(Artificial sequence)
<400> 13
attgcacaat acagacattc ctaaattctg 30
<210> 14
<211> 30
<212> DNA
<213> 人工序列(Artificial sequence)
<400> 14
taagcaagct tttttggctt agctcctgcc 30
<210> 15
<211> 30
<212> DNA
<213> 人工序列(Artificial sequence)
<400> 15
tcttcaggaa gccagacaga ttcaagtatt 30
<210> 16
<211> 30
<212> DNA
<213> 人工序列(Artificial sequence)
<400> 16
ataagcagcc tcaaggacca agaaccatct 30
<210> 17
<211> 30
<212> DNA
<213> 人工序列(Artificial sequence)
<400> 17
cactgggtcc tgagtctctt gttctggaag 30
<210> 18
<211> 30
<212> DNA
<213> 人工序列(Artificial sequence)
<400> 18
cccaaaatac agtctttgtg ttgccatctg 30
<210> 19
<211> 30
<212> DNA
<213> 人工序列(Artificial sequence)
<400> 19
acctgggccc ttctggtatc tcctgaatga 30
<210> 20
<211> 30
<212> DNA
<213> 人工序列(Artificial sequence)
<400> 20
ttccagggca gcccatcaca tcttagagct 30

Claims (6)

1.一种特征lincRNA表达谱组合,其特征在于,包括AC005261.1、AC026401.3、AC048341.1、AC055713.1、AC060780.1、AC092171.3、AC093297.2、AC106782.2、AC145207.5、AF117829.1、AL390728.6、CASC15、CYTOR、LINC00265、LINC00467、MIR22HG、MIR4435-2HG、PVT1、SNHG15和ZNF667-AS1,其核苷酸探针序列为SEQ ID NO.1-20所示。
2.一种基于权利要求所述的特征lincRNA表达谱组合的胃癌早期预测方法,其特征在于,包括以下步骤:
步骤1、获取胃癌早期患者稳定差异表达的特征lincRNA;
步骤2、选取特征lincRNA表达数据,对每个样本进行数据标准化;
步骤3、使用支持向量机对标准化后的数据构建早期预测模型;
步骤4、根据患者特征lincRNA的表达水平进行早期预测;
本方法用于非疾病的诊断和治疗目的。
3.根据权利要求2所述的胃癌早期预测方法,其特征在于,所述步骤1中的获取胃癌早期患者稳定差异表达的特征lincRNA,具体为:
步骤1.1、从Genomic Data Commons Data Portal数据库中下载胃癌患者肿瘤组织和癌旁组织转录组数据以及临床数据,获得胃癌患者肿瘤组织基因表达谱read counts数值,即为测序读段数值,进行对数转换;
步骤1.2、选取具有一定表达丰度的lincRNA,即在所有样本中lincRNA的测序读段数值大于等于10;再对所有lincRNA的read counts取对数,设样本总数为n,筛选后lincRNA总数为m,v为lincRNA的read counts,u为取对数之后的表达值,则有;
uij-log2vij,i∈(1,n),j∈(1,m) (1)
其中,i为样本编号,j为lincRNA编号,uij为第i个样本、第j个lincRNA编号取对数之后的表达值,vij为第i个样本、第j个lincRNA编号的read counts数值;
步骤1.3、选取疾病分期为I期和II期的胃癌患者,将这些患者记为胃癌早期患者,胃癌早期患者总数记为n′;
步骤1.4、选取肿瘤和正常样本中稳定表达的lincRNA,即在肿瘤和正常样本中变异系数均小于0.2的lincRNA,设μ为所有样本中lincRNA的表达均值,σ为标准差,变异系数的计算公式为:
Figure FDA0002617842570000021
其中,j为lincRNA编号,cv为变异系数,cvj为第j个样本的变异系数,σj为第j个lincRNA编号的标准差,μj为第j个lincRNA编号的lincRNA的表达均值,设m1为稳定表达的lincRNA总数,则有:
Figure FDA0002617842570000022
步骤1.5、选取肿瘤和正常样本中差异表达的lincRNA。使用取对数后的表达值计算肿瘤和正常样本lincRNA取对数后的倍数变化f,公式为:
Figure FDA0002617842570000023
其中,j为lincRNA编号,fj为第j个lincRNA编号的倍数变化,μ1j为第j个lincRNA编号的肿瘤样本的表达均值,μ2j为第j个lincRNA编号的正常样本的表达均值;
然后使用独立样本t检验比较肿瘤和正常样本中lincRNA的表达差异,独立样本t检验公式为:
Figure FDA0002617842570000024
其中n1为肿瘤样本数,n2为正常样本数,μ1为肿瘤样本lincRNA表达均值,μ2为正常样本lincRNA表达均值,
Figure FDA0002617842570000025
为肿瘤样本lincRNA方差,
Figure FDA0002617842570000026
为正常样本lincRNA方差;
对所有t检验得出的p值进行错误发现率(false discovery rate,FDR)校正,定义q为FDR校正后的数值,r为p值在m1个lincRNA中排序后的位置,则有:
Figure FDA0002617842570000031
其中,j为lincRNA编号,qj代表第j个lincRNA编号的FDR校正后的数值,pj代表第j个lincRNA编号的t检验得出的p值,rj代表第j个lincRNA编号的p值在m1个lincRNA中排序后的位置;
最后选取倍数变化f的绝对值大于1且FDR校正后q值小于等于0.05的lincRNA,记为特征lincRNA,设特征lincRNA总数为m2,则有:
m2=m1{|fj|≥1,qj≤0.05},j∈(1,m1) (7)。
4.根据权利要求2所述的胃癌早期预测方法,其特征在于,所述步骤2中的选取特征lincRNA表达数据,对每个样本进行数据标准化,公式为:
Figure FDA0002617842570000032
其中i为样本编号,j为特征lincRNA编号。μi为第i个样本所有特征lincRNA表达均值,σi为第i个样本所有特征lincRNA标准差,uij为取对数后的特征lincRNA表达值,uij′为标准化后的lincRNA数值。
5.根据权利要求2所述的胃癌早期预测方法,其特征在于,所述步骤3中的使用支持向量机对标准化后的数据构建早期预测模型,具体为:
步骤3.1、先对所有样本进行分组,将全部样本中80%划分为训练集+验证集,余下20%划分为测试集;训练集+验证集用于5折交叉验证,即将训练集+验证集分为相等的5组,按顺序将其中一组作为验证集,其余4组作为训练集;给定参数,训练集用于构建模型,验证集用于检验模型精确度;
步骤3.2、最优参数筛选,SVM中参数gamma控制高斯核的宽度,C是正则化参数,限制每个点的重要性;参数网格设置为:
gamma=[0.001,0.01,0.1,1,10,100] (9)
C=[0.001,0.01,0.1,1,10,100] (10)
在交叉验证中,依次使用每两个参数gamma和C的组合构建模型,然后用验证集检验模型精确度;对每个参数组合,5折交叉验证的每次验证产生1个精确度,共进行5次验证即产生5个精确度;选取5次验证的平均精确度最高的参数组合作为最优参数;
步骤3.3、使用最优参数和训练集+验证集的数据构建模型,最后用测试集对模型进行评估,评估指标包括精确度(accuracy)、准确率(precision)、召回率(recall)、特异性(specificity)、F1分数(F1 score)、马修斯相关系数(Matthews correlationcoefficient,MCC)和受试者工作曲线(receiver operating curve,ROC)下面积(areaunder the curve,AUC);在测试集中,定义实际为肿瘤且预测为肿瘤计数为true positive(TP),实际为正常但预测为肿瘤计数为false positive(FP),实际为肿瘤但预测为正常为false negative(FN),实际为正常且预测为正常为true negative(TN);以上评估指标计算公式为:
Figure FDA0002617842570000041
Figure FDA0002617842570000042
Figure FDA0002617842570000043
Figure FDA0002617842570000044
Figure FDA0002617842570000051
Figure FDA0002617842570000052
Figure FDA0002617842570000053
以上评估指标中精确度、准确率、召回率、特异性、F1分数和AUC返回介于(0,1)之间的值;精确度越高表示模型总体预测效率越高;准确率越高说明犯I类错误越小;召回率越高说明犯II类错误越小;特异性高说明在预测为正例的样本中很少有负例混入;F1分数是一个综合指标,为准确率和召回率的调和平均;MCC是观察到的和预测的二元分类之间的相关系数,返回介于(-1,1)之间的值,其中1表示完美预测,0表示不比随机预测好,-1表示预测和观察之间的完全不一致;AUC越高表明分类器预测的正实例概率越高;因此,以上指标越接近1表明模型整体的预测效果越好;
步骤3.4、若以上评估指标都大于0.9,说明模型具有较好的预测效果;则使用所有数据,用最优参数组合构建最终预测模型。
6.根据权利要求2所述的胃癌早期预测方法,其特征在于,所述步骤4中的根据患者特征lincRNA的表达水平进行早期预测,具体为:
步骤4.1、对预测样本的特征lincRNA表达数据进行标准化,设u为预测样本特征lincRNA表达值,μ为预测样本特征lincRNA表达均值,σ为预测样本特征lincRNA标准差,公式为:
Figure FDA0002617842570000054
其中j为特征lincRNA编号,yj′为标准化后的lincRNA数值;
步骤4.2、将预测样本标准化后的lincRNA数值代入最终预测进行预测;预测结果为1表示患有胃癌,预测结果为0表示正常。
CN202010776378.6A 2020-08-04 2020-08-04 一种特征lincRNA表达谱组合及胃癌早期预测方法 Withdrawn CN111718996A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010776378.6A CN111718996A (zh) 2020-08-04 2020-08-04 一种特征lincRNA表达谱组合及胃癌早期预测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010776378.6A CN111718996A (zh) 2020-08-04 2020-08-04 一种特征lincRNA表达谱组合及胃癌早期预测方法

