CN111718506B - 一种高交联高磺化度磺化芳香嵌段聚合物膜的制备及应用 - Google Patents

一种高交联高磺化度磺化芳香嵌段聚合物膜的制备及应用 Download PDF

Info

Publication number
CN111718506B
CN111718506B CN202010671110.6A CN202010671110A CN111718506B CN 111718506 B CN111718506 B CN 111718506B CN 202010671110 A CN202010671110 A CN 202010671110A CN 111718506 B CN111718506 B CN 111718506B
Authority
CN
China
Prior art keywords
polystyrene
block polymer
styrene
sulfonated aromatic
aromatic block
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010671110.6A
Other languages
English (en)
Other versions
CN111718506A (zh
Inventor
李娜
延檬羽
边文海
曾飞祥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Shaanxi Beiyuan Chemical Group Co Ltd
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN202010671110.6A priority Critical patent/CN111718506B/zh
Publication of CN111718506A publication Critical patent/CN111718506A/zh
Application granted granted Critical
Publication of CN111718506B publication Critical patent/CN111718506B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2231Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds
    • C08J5/2243Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds obtained by introduction of active groups capable of ion-exchange into compounds of the type C08J5/2231
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/268Drying gases or vapours by diffusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0006Organic membrane manufacture by chemical reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/76Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2231Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds
    • C08J5/2243Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds obtained by introduction of active groups capable of ion-exchange into compounds of the type C08J5/2231
    • C08J5/225Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds obtained by introduction of active groups capable of ion-exchange into compounds of the type C08J5/2231 containing fluorine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2268Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds, and by reactions not involving this type of bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2287After-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2287After-treatment
    • C08J5/2293After-treatment of fluorine-containing membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1023Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon, e.g. polyarylenes, polystyrenes or polybutadiene-styrenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1025Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon and oxygen, e.g. polyethers, sulfonated polyetheretherketones [S-PEEK], sulfonated polysaccharides, sulfonated celluloses or sulfonated polyesters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1086After-treatment of the membrane other than by polymerisation
    • H01M8/1088Chemical modification, e.g. sulfonation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/42Ion-exchange membranes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2353/00Characterised by the use of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2353/00Characterised by the use of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • C08J2353/02Characterised by the use of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers of vinyl aromatic monomers and conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2387/00Characterised by the use of unspecified macromolecular compounds, obtained otherwise than by polymerisation reactions only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/05Alcohols; Metal alcoholates
    • C08K5/053Polyhydroxylic alcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/06Ethers; Acetals; Ketals; Ortho-esters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Inorganic Chemistry (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

本发明公开了一种高交联高磺化度磺化芳香嵌段聚合物膜的制备及应用。本发明中以苯乙烯嵌段聚合物、助溶剂、磺化剂反应得到磺化芳香嵌段聚合物膜;配制交联剂,加入催化剂;磺化芳香嵌段聚合物膜浸于交联剂中,分段交联;洗去膜表面的杂质即得到苯环交联型磺化芳香嵌段聚合物膜。通过对磺化芳香嵌段聚合物膜进行交联改性,以苯环为交联位点,反应可控,温和高效,反应过程中不会造成磺酸根的损耗,有利于保持由亲、疏水嵌段微相分离形成的水传输通道,在显著提高聚合物膜的机械性能及抗溶胀性能的同时,避免了聚合物功能基团含量的消耗,保持较高的水传输性能。

