CN111709065B - 一种复杂周边环境下超前深孔注浆钻孔孔距的确定方法 - Google Patents

一种复杂周边环境下超前深孔注浆钻孔孔距的确定方法 Download PDF

Info

Publication number
CN111709065B
CN111709065B CN202010378234.5A CN202010378234A CN111709065B CN 111709065 B CN111709065 B CN 111709065B CN 202010378234 A CN202010378234 A CN 202010378234A CN 111709065 B CN111709065 B CN 111709065B
Authority
CN
China
Prior art keywords
grouting
determining
existing
hole
tunnel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010378234.5A
Other languages
English (en)
Other versions
CN111709065A (zh
Inventor
黄欣
张京京
赵静波
冀国栋
陈一夫
岳长城
陈霞飞
彭澍
陈自龙
高飞鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Railway 18th Bureau Group Co Ltd
Original Assignee
China Railway 18th Bureau Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Railway 18th Bureau Group Co Ltd filed Critical China Railway 18th Bureau Group Co Ltd
Priority to CN202010378234.5A priority Critical patent/CN111709065B/zh
Publication of CN111709065A publication Critical patent/CN111709065A/zh
Application granted granted Critical
Publication of CN111709065B publication Critical patent/CN111709065B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/13Architectural design, e.g. computer-aided architectural design [CAAD] related to design of buildings, bridges, landscapes, production plants or roads
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/10Numerical modelling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/14Force analysis or force optimisation, e.g. static or dynamic forces

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Computational Mathematics (AREA)
  • Civil Engineering (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Architecture (AREA)
  • Lining And Supports For Tunnels (AREA)
  • Excavating Of Shafts Or Tunnels (AREA)

Abstract

本发明公开了一种复杂周边环境下超前深孔注浆钻孔孔距的确定方法,首先确定周边管线及既有隧道的基本信息;根据周边管线及既有隧道的基本信息对周边管线及既有隧道的结构安全性进行评价;现场开展试验注浆,对试验超前深孔注浆过程进行数值模拟计算,根据结果对比确定计算安全系数;通过数值模拟对超前深孔注浆引起周边管线及既有隧道变形的情况进行计算,根据既有管线和隧道的安全变形值,确定超前深孔注浆的注浆压力;结合注浆压力开展现场注浆试验;根据浆液扩散半径确定同一水平注浆点的孔距。本发明得出复杂周边环境下深孔注浆的钻孔孔距及注浆压力等参数,实现以合理的工程投入,保证注浆施工效果,同时保证既有管线及隧道的结构安全。