Publications (1)

Publication Number Publication Date
CN111718996A true CN111718996A (zh) 2020-09-29

Family

ID=72574201

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010776378.6A Withdrawn CN111718996A (zh) 2020-08-04 2020-08-04 一种特征lincRNA表达谱组合及胃癌早期预测方法

Country Status (1)

Country Link
CN (1) CN111718996A (zh)

Similar Documents

Publication Publication Date Title
CN111748632A (zh) 一种特征lincRNA表达谱组合及肝癌早期预测方法
CN111748633A (zh) 一种特征miRNA表达谱组合及头颈鳞状细胞癌早期预测方法
CN106980763A (zh) 一种基于基因突变频率的癌症驱动基因的筛选方法
CN114203256B (zh) 基于微生物丰度的mibc分型及预后预测模型构建方法
CN109830264B (zh) 肿瘤患者基于甲基化位点进行分类的方法
CN115295074B (zh) 基因标志物在恶性肺结节筛查中的应用、筛查模型的构建方法和检测装置
WO2023197825A1 (zh) 多癌种早筛模型构建方法以及检测装置
CN111944902A (zh) 一种基于lincRNA表达谱组合特征的肾乳头状细胞癌早期预测方法
CN111748634A (zh) 一种特征lincRNA表达谱组合及结肠癌的早期预测方法
CN111944900A (zh) 一种特征lincRNA表达谱组合及子宫内膜癌早期预测方法
CN111733251A (zh) 一种特征miRNA表达谱组合及肾透明细胞癌早期预测方法
CN116364179A (zh) 结直肠癌预后标志物筛选系统及方法、结直肠癌预后风险评估系统
CN111763738A (zh) 一种特征mRNA表达谱组合及肝癌早期预测方法
CN111793692A (zh) 一种特征miRNA表达谱组合及肺鳞癌早期预测方法
CN111808965A (zh) 一种特征lincRNA表达谱组合及肾透明细胞癌早期预测方法
CN111733252A (zh) 一种特征miRNA表达谱组合及胃癌早期预测方法
CN111850124A (zh) 一种特征lincRNA表达谱组合及肺鳞癌早期预测方法
CN116312800A (zh) 一种基于血浆中循环rna全转录组测序的肺癌特征识别方法、装置和存储介质
CN111718996A (zh) 一种特征lincRNA表达谱组合及胃癌早期预测方法
CN114107515B (zh) 早期胃癌预后差异基因与复发预测模型
CN111718997A (zh) 一种特征mRNA表达谱组合及胃癌早期预测方法
CN115035951A (zh) 一种突变签名的预测方法、装置、终端设备及存储介质
CN112760375A (zh) 一种特征miRNA表达谱组合及子宫内膜癌早期预测方法
Madjar Survival models with selection of genomic covariates in heterogeneous cancer studies
CN111944901A (zh) 一种特征mRNA表达谱组合及肾乳头状细胞癌早期预测方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication
WW01 Invention patent application withdrawn after publication

Application publication date: 20200929