Description

一种高交联高磺化度磺化芳香嵌段聚合物膜的制备及应用
技术领域
本发明属于高分子材料领域,具体涉及一种苯环交联型磺化芳香嵌段聚合物膜的制备及应用。
背景技术
磺化芳香嵌段聚合物中的磺酸基团可以与水形成较强的离子-偶极作用,高度亲水的磺酸基团侧链和高度疏水的聚合物主链在聚合物成膜过程中可以各自聚集,在膜内部产生亲水区域和疏水区域的纳米级微相分离结构,微相分离形成有利于质子和水分子传输的通道。微相分离结构与磺酸基团含量密切相关,通过调节磺酸基团含量可以调控水分子传输通道大小,较高的磺酸基团含量具有较高的水传输能力。在高磺化度下,磺酸基团能够相互连接,形成水分子传递的连续性通道。由于磺化芳香嵌段聚合物的这些结构和性能特征,被用于制备在能源储存和传质分离领域使用的质子交换膜、水处理膜和空气除湿膜等。然而,高磺化度时,磺化嵌段聚合物的微相分离加剧,引起传递通道增大,聚合物材料在水中发生过度溶胀,使分离选择性下降,机械强度降低,影响膜的功能和使用寿命,制约其应用。
针对上述问题,可通过适当的交联处理抑制磺化芳香嵌段聚合物膜的过度溶胀,提高膜的机械性能和热稳定性,延长膜的使用寿命。研究表明,通过共价交联、离子交联形成网络状交联结构可以有效提高膜的尺寸稳定性和机械强度。磺化芳香嵌段聚合物既可以采用磺酸基团作为交联位点,也可以采用其他官能团作为活性交联点。磺化聚合物中的磺酸基团具有较强的反应活性,常与金属离子或碱性基团形成离子交联,也可以与多元胺、多元醇进行缩合反应,甚至可以受热后发生自交联。但是由于磺化芳香嵌段聚合物的性能直接取决于其磺酸基团的含量,这种交联方法消耗了聚合物磺酸基团的含量,从而影响其使用性能。例如CN200910233400.6专利通过对直链型磺化芳香聚合物膜进行热交联来提高材料的抗溶胀性能,由于热交联造成-SO3H的损失,使得该聚合物离子交换容量降低约75%,影响其在燃料电池中的应用。文献(M.L.Di Vona,E.Sgreccia,S.Licocccia,etal.Analysis of temperature-promoted and solvent-assisted cross-linking insulfonated poly(ether ether ketone)(S-PEEK)proton-conducting membranes[J].Journal of physical chenmistry B,2009,113:7507–7512)以热交联的方式对磺化聚醚醚酮膜进行砜基交联,研究发现交联后虽然膜的抗溶胀及机械性能得到提升,但由于磺酸基团的消耗,其质子传导率明显下降。目前,通过磺酸基团交联的磺化芳香聚合物膜的磺化度大幅度下降,严重制约了磺化芳香嵌段聚合物膜在燃料电池质子交换膜、水处理、空气除湿等领域的发展与应用。
发明内容
为解决现有技术中存在的上述缺陷,本发明的目的在于提供一种磺化度高、离子交换容量高、溶胀度低、机械强度高的苯环交联型磺化芳香嵌段聚合物膜。本发明通过对高磺化度的磺化芳香嵌段聚合物膜进行苯环交联,提高膜的机械强度,改善膜的抗溶胀性能,同时保持高的磺化度(>70%),使其具有高的质子和水分子的传输能力。
本发明是通过下述技术方案来实现的。
本发明提供了一种苯环交联型磺化芳香聚合物,包括如[I]所示的结构式:
Figure BDA0002582328340000031
其中,R为乙烯,丁烯,苯乙烯或对苯二甲氧基的一种或多种单体组合,M为烷基、芳基或卤代芳基,x=100~600,y=0~300,z=0~300,m=0~600,n=0~10。
本发明提供一种苯环交联型磺化芳香聚合物的制备方法,包括以下步骤:
a.将嵌段聚合物溶于1,2-二氯乙烷溶液中,配制成质量分数为0.5~10wt%的聚合物溶液,然后加入质量分数为10~30%助溶剂,再加入质量分数为0.1-20%的磺化剂,反应后将磺化产物沉淀出,再用去离子水洗涤至中性,最后在真空烘箱中烘干至恒重,得到干燥好的磺化芳香嵌段聚合物;
然后将磺化芳香嵌段聚合物、铸膜液溶剂配制成质量分数为1~20%的磺化芳香嵌段聚合物溶液,完全溶解后,在聚四氟乙烯板上进行浇筑成膜;
b.在1,2-二氯乙烷或丙酮中加入交联剂,配制质量分数为0.5~30%的交联剂,再加入质量分数为0.001~10%的催化剂;
将步骤a中得到的磺化芳香嵌段聚合物膜浸没于该交联剂中,分段先预交联,再继续交联;最后用稀硫酸与去离子水洗去膜表面的杂质即得到苯环交联型磺化芳香嵌段聚合物。
本发明提供另一种苯环交联型磺化芳香聚合物的制备方法,包括以下步骤:
所述步骤a中,将芳香嵌段聚合物、铸膜液溶剂配制成质量分数为1~20%的嵌段聚合物溶液,完全溶解后,在聚四氟乙烯板上进行浇筑成嵌段聚合物膜;