Description

一种复杂周边环境下超前深孔注浆钻孔孔距的确定方法
技术领域
本发明涉及超前深孔注浆技术领域,具体涉及一种针对复杂周边环境下进行超前深孔注浆钻孔孔距的确定方法。
背景技术
随着我国城市化进程的推进,城市地下空间建设飞速发展,地下工程经常会在复杂的周边环境下进行注浆施工。当地下工程采用矿山法施工时,需要对掌子面前方土体进行深孔注浆加固,注浆加固后随着浆液的凝固,被加固土体会产生隆起效应,经传递后会对周边既有管线或既有隧道造成影响,严重情况下可能导致安全事故的发生。
现有技术中,超前深孔注浆一般会采用较大的注浆压力来保证注浆效果,但会造成被加固土体变形过大而导致既有管线或隧道变形严重;若减小注浆压力,则浆液的扩散半径会减小,为保证注浆加固的效果,需要减小钻孔孔距,增加钻孔数量,从而带来钻孔操作困难及施工成本增加等问题。因此在复杂周边环境下进行暗挖施工深孔注浆时,关键需要确定合适的钻孔孔距,使其在尽量减小钻孔施工难度及施工成本的基础上,保证深孔注浆加固效果,从而减少施工对既有管线及既有线路隧道的扰动影响,充分保证施工安全。
发明内容
常规深孔注浆施工考虑到浆液的扩散半径一般可达到25cm左右,因此施工时钻孔孔距一般确定为50cm左右,从而保证其在较大的注浆压力下,周围土体可以实现被浆液充分加固的效果。但在复杂的周围环境下,如仍沿用常规的钻孔孔距以及注浆压力参数,注浆时可能导致周围土体隆起严重,从而加重既有管线或隧道的结构变形,导致安全事故发生。目前尚没有科学准确的方法来确定复杂周边环境下深孔注浆施工的钻孔孔距,因此需要一种适用于该条件下暗挖施工超前深孔注浆钻孔孔距的确定方法,实现在保证注浆加固效果的基础上,充分保证施工安全。
本发明的目的在于提出了一种复杂周边环境下暗挖施工超前深孔注浆钻孔孔距的确定方法。
本发明采用数值模拟和现场试验相结合的手段,确定复杂周边环境下暗挖施工超前深孔注浆合理的钻孔孔距,实现以合理的工程投入,保证注浆施工效果,同时保证既有管线及隧道的结构安全。
本发明采用的技术方案为一种复杂周边环境下超前深孔注浆钻孔孔距的确定方法,该方法的具体操作步骤如下:
S1确定周边管线及既有隧道的基本信息;
S2根据周边管线及既有隧道的基本信息对周边管线及既有隧道的结构安全性进行评价,确定其容许变形值L;
S3现场开展试验注浆,对试验超前深孔注浆过程进行数值模拟计算,根据数值模拟计算既有管线及隧道的沉降结果h及现场监测的沉降结果h0确定计算安全系数A=h/h0;
S4通过数值模拟对超前深孔注浆引起周边管线及既有隧道变形的情况进行计算,确定对应管线及隧道安全变形值S的注浆压力P,其中,S=AL。
S5结合注浆压力P开展现场注浆试验,根据浆液扩散的物探检测结果确定浆液的扩散半径R;
S6确定同一水平注浆点的孔距t=2R+2d-2d0,其中,d为钻孔半径,d0为钻孔最大孔偏距。
进一步地,S1的基本信息包括周边管线及既有隧道结构的用途、年限、材质、接口形式、空间位置及破坏标准。
进一步地,S3采用ANSYS软件对现场注浆及开挖过程进行模拟,建立周边管线及既有隧道的模型,并将周边管线及既有隧道的基本信息作为模型输入条件,并对周边管线及既有隧道的模型进行网格划分;根据周边管线及既有隧道沉降的现场监测结果和数值计算结果对比,确定计算安全系数A;
进一步地,S4通过数值模拟计算,得到注浆压力与既有隧道沉降量的规律曲线,结合既有管线和隧道的安全变形值,确定超前深孔注浆的注浆压力。
本发明采用数值模拟和现场试验相结合的手段,提出了一种复杂周边环境下超前深孔注浆钻孔孔距的确定方法,可以得出复杂周边环境下深孔注浆的钻孔孔距及注浆压力等参数,实现了以合理的工程投入,保证注浆施工效果,同时保证既有管线及隧道的结构安全。
附图说明
图1是本发明复杂周边环境下超前深孔注浆钻孔孔距确定方法流程图。
图2是复杂周边环境下超前深孔注浆钻孔孔距确定方法应用在某结构上的示意图。
图中,1为既有管线,2为既有隧道;3为暗挖施工掌子面;4为注浆范围。
具体实施方式
以下结合附图和实施例对本发明进行详细说明。
图1-2为本发明一种复杂周边环境下超前深孔注浆钻孔孔距确定方法的原理示意图和结构图。
下面结合附图及具体实施例对本发明作进一步的详细描述说明:
暗挖施工掌子面3周边环境复杂,主要包括既有管线1和既有隧道2,注浆范围4在非临近既有隧道一侧为拱顶初支结构外侧1.5m以及内侧0.5m范围,在临近既有隧道一侧为侧壁初支结构外侧1.5m以及内侧0.5m范围;
第一步,根据现场调查,既有管线1为D600热力管,管顶埋深3.5m;既有隧道2为运营地铁隧道结构,与暗挖施工隧道净距约3m;
第二步,对既有管线1和既有隧道2的结构安全性评价,一般可以参考施工监测要求。本实施例中,既有管线1的变形控制值为3mm,既有隧道2的变形控制值为2mm,为确保既有结构安全,取容许变形值L=2mm。
第三步,开展现场注浆试验,根据以往经验,注浆采用AC浆液(水泥+水玻璃+添加剂),注浆压力取0.8MPa,注浆孔间距取50cm;通过ANSYS软件对现场注浆及开挖过程进行数值模拟计算,计算模型上边界取至地面,下边界取至暗挖施工隧道底部5D长度,横向取至暗挖施工隧道中线两侧各3D长度,纵向沿暗挖施工隧道轴线取6D长度。数值计算分时步模拟开挖过程,通过调整注浆范围内地层参数来模拟注浆结果。注浆范围内地层采用莫尔-库伦模型,力学参数设置分为两种情况:第一种情况不考虑时间效应,直接采用最终强度参数进行计算;第二种情况考虑时间效应,注浆范围内地层的强度随开挖进行而逐渐增大至最终强度。本实施例中,现场监测既有隧道2的沉降量h0=2.6mm,数值模型按照不考虑时间效应和考虑时间效应两种情况分别进行计算,既有隧道2的沉降量h分别为1.6mm和2.4mm,即计算安全系数A=h/h0=0.6~0.9;
第四步,通过现场注浆试验及数值模拟计算的结果可确定既有管线1和既有隧道2的安全变形值S=AL=1.2~1.8mm。通过依次提高注浆压力的方式(注浆压力范围取0.3~0.8MPa,增加量为0.1MPa)进行多次数值模拟计算,根据数值计算结果绘制注浆压力与既有隧道沉降量的规律曲线,从而得到对应安全变形值S的注浆压力P=0.3~0.5MPa;
第五步,开展现场注浆试验,注浆压力分别取0.3MPa和0.5MPa,试验结束后检测浆液的扩散情况。物探检测结果表明当注浆压力为0.3MPa时,浆液的扩散半径R约为15cm;当注浆压力为0.5MPa时,浆液的扩散半径R约为19cm;
第六步,本实施例中,注浆钻孔深度为12m,钻孔半径d=21mm,钻孔最大孔偏距d0取36mm。根据公式t=2R+2d-2d0,可以得到当浆液扩散半径R=15cm时,同一水平注浆点的孔距t=27cm;当浆液扩散半径R=19cm时,同一水平注浆点的孔距t=35cm。

Claims (3)

1.一种复杂周边环境下超前深孔注浆钻孔孔距的确定方法,其特征在于:该方法的具体操作步骤如下:
S1确定周边管线及既有隧道的基本信息;
S2根据周边管线及既有隧道的基本信息对周边管线及既有隧道的结构安全性进行评 价,确定其容许变形值L;
S3现场开展试验注浆,对试验超前深孔注浆过程进行数值模拟计算,根据数值模拟计 算既有管线及隧道的沉降结果h及现场监测的沉降结果h0确定计算安全系数A=h/h0;
S4通过数值模拟对超前深孔注浆引起周边管线及既有隧道变形的情况进行计算,得到注浆压力与既有隧道沉降量的规律曲线,结合既有管线和隧道的安全变形值,确定对应管 线及隧道安全变形值S的注浆压力P,其中,S=AL;
S5结合注浆压力P开展现场注浆试验,根据浆液扩散的物探检测结果确定浆液的扩散 半径R;
S6确定同一水平注浆点的孔距t=2R+2d-2d0,其中,d为钻孔半径,d0为钻孔最大孔偏 距。
2.根据权利要求1所述的一种复杂周边环境下超前深孔注浆钻孔孔距的确定方法,其 特征在于:S1的基本信息包括周边管线及既有隧道结构的用途、年限、材质、接口形式、空间 位置及破坏标准。
3.根据权利要求1所述的一种复杂周边环境下超前深孔注浆钻孔孔距的确定方法,其 特征在于:S3采用ANSYS软件对现场注浆及开挖过程进行模拟,建立周边管线及既有隧道的 模型,并将周边管线及既有隧道的基本信息作为模型输入条件,并对周边管线及既有隧道 的模型进行网格划分;根据周边管线及既有隧道沉降的现场监测结果和数值计算结果对 比,确定计算安全系数A
CN202010378234.5A 2020-05-07 2020-05-07 一种复杂周边环境下超前深孔注浆钻孔孔距的确定方法 Active CN111709065B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010378234.5A CN111709065B (zh) 2020-05-07 2020-05-07 一种复杂周边环境下超前深孔注浆钻孔孔距的确定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010378234.5A CN111709065B (zh) 2020-05-07 2020-05-07 一种复杂周边环境下超前深孔注浆钻孔孔距的确定方法

Publications (2)

Publication Number Publication Date
CN111709065A CN111709065A (zh) 2020-09-25
CN111709065B true CN111709065B (zh) 2022-12-20

Family

ID=72536589

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010378234.5A Active CN111709065B (zh) 2020-05-07 2020-05-07 一种复杂周边环境下超前深孔注浆钻孔孔距的确定方法

Country Status (1)