将嵌段聚合物膜浸渍于质量分数为0.1~20%的磺化剂中,反应后将得到的磺化膜用去离子水洗涤至中性,得到磺化芳香嵌段聚合物膜。
步骤b方法同上。
进一步,所述步骤a中,嵌段聚合物为聚苯乙烯类二嵌段聚合物、聚苯乙烯三嵌段聚合物、聚苯乙烯四嵌段聚合物、聚苯乙烯五嵌段聚合物、聚苯乙烯六嵌段聚合物或聚苯乙烯七嵌段聚合物中一种。
其中,所述聚苯乙烯二嵌段聚合物包括聚苯乙烯-丁烯、聚苯乙烯-乙烯、聚苯乙烯-二乙烯基苯或聚联苯乙烯-对苯二酚中的一种。
所述聚苯乙烯三嵌段聚合物包括聚苯乙烯-丁烯-聚苯乙烯、聚苯乙烯-乙烯-苯乙烯、聚苯乙烯-二乙烯基苯-苯乙烯、聚苯乙烯-乙烯/丁烯-苯乙烯或聚苯乙烯-对苯二酚-苯乙烯中的一种。
所述聚苯乙烯四嵌段聚合物包括聚苯乙烯-异丁烯-乙烯-苯乙烯、聚苯乙烯-乙烯-苯乙烯-丁烯或聚苯乙烯-二乙烯基苯-乙烯-苯乙烯中的一种。
所述聚苯乙烯五嵌段聚合物包括聚苯乙烯-丁烯-苯乙烯-乙烯-苯乙烯、聚苯乙烯-乙烯-对苯二酚-乙烯-苯乙烯或聚苯乙烯-二乙烯基苯-苯乙烯-乙烯-苯乙烯中的一种。
所述聚苯乙烯六嵌段聚合物包括聚苯乙烯-丁烯-苯乙烯-乙烯-苯乙烯-乙烯、聚苯乙烯-乙烯-苯乙烯-丁烯-对苯二酚-苯乙烯或聚乙烯-苯乙烯-二乙烯基苯-苯乙烯-乙烯-苯乙烯中的一种。
所述聚苯乙烯七嵌段聚合物包括聚苯乙烯-异戊二烯-苯乙烯-丁二烯-苯乙烯-异戊二烯-苯乙烯、聚苯乙烯-乙烯-苯乙烯-丁烯-苯乙烯-对苯二酚-苯乙烯或聚乙烯-苯乙烯-二乙烯基苯-苯乙烯-乙烯-苯乙烯-丁烯中的一种。
进一步,所述步骤a中,在20~60℃下加入助溶剂;再加入磺化剂,在25~60℃下反应1~72h;得到干燥好的磺化芳香嵌段聚合物。
进一步,所述步骤a中,助溶剂为环己烷、环庚烷或甲苯中的一种;磺化剂为乙酰磺酸酯、发烟硫酸或三氧化硫中的一种;铸膜液溶剂为四氢呋喃、甲苯、己醇、1,2-二氯乙烷或三氯甲烷中的一种或多种。
进一步,所述步骤b中,将磺化芳香嵌段聚合物膜浸没于交联剂中,先在25~50℃下预交联1~10h,再在70~80℃下继续交联2~24h。
进一步,所述步骤b中,交联剂为二甲氧基甲烷、1,4-二甲氧基苯或四氟对苯二甲醇;催化剂为无水三氯化铁、无水三氯化铝、无水四氯化锡或无水二氯化锌。
本发明由于采取以上技术方案,其具有以下有益效果:
为了避免磺酸基团的损失,本发明以二甲氧基甲烷、1,4-二甲氧基苯和四氟对苯二甲醇为交联剂对高磺化度下磺化芳香嵌段聚合物膜中的苯环进行交联改性。这种交联方法不会造成磺酸根的损耗,可以显著提高材料的机械强度和物理化学稳定性,且保证交联后膜的磺化度整体不低于交联前的90%。以苯环为交联位点,可将亲水磺酸基团聚集在一起,有利于水分子、水合质子等在磺酸基团之间的传递,促进聚合物膜的传输性能。同时通过苯环交联,可压缩其传递通道,增加聚合物材料的选择性。因此以二甲氧基甲烷、1,4-二甲氧基苯和四氟对苯二甲醇为交联剂,对磺化芳香嵌段聚合物膜中的苯环进行交联是一种非常具有应用前景的交联技术。
本发明有益效果具体体现在:
1.磺化芳香嵌段聚合物由亲水磺酸基团侧链和疏水主链组成,易形成亲疏水相分离结构,构筑有利于水分子、质子等的传质通道。高磺化度(大于70%)下,磺酸基团相互连接,有利于形成连续的水分子和质子传递的纳米通道,进一步提升膜对水分子和质子的传递性能。
2.以二甲氧基甲烷或四氟对苯二甲醇作为交联剂,路易斯酸作为催化剂,对磺化芳香聚合物膜进行苯环交联,操作简单,成本低廉。该方法可以构建以苯环为交联位点的刚性网络骨架,避免磺酸基团的损失,保证聚合物高的亲水性和离子交换容量,同时提升膜的抗溶胀性,交联后聚合物膜的磺化度不低于交联前的90%,磺化度保持在70%及以上,离子交换容量不低于2mmol/g。
本发明所制备的苯环交联型磺化芳香嵌段聚合物具有水分子和质子传输能力强、亲水性好、离子交换容量高、抗溶胀性好和机械性能高等特点,在燃料电池质子交换膜、水处理膜、空气除湿膜的应用领域具有实际使用价值。
具体实施方式
下面将结合具体实施例来详细说明本发明,在此本发明的示意性实施例以及说明用来解释本发明,但并不作为对本发明的限定。
本发明一种实施方式提供了苯环交联型磺化芳香嵌段聚合物的制备方法,包括以下步骤:
a.将嵌段聚合物溶于1,2-二氯乙烷溶液中,配制成质量分数为0.5~10%的聚合物溶液,然后在20~60℃下加入质量分数为10~30%助溶剂(环己烷、环庚烷或甲苯),加入助溶剂后,再加入质量分数为0.1~20%的磺化剂(乙酰磺酸酯、发烟硫酸或三氧化硫)中,在25~60℃下反应1~72h后,将磺化产物沉淀出,再用去离子水洗涤至中性,最后在40~80℃真空烘箱中烘干至恒重,得到干燥好的磺化芳香嵌段聚合物。然后将磺化芳香嵌段聚合物、铸膜液溶剂(四氢呋喃、甲苯或己醇中一种或多种)配制成质量分数为1~20%的磺化芳香嵌段聚合物溶液,完全溶解后,在聚四氟乙烯板上进行浇筑成膜。
b.在1,2-二氯乙烷或丙酮中加入交联剂(二甲氧基甲烷(FDA)、1,4-二甲氧基苯(DMB)或四氟对苯二甲醇(TFBDM),配制质量分数为0.5~30%的交联剂,再加入质量分数为0.001~10%的催化剂(无水三氯化铁(FeCl3)、无水三氯化铝(AlCl3)、无水四氯化锡(SnCl4)或无水二氯化锌(ZnCl2)。将步骤a中得到的磺化芳香嵌段聚合物膜浸没于该交联剂中,先在25~50℃下预交联1~10h,再在70~80℃下继续交联2~24h。最后用稀硫酸与去离子水洗去膜表面的Fe3+即得到苯环交联型磺化芳香嵌段聚合物。
本发明再一种实施方式提供了苯环交联型磺化芳香嵌段聚合物的制备方法,包括以下步骤:
步骤a中,将芳香嵌段聚合物、铸膜液溶剂(四氢呋喃、甲苯、己醇、1,2-二氯乙烷或三氯甲烷)配制成质量分数为1~20%的嵌段聚合物溶液,完全溶解后,在聚四氟乙烯板上进行浇筑成嵌段聚合物膜;将嵌段聚合物膜浸渍于质量分数为0.1~20%的磺化剂(乙酰磺酸酯、发烟硫酸或三氧化硫)中,反应后,将得到的磺化膜用去离子水洗涤至中性,得到磺化芳香嵌段聚合物膜。
步骤b同第一种实施方式。
其中,嵌段聚合物为聚苯乙烯类二嵌段聚合物:聚苯乙烯-丁烯(SB)、聚苯乙烯-乙烯(SE)、聚苯乙烯-二乙烯基苯(SD)或聚联苯乙烯-对苯二酚(SP)中的一种。
嵌段聚合物为聚苯乙烯三嵌段聚合物:聚苯乙烯-丁烯-聚苯乙烯(SBS)、聚苯乙烯-乙烯-苯乙烯(SES)、聚苯乙烯-二乙烯基苯-苯乙烯(SDS)、聚苯乙烯-乙烯/丁烯-苯乙烯(SEBS)或聚苯乙烯-对苯二酚-苯乙烯(SPS)中的一种。
嵌段聚合物为聚苯乙烯四嵌段聚合物:聚苯乙烯-异丁烯-乙烯-苯乙烯(SBES)、聚苯乙烯-乙烯-苯乙烯-丁烯(SESB)或聚苯乙烯-二乙烯基苯-乙烯-苯乙烯(SDES)等嵌段聚合物中一种。
嵌段聚合物为五嵌段聚合物:聚苯乙烯-丁烯-苯乙烯-乙烯-苯乙烯(SBSES)、聚苯乙烯-乙烯-对苯二酚-乙烯-苯乙烯(SEPES)或聚苯乙烯-二乙烯基苯-苯乙烯-乙烯-苯乙烯(SDSES)等嵌段聚合物中的一种。
嵌段聚合物为聚苯乙烯六嵌段聚合物:聚苯乙烯-丁烯-苯乙烯-乙烯-苯乙烯-乙烯(SBSESE)、聚苯乙烯-乙烯-苯乙烯-丁烯-对苯二酚-苯乙烯(SESBPS)或聚乙烯-苯乙烯-二乙烯基苯-苯乙烯-乙烯-苯乙烯(ESDSES)等嵌段聚合物中的一种。
嵌段聚合物为聚苯乙烯七嵌段聚合物:聚苯乙烯-异戊二烯-苯乙烯-丁二烯-苯乙烯-异戊二烯-苯乙烯(SIBIBS)、聚苯乙烯-乙烯-苯乙烯-丁烯-苯乙烯-对苯二酚-苯乙烯(SESBSPS)、聚乙烯-苯乙烯-二乙烯基苯-苯乙烯-乙烯-苯乙烯-丁烯(ESDSESB)等嵌段聚合物中的一种。
下面结合具体实施方式对本发明作更进一步的举例说明。
实施例1:所用嵌段聚合物为二嵌段聚合物聚联苯乙烯-对苯二酚(SP),其中x=600,y=300,z=m=0,n=6,M为亚甲基。
(1)磺化反应:将1g嵌段聚合物SP溶于1,2-二氯乙烷溶液中,配制成质量分数为5wt%的聚合物溶液,然后在60℃下加入质量分数为15%环己烷,加入环己烷后,再加入质量分数为0.1%的磺化剂乙酰磺酸酯,在60℃下反应36h,将磺化产物沉淀出,再用去离子水洗涤至中性,最后在80℃真空烘箱中烘干至恒重,得到干燥好的磺化芳香嵌段聚合物。然后将质量比为1:28:4的磺化芳香嵌段聚合物、甲苯和己醇配制成质量分数为3%的磺化芳香嵌段聚合物溶液,完全溶解后,在聚四氟乙烯板上进行浇筑成膜。
(2)交联反应:在60mL丙酮中加入二甲氧基甲烷交联剂,配制质量分数为20%的交联剂溶液,再加入质量分数为0.001%的催化剂无水三氯化铁,得到混合溶液。将步骤(1)中得到的磺化芳香嵌段聚合物膜浸没于上述混合溶液中,先在50℃下预交联10h,再在70℃下继续交联2h。最后用稀硫酸与去离子水洗去膜表面的铁离子即得到苯环交联型磺化芳香嵌段聚合物,其结构如下所示。
Figure BDA0002582328340000101
实施例2:所用嵌段共聚物为四嵌段聚合物聚苯乙烯-异丁烯-乙烯-苯乙烯(SBES),其中x=m=600,y=n=0,z=200,M为亚甲基。
(1)将芳香嵌段聚合物溶于1,2-二氯乙烷,配制成质量分数为5%的嵌段聚合物溶液,完全溶解后,在聚四氟乙烯板上进行浇筑成膜。将2g嵌段聚合物膜浸渍于质量分数为10%的磺化剂三氧化硫,在45℃下反应1h后,将磺化膜用去离子水洗涤至中性,得到磺化芳香嵌段聚合物膜。
(2)交联反应:在60mL 1,2-二氯乙烷中加入交联剂二甲氧基甲烷,配制质量分数为25%的交联剂,再加入质量分数为1%的催化剂无水三氯化铁,得到混合溶液。将步骤(1)中得到的磺化芳香嵌段聚合物膜浸没于该混合溶液中,先在50℃下预交联4h,再在70℃下继续交联24h。最后用稀硫酸与去离子水洗去膜表面的铁离子即得到苯环交联型磺化芳香嵌段共聚物膜S-SBES-FDA,其结构如下所示。
Figure BDA0002582328340000111
实施例3:所用嵌段聚合物为聚苯乙烯-对苯二酚-苯乙烯(SPS),其中x=m=100,y=200,z=n=0,M为亚甲基。
(1)磺化反应:将10g嵌段聚合物SPS溶于1,2-二氯乙烷溶液中,配制成质量分数为0.5%的聚合物溶液,然后在45℃下加入质量分数为20%环庚烷,加入环庚烷后,再加入质量分数为5%的磺化剂发烟硫酸,在50℃下反应12h后,将磺化产物沉淀出,再用去离子水洗涤至中性,最后在60℃真空烘箱中烘干至恒重,得到干燥好的磺化芳香嵌段聚合物。然后将质量比为1:4的磺化芳香嵌段聚合物、四氢呋喃配制成质量分数为15%的磺化芳香嵌段聚合物溶液,完全溶解后,在聚四氟乙烯板上进行浇筑成膜。
(2)二甲氧基甲烷交联反应:在60mL 1,2-二氯乙烷中加入二甲氧基甲烷(FDA),配制质量分数为5.8%的交联剂溶液,再加入质量分数为1.3%的催化剂无水三氯化铝,得到混合溶液。将步骤(1)中得到的磺化芳香嵌段聚合物膜S-SPS浸没于该混合溶液中,先在45℃下预交联5h,再在80℃下继续交联2h。最后用稀硫酸与去离子水洗去膜表面的铝离子即得到苯环交联型磺化芳香嵌段聚合物膜S-SPS-FDA,其结构式如下所示:
Figure BDA0002582328340000121
实施例4:所用嵌段聚合物为四嵌段聚合物聚苯乙烯-异丁烯-乙烯-苯乙烯(SBES),其中x=m=600,y=n=0,z=200,M为亚甲基。
(1)磺化反应:将4g嵌段聚合物溶于1,2-二氯乙烷溶液中,配制成质量分数为10wt%的聚合物溶液,然后在40℃下加入质量分数为20%甲苯,加入甲苯后,再加入质量分数为10%的磺化剂三氧化硫,在45℃下反应1h后,将磺化产物沉淀出,再用去离子水洗涤至中性,最后在80℃真空烘箱中烘干至恒重,得到干燥好的磺化芳香嵌段聚合物。然后将质量比为1:19的磺化芳香嵌段聚合物、甲苯配制成质量分数为5%的磺化芳香嵌段聚合物溶液,完全溶解后,在聚四氟乙烯板上进行浇筑成膜。
(2)交联反应:在60mL 1,2-二氯乙烷中加入交联剂二甲氧基甲烷,配制质量分数为25%的交联剂,再加入质量分数为1%的催化剂无水三氯化铁,得到混合溶液。将步骤(1)中得到的磺化芳香嵌段聚合物膜浸没于该混合溶液中,先在50℃下预交联4h,再在70℃下继续交联24h。最后用稀硫酸与去离子水洗去膜表面的铁离子即得到苯环交联型磺化芳香嵌段聚合物膜S-SBES-FDA,其结构如下所示。
Figure BDA0002582328340000131
实施例5:所用嵌段聚合物为聚苯乙烯-乙烯/丁烯-苯乙烯(SEBS),其中x=m=100,y=n=0,z=300,M为对苯二甲氧基。
(1)磺化反应:将10g嵌段聚合物溶于1,2-二氯乙烷溶液中,配制成质量分数为5%的聚合物溶液,然后在20℃下加入质量分数为10%环己烷,加入环己烷后,再加入质量分数为20%的磺化剂发烟硫酸,在25℃下反应72h后,将磺化产物沉淀出,再用去离子水洗涤至中性,最后在40℃真空烘箱中烘干至恒重,得到干燥好的磺化芳香嵌段聚合物(S-SEBS)。然后将质量比为1:78:21的磺化芳香嵌段聚合物、甲苯和己醇配制成质量分数为1%的磺化芳香嵌段聚合物溶液,完全溶解后,在聚四氟乙烯板上进行浇筑成膜。
(2)交联反应:在60mL丙酮中加入交联剂1,4-二甲氧基苯,配制质量分数为0.5%的交联剂,再加入质量分数为5%的催化剂无水四氯化锡,得到混合溶液。将步骤(1)中得到的磺化芳香嵌段聚合物膜浸没于该混合溶液中,先在30℃下预交联5h,再在80℃下继续交联5h。最后用稀硫酸与去离子水洗去膜表面的铁离子即得到苯环交联型磺化芳香嵌段聚合物膜S-SEBS-DMB,所得聚合物结构如下所示。
Figure BDA0002582328340000141
实施例6:所用嵌段聚合物为聚苯乙烯-乙烯/丁烯-苯乙烯(SEBS),其中x=m=100,y=n=0,z=300,M为四氟对苯二甲亚基。
(1)磺化反应:将嵌段聚合物溶于1,2-二氯乙烷溶液中,配制成质量分数为6wt%的聚合物溶液,然后在35℃下加入质量分数为30%环己烷,再加入质量分数为20%的磺化剂,在60℃下反应48h后,将磺化产物沉淀出,再用去离子水洗涤至中性,最后在75℃真空烘箱中烘干至恒重,得到干燥好的磺化芳香嵌段聚合物。然后将质量比为1:34:5的磺化芳香嵌段聚合物、甲苯和己醇配制成质量分数为2.5%的磺化芳香嵌段聚合物溶液,完全溶解后,在聚四氟乙烯板上进行浇筑成膜。
(2)四氟对苯二甲醇交联反应:在50mL丙酮中加入交联剂四氟对苯二甲醇(TFBDM),配制质量分数为3.2%的交联剂,再加入质量分数为0.5%的催化剂无水二氯化锌。将步骤(1)中得到的磺化芳香嵌段聚合物膜浸没于该交联剂中,先在25℃下预交联1h,再在80℃下继续交联10h。最后用稀硫酸与去离子水洗去膜表面的锌离子即得到苯环交联型磺化芳香嵌段聚合物膜S-SEBS-TFBDM,其结构如下所示。
Figure BDA0002582328340000151
比较例1:未交联S-SP
采用实施例1的原料SP,按照实施例1中磺化反应制备S-SP磺化芳香嵌段聚合物,其结构如下所示。
Figure BDA0002582328340000152
比较例2:未交联S-SBES
采用实施例6的原料SBES,按照实施例3中磺化反应制备S-SBES磺化芳香嵌段聚合物,其结构如下所示。
Figure BDA0002582328340000161
比较例3:热交联S-SPS
采用实施例3的原料SPS,按照实施例3中磺化反应制备S-SPS磺化芳香嵌段聚合物。然后将S-SPS膜在100℃下进行热交联4h,热交联后得到热交联的S-SPS-Tem膜,其结果如下所示。
Figure BDA0002582328340000162
比较例4:热交联S-SBES
采用实施例4的原料SBES,按照实施例4中磺化反应制备S-SBES磺化芳香嵌段聚合物。然后将S-SBES膜在120℃下进行热交联2h,热交联后得到热交联的S-SBES-Tem膜,其结果如下所示。
Figure BDA0002582328340000171
比较例5:乙二胺交联S-SEBS-1
采用实施例5的原料SEBS,按照实施例5中磺化反应制备S-SEBS磺化芳香嵌段聚合物膜。然后在去离子水中加入乙二胺,配制质量分数为0.8%的乙二胺(EDA)交联剂,将磺化芳香嵌段聚合物S-SEBS浸没于该交联剂中,室温下反应。30s后取出,用去离子水对膜进行洗涤,即得到磺酸交联型S-SEBS-EDA-1,其结构式如下所示:
Figure BDA0002582328340000181
比较例6:乙二胺交联S-SEBS-2
采用实施例6的原料SEBS,按照实施例6中磺化反应制备S-SEBS磺化芳香嵌段聚合物膜。然后在去离子水中加入乙二胺,配制质量分数为1.8%的乙二胺(EDA)交联剂,将磺化芳香嵌段聚合物S-SEBS浸没于该交联剂中,室温下反应。60s后取出,用去离子水对膜进行洗涤,即得到磺酸交联型S-SEBS-EDA-2,其结构式如下所示:
Figure BDA0002582328340000191
表1列举了本发明不同实施例与相应比较例的性能对比,以说明苯环交联型磺化芳香嵌段聚合物膜的性能优势。
表1苯环交联型磺化芳香嵌段聚合物膜的性能比较
Figure BDA0002582328340000192
Figure BDA0002582328340000201
本发明以聚苯乙烯类嵌段聚合物为原料,然后对其进行磺化,制得磺化芳香嵌段聚合物膜,最后对该聚合物膜进行苯环交联,构筑以苯环为交联位点的具有刚性网络骨架的交联型磺化芳香嵌段聚合物材料,以此避免由于传统交联引起的磺酸基团的损失,保证苯环交联后聚合物膜磺化度不低于交联前的90%,磺化度达到70%及以上,离子交换容量不低于2.0mmol/g。
为比较苯环交联前后,磺化芳香嵌段聚合物膜的磺化度、离子交换容量、含水率、几何稳定性和拉伸强度的变化,对交联前后的磺化芳香嵌段聚合物膜进行了实验表征测试,所得结果列于表1中的实施例1~2和比较例1~2,通过对比可以看出,相对于未交联改性的磺化芳香嵌段聚合物膜,苯环交联型磺化芳香嵌段聚合物膜兼具良好的抗溶胀性与离子交换容量,可以被应用于质子燃料电池、水处理和空气除湿等领域。
为进一步比较磺酸交联和苯环交联的差异,分别测试了苯环交联和磺酸交联后磺化芳香嵌段聚合膜性能变化,所得结果列于实施例3~6与比较例3~6中。通过对比可知,采用苯环交联的方式其磺化度降低程度均小于5%,而采用磺酸交联其磺化度降低程度都高于25%。苯环交联型磺化芳香聚合物膜磺化度不低于74.6%。采用苯环交联后的膜,其机械性能和抗溶胀性能也要优于传统的交联方式(如热交联和乙二胺交联)。离子交换容量不低于2.01mmol/g,溶胀度不高于176.4%,拉伸强度不低于12.4MPa。这充分说明相对于传统的交联方式(如热交联和乙二胺交联)。采用本发明中的苯环交联的方式,在提高磺化芳香嵌段聚合物膜机械性能和抗溶胀性能的同时,可保持高的离子交换容量和磺化度,使水分子能在膜中快速传递,是一种非常具有应用前景的交联改性方法。
本发明并不局限于上述实施例,在本发明公开的技术方案的基础上,本领域的技术人员根据所公开的技术内容,不需要创造性的劳动就可以对其中的一些技术特征作出一些替换和变形,这些替换和变形均在本发明的保护范围内。

Claims (8)

1.一种高交联高磺化度磺化芳香嵌段聚合物,其特征在于,包括如[I]所示的结构式:
Figure FDA0002927452250000011
其中,R为乙烯,丁烯,苯乙烯或对苯二甲氧基的一种或多种单体组合,M为烷基、芳基或卤代芳基,x=100~600,y=0~300,z=0~300,m=0~600,n=0~10。
2.一种高交联高磺化度磺化芳香嵌段聚合物膜的制备方法,其特征在于,包括以下步骤:
a.将嵌段聚合物溶于1,2-二氯乙烷溶液中,配制成质量分数为0.5~10%的聚合物溶液,然后加入质量分数为10~30%助溶剂,再加入质量分数为0.1~20%的磺化剂,反应后将磺化产物沉淀出,再用去离子水洗涤至中性,最后在真空烘箱中烘干至恒重,得到干燥好的磺化芳香嵌段聚合物;
然后将磺化芳香嵌段聚合物、铸膜液溶剂配制成质量分数为1~20%的磺化芳香嵌段聚合物溶液,完全溶解后,在聚四氟乙烯板上进行浇筑成膜;
b.在1,2-二氯乙烷或丙酮中加入交联剂,配制质量分数为0.5~30%的交联剂溶液,再加入质量分数为0.001~10%的催化剂;
将步骤a中得到的磺化芳香嵌段聚合物膜浸没于该交联剂溶液中,先预交联,再继续交联;最后用稀硫酸与去离子水洗去膜表面的杂质即得到苯环交联型磺化芳香嵌段聚合物;
所述步骤a中,嵌段聚合物为聚苯乙烯类二嵌段聚合物、聚苯乙烯三嵌段聚合物、聚苯乙烯四嵌段聚合物、聚苯乙烯五嵌段聚合物、聚苯乙烯六嵌段聚合物或聚苯乙烯七嵌段聚合物中一种;
所述聚苯乙烯二嵌段聚合物包括聚苯乙烯-丁烯、聚苯乙烯-乙烯、聚苯乙烯-二乙烯基苯或聚联苯乙烯-对苯二酚中的一种;
所述聚苯乙烯三嵌段聚合物包括聚苯乙烯-丁烯-聚苯乙烯、聚苯乙烯-乙烯-苯乙烯、聚苯乙烯-二乙烯基苯-苯乙烯、聚苯乙烯-乙烯/丁烯-苯乙烯或聚苯乙烯-对苯二酚-苯乙烯中的一种;
所述聚苯乙烯四嵌段聚合物包括聚苯乙烯-异丁烯-乙烯-苯乙烯、聚苯乙烯-乙烯-苯乙烯-丁烯或聚苯乙烯-二乙烯基苯-乙烯-苯乙烯中的一种;
所述聚苯乙烯五嵌段聚合物包括聚苯乙烯-丁烯-苯乙烯-乙烯-苯乙烯、聚苯乙烯-乙烯-对苯二酚-乙烯-苯乙烯或聚苯乙烯-二乙烯基苯-苯乙烯-乙烯-苯乙烯中的一种;
所述聚苯乙烯六嵌段聚合物包括聚苯乙烯-丁烯-苯乙烯-乙烯-苯乙烯-乙烯、聚苯乙烯-乙烯-苯乙烯-丁烯-对苯二酚-苯乙烯或聚乙烯-苯乙烯-二乙烯基苯-苯乙烯-乙烯-苯乙烯中的一种;
所述聚苯乙烯七嵌段聚合物包括聚苯乙烯-异戊二烯-苯乙烯-丁二烯-苯乙烯-异戊二烯-苯乙烯、聚苯乙烯-乙烯-苯乙烯-丁烯-苯乙烯-对苯二酚-苯乙烯或聚乙烯-苯乙烯-二乙烯基苯-苯乙烯-乙烯-苯乙烯-丁烯中的一种;
所述步骤b中,交联剂为二甲氧基甲烷、1,4-二甲氧基苯或四氟对苯二甲醇;所述催化剂为无水三氯化铁、无水三氯化铝、无水四氯化锡或无水二氯化锌。
3.根据权利要求2所述的一种高交联高磺化度磺化芳香嵌段聚合物膜的制备方法,其特征在于,所述步骤a中,将芳香嵌段聚合物、铸膜液溶剂配制成质量分数为1~20%的嵌段聚合物溶液,完全溶解后,在聚四氟乙烯板上进行浇筑成嵌段聚合物膜;
将嵌段聚合物膜浸渍于质量分数为0.1~20%的磺化剂中,反应后将得到的磺化膜用去离子水洗涤至中性,得到磺化芳香嵌段聚合物膜。
4.根据权利要求2或3所述的一种高交联高磺化度磺化芳香嵌段聚合物膜的制备方法,其特征在于,所述步骤a中,在20~60℃下加入助溶剂;再加入磺化剂,在25~60℃下反应1~72h;得到干燥好的磺化芳香嵌段聚合物。
5.根据权利要求2或3所述的一种高交联高磺化度磺化芳香嵌段聚合物膜的制备方法,其特征在于,所述步骤a中,助溶剂为环己烷、环庚烷或甲苯中的一种;磺化剂为乙酰磺酸酯、发烟硫酸或三氧化硫中的一种;铸膜液溶剂为四氢呋喃、甲苯、己醇、1,2-二氯乙烷或三氯甲烷中的一种或多种。
6.根据权利要求2所述的一种高交联高磺化度磺化芳香嵌段聚合物膜的制备方法,其特征在于,所述步骤b中,将磺化芳香嵌段聚合物膜浸没于交联剂中,先在25~50℃下预交联1~10h,再在70~80℃下继续交联2~24h。
7.根据权利要求2所述的一种高交联高磺化度磺化芳香嵌段聚合物膜的制备方法,其特征在于,所述步骤b中,所述催化剂为无水三氯化铁、无水三氯化铝、无水四氯化锡或无水二氯化锌。
8.一种基于权利要求2或3所述方法制备的高交联高磺化度磺化芳香嵌段膜在燃料电池质子交换膜、水处理和空气除湿中应用。
CN202010671110.6A 2020-07-13 2020-07-13 一种高交联高磺化度磺化芳香嵌段聚合物膜的制备及应用 Active CN111718506B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010671110.6A CN111718506B (zh) 2020-07-13 2020-07-13 一种高交联高磺化度磺化芳香嵌段聚合物膜的制备及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010671110.6A CN111718506B (zh) 2020-07-13 2020-07-13 一种高交联高磺化度磺化芳香嵌段聚合物膜的制备及应用

Publications (2)

Publication Number Publication Date
CN111718506A CN111718506A (zh) 2020-09-29
CN111718506B true CN111718506B (zh) 2021-04-20

Family

ID=72572515

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010671110.6A Active CN111718506B (zh) 2020-07-13 2020-07-13 一种高交联高磺化度磺化芳香嵌段聚合物膜的制备及应用

Country Status (1)

Country Link
CN (1) CN111718506B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1772774A (zh) * 2005-11-08 2006-05-17 南京大学 含磺酸基复合功能超高交联吸附树脂的合成方法
WO2007010042A1 (en) * 2005-07-22 2007-01-25 Kraton Polymers Research B.V. Sulfonated block copolymers, method for making same, and various uses for such block copolymers
CN101663334A (zh) * 2007-01-19 2010-03-03 斯蒂潘公司 嵌段聚合物的磺化方法
CN106317742A (zh) * 2016-08-01 2017-01-11 中山大学 一种功能纳米网络结构聚合物材料及其制备方法与应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007010042A1 (en) * 2005-07-22 2007-01-25 Kraton Polymers Research B.V. Sulfonated block copolymers, method for making same, and various uses for such block copolymers
CN1772774A (zh) * 2005-11-08 2006-05-17 南京大学 含磺酸基复合功能超高交联吸附树脂的合成方法
CN101663334A (zh) * 2007-01-19 2010-03-03 斯蒂潘公司 嵌段聚合物的磺化方法
CN106317742A (zh) * 2016-08-01 2017-01-11 中山大学 一种功能纳米网络结构聚合物材料及其制备方法与应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Building bridges:Crosslinking of sulfonated aromatic polymers—A review";Hongying Hou等;《Journal of Membrane Science》;20121215;第423-424卷;第113-127页 *
"利用分子动力学模拟水和盐在磺化聚苯乙烯-乙烯/丁烯-苯乙烯膜内的扩散行为";纪松灿等;《西安交通大学学报》;20190228;第53卷(第2期);第170-178页 *

Also Published As

Publication number Publication date
CN111718506A (zh) 2020-09-29

Similar Documents

Publication Publication Date Title
Ding et al. Enhancing proton conductivity of polybenzimidazole membranes by introducing sulfonate for vanadium redox flow batteries applications
Higashihara et al. Sulfonated aromatic hydrocarbon polymers as proton exchange membranes for fuel cells
KR100657740B1 (ko) 브랜치된 술폰화 멀티 블록 공중합체 및 이를 이용한전해질막
Xing et al. Synthesis and characterization of poly (aryl ether ketone) copolymers containing (hexafluoroisopropylidene)-diphenol moiety as proton exchange membrane materials
KR100756821B1 (ko) 술폰화 멀티블록 공중합체 및 이를 이용한 전해질막
US7897692B2 (en) Sulfonated perfluorocyclobutane block copolymers and proton conductive polymer membranes
CN110224166B (zh) 一种磷酸掺杂交联型聚苯并咪唑高温质子交换膜及其制备方法
Kim et al. Characterization of the sulfonated PEEK/sulfonated nanoparticles composite membrane for the fuel cell application
CN101575417B (zh) 质子传导聚合物电解质和燃料电池
Chen et al. Robust poly (aryl piperidinium)/N-spirocyclic poly (2, 6-dimethyl-1, 4-phenyl) for hydroxide-exchange membranes
JP2003528420A (ja) 複合固体ポリマー電解質膜
Xu et al. Novel ether-free sulfonated poly (biphenyl) tethered with tertiary amine groups as highly stable amphoteric ionic exchange membranes for vanadium redox flow battery
CN102807668B (zh) 聚亚芳基类聚合物、该聚合物的制备方法、以及使用该聚合物的燃料电池用聚合物电解质膜
CA2548751C (en) Fluorinated comb-shaped polymers
Zhang et al. In-situ self-crosslinked sulfonated poly (arylene ether ketone) with alkyl side chain for enhanced performance
JP5018588B2 (ja) プロトン酸基含有ブロックコポリマー、及びその製造方法、並びに高分子電解質膜
Molavian et al. Two highly strong semi-IPNs for proton exchange membrane fuel cell (PEMFC) application
CN112126063B (zh) 一种聚苯并咪唑-聚硅氧烷嵌段共聚物及其制备方法与应用
Zhang et al. Guanidinium cationic covalent organic nanosheets-based anion exchange composite membrane for fuel cells
CN111718506B (zh) 一种高交联高磺化度磺化芳香嵌段聚合物膜的制备及应用
Yu et al. Facile fabrication of sulfonated poly (aryl ether sulfone)/polybenzoxazine crosslinked membrane for vanadium flow battery application
KR102180043B1 (ko) 다량의 술폰산기를 갖는 고분자가 도입된 양이온 교환막 복합소재용 그래핀 옥사이드
CN101759832B (zh) 一种主链全氟聚合物及其作为离子交换膜的应用
Guan et al. Synthesis and characterization of poly (aryl ether ketone) ionomers with sulfonic acid groups on pendant aliphatic chains for proton-exchange membrane fuel cells
KR101272661B1 (ko) 술폰화된 폴리(아릴렌 에테르) 공중합체, 이의 제조방법 및 이의 용도

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20231122

Address after: 710049 No. 28 West Xianning Road, Shaanxi, Xi'an

Patentee after: XI'AN JIAOTONG University

Patentee after: SHAANXI BEIYUAN CHEMICAL GROUP Co.,Ltd.

Address before: 710049 No. 28 West Xianning Road, Shaanxi, Xi'an

Patentee before: XI'AN JIAOTONG University

TR01 Transfer of patent right