Country Link
CN (1) CN111709065B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114908732B (zh) * 2022-05-18 2023-08-22 郑州大学 一种地下空洞多注浆孔充填修复方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101768958A (zh) * 2009-12-30 2010-07-07 河北钢铁集团矿业有限公司 一种矿山单排孔帷幕注浆钻孔孔距确定方法
KR101392995B1 (ko) * 2013-09-04 2014-05-27 장해동 차수 향상을 위한 흙막이 공법
CN105909265A (zh) * 2016-06-12 2016-08-31 中铁十九局集团轨道交通工程有限公司 穿越既有盾构隧道防隆起后退式深孔注浆系统及方法
CN108442943A (zh) * 2018-03-05 2018-08-24 北京市政建设集团有限责任公司 一种渡线段隧道双侧壁导坑法施工方法
CN108920851A (zh) * 2018-07-10 2018-11-30 山东科技大学 一种基于目标支承压力的卸压钻孔间距确定方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101768958A (zh) * 2009-12-30 2010-07-07 河北钢铁集团矿业有限公司 一种矿山单排孔帷幕注浆钻孔孔距确定方法
KR101392995B1 (ko) * 2013-09-04 2014-05-27 장해동 차수 향상을 위한 흙막이 공법
CN105909265A (zh) * 2016-06-12 2016-08-31 中铁十九局集团轨道交通工程有限公司 穿越既有盾构隧道防隆起后退式深孔注浆系统及方法
CN108442943A (zh) * 2018-03-05 2018-08-24 北京市政建设集团有限责任公司 一种渡线段隧道双侧壁导坑法施工方法
CN108920851A (zh) * 2018-07-10 2018-11-30 山东科技大学 一种基于目标支承压力的卸压钻孔间距确定方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Investigation and cement grouting of Big Creek Tunnel 2:A leaking historic hydroelectirc tunnel;Van Horsen D;《North American Tunneling 2008,Proceedings》;20080630;75-80 *
暗挖重叠地铁隧道地表变形特性分析;台启民等;《岩石力学与工程学报》;20141231;第33卷(第12期);2472-2480 *

Also Published As

Publication number Publication date
CN111709065A (zh) 2020-09-25

Similar Documents

Publication Publication Date Title
Wang et al. Comparative study of model tests on automatically formed roadway and gob-side entry driving in deep coal mines
Huang et al. Application and prospect of hard rock TBM for deep roadway construction in coal mines
Kun et al. Influence of the fault zone in shallow tunneling: A case study of Izmir Metro Tunnel
Yu et al. Optimization of combined support in soft-rock roadway
CN103293560B (zh) 一种采动三向应力场的测试方法
Feng et al. Rock mechanics contributions to recent hydroelectric developments in China
CN105631102A (zh) 一种深部高应力巷道钻孔卸压参数的数值模拟确定方法
Mu et al. Long-term deformation and control structure of rheological tunnels based on numerical simulation and on-site monitoring
CN111058855A (zh) 一种盾构下穿的结构物的形变控制方法及评估系统
CN106372297B (zh) 砂土岩溶地层中盾构与溶洞安全垂直距离的确定方法
CN109611109B (zh) 隧道tbm施工过破碎带灾害源超前控制方法及系统
CN111551427A (zh) 一种深埋长隧洞软质岩大变形超前量化预报方法
CN115510527A (zh) 基于安全度指标的隧洞围岩稳定性判别和量化评估方法
CN112576265A (zh) 一种盾构下穿老旧村庄沉降控制方法
Losacco et al. Class A prediction of mechanised tunnelling in Rome
Meng et al. In situ investigation and numerical simulation of the failure depth of an inclined coal seam floor: a case study
CN111709065B (zh) 一种复杂周边环境下超前深孔注浆钻孔孔距的确定方法
CN108868777B (zh) 一种隧道不良地质围岩综合探治施工方法
Shi et al. Failure mechanism analysis for tunnel construction crossing the water-rich dense fracture zones: A case study
Zhou et al. Stability predictions for excavations of mountain tunnels based on [BQ] method and its field verification
Yahya et al. A review on methods of predicting tunneling induced ground settlements
CN114969884B (zh) 一种盾构隧道开挖过程及地表变形三维有限差分数值模拟方法
Wen et al. The use of Hoek Brown failure criterion on determination of the geo-mechanical parameters of a grouting consolidation body
CN114593927A (zh) 一种利用中间风井进行盾构隧道原型试验的方法
Sun et al. Numerical simulation of a deep excavation near a shield tunnel

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant