CN111704116A - 一种FeNi复合吸波材料及制备工艺 - Google Patents

一种FeNi复合吸波材料及制备工艺 Download PDF

Info

Publication number
CN111704116A
CN111704116A CN202010111653.2A CN202010111653A CN111704116A CN 111704116 A CN111704116 A CN 111704116A CN 202010111653 A CN202010111653 A CN 202010111653A CN 111704116 A CN111704116 A CN 111704116A
Authority
CN
China
Prior art keywords
feni
powder
absorbing material
wave
composite wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN202010111653.2A
Other languages
English (en)
Inventor
于仁萍
宫晓峰
赵斌
张卫珂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yantai Vocational College
Original Assignee
Yantai Vocational College
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yantai Vocational College filed Critical Yantai Vocational College
Priority to CN202010111653.2A priority Critical patent/CN111704116A/zh
Publication of CN111704116A publication Critical patent/CN111704116A/zh
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/072Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with aluminium
    • B22F1/0003
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • H05K9/0083Electromagnetic shielding materials, e.g. EMI, RFI shielding comprising electro-conductive non-fibrous particles embedded in an electrically insulating supporting structure, e.g. powder, flakes, whiskers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Electromagnetism (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

本发明提供了一种FeNi复合吸波材料,按质量计,包括3‑15%FeNi、30‑70%CNOs、10‑30%AlN,本复合吸波材料改进成分及配比,拓宽了总吸收频段,大幅提高了吸波性能,并提供制备工艺,通过气相沉积法原位合成FeNi复合吸波材料,提高纳米碳在AlN基体中的分散性,降低高损耗组元纳米碳材料的粒度,进一步提高所制备复合材料的吸波性能。

Description

一种FeNi复合吸波材料及制备工艺
技术领域
本发明涉及吸波领域,尤其涉及一种FeNi复合吸波材料及制备工艺。
背景技术
为了治理电磁污染,找到一种吸收或削弱电磁辐射的材料,已成为一个重要研究方向。氮化铝陶瓷因其化学性质稳定、环境友好,以及具有高的导热率和适中的介电系数以及高的电阻率等优点,在吸波领域被认为是替代基于氧化铍的吸波陶瓷的最佳候选材料。
近年来基于氮化铝陶瓷,通过添加金属粉体制备的AlN-金属体系或添加陶瓷粉体制备的AlN-陶瓷体系(如SiC)吸波材料大量涌现,成为目前主要的研究热点,但,在制备过程中,由于金属与陶瓷密度相差大,难于均匀分散,容易造成金属颗粒联通造成AlN陶瓷体的绝缘性能降低,陶瓷粉体加入易于形成固溶体导致AlN基体热导率下降,这就极大地限制了该吸波材料的均一性与实际应用,需另寻途径改进。
发明内容
针对上述问题,本申请文件第一方面提供一种FeNi复合吸波材料,技术方案是:
一种FeNi复合吸波材料,按质量计,包括3-15%FeNi、30-70%CNOs、 10-30%AlN。
本复合吸波材料改进成分及配比,拓宽了总吸收频段,大幅提高了吸波性能。
在一实施例中,至少部分复合吸波材料中,CNOs弥散在AlN颗粒周围。
从微观形貌上看,复合材料分散较为均匀,部分或全部材料中,CNOs弥散在AlN颗粒周围,吸波性能进一步提升。
在一实施例中,至少部分复合吸波材料中,CNOs颗粒内部包含FeNi颗粒,提高了材料的复磁导率和阻抗匹配程度,进一步提升材料的吸波性能。
更佳地,AlN粉体粒径:1μm-3μm,CNOs粉体粒径:150nm-250nm,FeNi 粉体粒径:5-15nm,提升材料的吸波性能。
本申请文件第二方面提供一种FeNi复合吸波材料的制备工艺,将Al4C3粉体与占总质量5wt%-20wt%的FeNi粉体混合于容器中,通入氨气,温度:1150℃ -1250℃,反应7-9h,冷却后得到复合吸波材料。
通过上述气相沉积法原位合成FeNi复合吸波材料,提高纳米碳在AlN基体中的分散性,降低高损耗组元纳米碳材料的粒度,进一步提高所制备复合材料的吸波性能。
更佳地,其中氨气通入速度:45-55sccm,优选50sccm。
具体制备过程中,优选容器为电阻炉,更佳地,选用管式电阻炉,当然也可选用其它加热装置。
在一实施例中,Al4C3粉体制备步骤如下:
1)将铝粉、石墨粉混合,真空球磨;
2)将步骤1)中球磨后的混合粉料在惰性气体保护下升温至750℃-850℃反应2.5-3.5h。
更佳地,惰性气体为氩气,通入速度45-55sccm,优选50sccm。
更佳地,按质量计,铝粉与石墨粉比例(3-3.5):1。
更佳地,步骤1)中真空球磨,直至粉体粒径在5-15nm范围,更佳地在球磨罐中进行磨料,其中球料比10:1,转速380rpm。
发明的有益效果:本发明改进FeNi复合吸波材料的成分及制备工艺,提升材料的吸波性能。
附图说明
图1:XRD衍射谱图。
图2:SEM扫描图;
图3:EDS分析图;
图4:磁滞回线图;
图5:样品的损耗因子(tanδ)随频率变化的关系曲线图;
图6:样品涂覆不同厚度的吸波涂层对不同频率的电磁波反射损耗RL(dB) 图。
具体实施方式
以下结合附图,对本发明的具体实施方式作进一步详述,以使本发明技术方案更易于理解和掌握。
一、制备FeNi复合吸波材料
采用气相沉积法原位合成符合吸波材料,具体反应过程如下:
4Al+3C→Al4C3 (1)
Al4C3+4NH3→4AlN+3CH4 (2)
CH4→C+2H2 (3)
总反应为:4Al+3C+4NH3→4AlN+3C+6H2 (4)
实施例1
步骤1)称取50g的铝粉,15g的石墨粉,置于球磨罐中,抽真空后球磨8h (球料比10:1,转速380rmp),粉体粒径在5-15nm范围。
步骤2)随后将球磨后的粉料置于管式电阻炉中,通入氩气(50sccm),加热到800℃保温3h,反应结束后即可得到Al4C3
步骤3)冷却后将步骤2中制备的Al4C3粉体取出,与6.5g的FeNi(10wt%) 催化剂均匀混合后再置于管式电阻炉内,通入氨气(50sccm),1200℃保温 8h,随炉冷却后即可得到FeNi@CNOs/AlN复合吸波材料。
实施例2
步骤1)按质量称取3:1比例的铝粉、石墨粉,置于球磨罐中,抽真空后球磨8h(球料比10:1,转速380rmp),粉体粒径在5-15nm范围。
步骤2)随后将球磨后的粉料置于管式电阻炉中,通入氩气(45sccm),加热到750℃保温2.5h,反应结束后即可得到制备的Al4C3
步骤3)冷却后将步骤2中制备的Al4C3粉体取出,与3g的FeNi(5wt%)催化剂均匀混合后再置于管式电阻炉内,通入氨气(45sccm),1150℃保温7h,随炉冷却后即可得到FeNi@CNOs/AlN复合吸波材料。
实施例3
步骤1)按质量称取3.5:1比例的铝粉、石墨粉,置于球磨罐中,抽真空后球磨8h(球料比10:1,转速380rmp),粉体粒径在5-15nm范围。
步骤2)随后将球磨后的粉料置于管式电阻炉中,通入氩气(55sccm),加热到850℃保温3.5h,反应结束后即可得到制备的Al4C3
步骤3)冷却后将步骤2中制备的Al4C3粉体取出,与9g的FeNi(15wt%) 催化剂均匀混合后再置于管式电阻炉内,通入氨气(55sccm),1250℃保温 8.5h,随炉冷却后即可得到FeNi@CNOs/AlN复合吸波材料。
二、材料表征
1、采用D8 ADVANCE型X-射线衍射仪(XRD)对样品物相组成分析
测试条件:Cu靶Kα射线,波长0.15406nm,扫描步长0.02℃,扫面范围5~80℃。
物相组成分析是通过XRD衍射图谱与标准PDF卡片对比,从而分析样品的成分和结晶程度。
参考图1,可以看出,所有样品的衍射峰谱线均有AlN生成,分别与(100)、 (002)、(101)、(102)、(110)、(103)、(200)、(112)、(201)晶面相对应,与标准比对卡片(pdfno.25.-1133)相吻合。随着FeNi催化剂含量的增加,26.2°和44.6°附近出现的衍射峰分别对应CNOs的(002)和(101)晶面,43°附近出现的衍射峰对应为FeNi合金催化剂衍射峰。由此可以看出,在该温度下,成功地反应合成了FeNi@CNOs/AlN复合材料。
2、采用XL-30型扫描电子显微镜(SEM)分析晶体的形貌、微观结构及粒径大小。
参考图2,从图中可以看出,所合成的复合材料分散较为均匀,AlN颗粒圆片状,尺寸在2um左右,CNOs为球形,尺寸在200nm左右且均匀地弥散在AlN 颗粒周围。
对所制备样品做EDS分析(如图3所示)同样证实了CNOs为原位在AlN粉体上生长。
3、采用HP8722ES矢量网络分析仪(VNA)测试样品的电磁参数(μr,εr)
测试条件:在1~18GHz频率范围。
并结合仪器参数和样品参数,利用MATLAB软件编程进行数值模拟计算,计算出相应的吸波反射率与频率的关系曲线,计算式如下所示
Figure RE-GDA0002639138220000051
式中:RL为反射损耗;d为测试时材料的厚度,单位为m;f为入射电磁波的频率,单位为GHz;c为光速,约等于3×108m/s。
3.1、磁性能分析,
参考图4,其磁滞回线,从图中可以看出,磁性CNOs为典型的铁磁体,其 Ms在65emu·g-1左右,Mr为16.5emu·g-1,矫顽力Hc在220Oe以上。原位合成后的复合材料磁滞回线,从图中可以看出,由于AlN的存在在一定程度上降低了Ms和Hc值,但仍能保留CNOs本身的交大的磁滞损耗,提高复合材料的电磁波吸收性能。
3.2、电磁参数与吸波性能
吸波材料的损耗因子(tanδ)代表材料对电磁波吸收衰减能力,损耗因子越大,材料的吸波性能就越好。损耗因子可以用下式表示:
tanδ=tanδm+tanδe
式中:tanδm代表吸波材料磁滞损耗正切(tanδm=μ″/μ′),tanδe代表吸波材料介电损耗正切(tanδe=ε″/ε′)
如图5所示,不同FeNi含量会影响样品的损耗因子。随着频率的增加,所有样品的损耗因子整体变化趋势为先增加后减少,当FeNi含量在10wt%时,在13GHz处损耗因子达最大值为0.37。
如图6所示,随着涂层厚度的增加所制备的样品的电子波均呈现出吸收峰向低频区迁移的趋势,且RL逐渐增大,FeNi含量为10wt%和15wt%的样品在考察范围内要优于5wt%含量的样品。吸波涂层通常要求要在2mm,因此对比发现 FeNi含量在10wt%时,吸波性能最优,13.2GHz下RL达到-23dB,这说明99.99%的电磁波在该频率下被吸收。且在8.29-15.32GHz范围内,其RL值均低于-10dB。
三、结论
(1)以上述制备工艺合成纳米碳为具有FeNi磁性芯的CNOs。
(2)所制备FeNi@CNOs/AlN复合材料具有良好的吸波特性。
当然,以上仅是本发明的具体应用范例,对本发明的保护范围不构成任何限制。凡采用等同变换或者等效替换而形成的技术方案,均落在本发明权利保护范围之内。

Claims (10)

1.一种FeNi复合吸波材料,其特征在于,按质量计,包括3-15%FeNi、30-70%CNOs、10-30%AlN。
2.根据权利要求1所述的一种FeNi吸波材料,其特征在于,至少部分复合吸波材料中,CNOs弥散在AlN颗粒周围。
3.根据权利要求1所述的一种FeNi吸波材料,其特征在于,至少部分复合吸波材料中,CNOs颗粒内部包含FeNi颗粒。
4.根据权利要求1所述的一种FeNi吸波材料,其特征在于,AlN粉体粒径:1μm-3μm,CNOs粉体粒径:150nm-250nm,FeNi粉体粒径:5-20nm。
5.一种FeNi复合吸波材料的制备工艺,其特征在于,将Al4C3粉体与占总质量5wt%-20wt%的FeNi粉体混合于容器中,通入氨气,温度:1150℃-1250℃,反应7-9h,冷却后得到复合吸波材料。
6.根据权利要求5所述的一种FeNi复合吸波材料的制备工艺,其特征在于,其中氨气通入速度:45-55sccm。
7.根据权利要求5所述的一种FeNi复合吸波材料的制备工艺,其特征在于,Al4C3粉体制备步骤如下:
1)将铝粉、石墨粉混合,真空球磨;
2)将步骤1)中球磨后的混合粉料在惰性气体保护下升温至750℃-850℃反应2.5-3.5h。
8.根据权利要求7所述的一种FeNi复合吸波材料的制备工艺,其特征在于,惰性气体为氩气,通入速度45-55sccm。
9.根据权利要求7所述的一种FeNi复合吸波材料的制备工艺,其特征在于,按质量计,铝粉与石墨粉比例(3-3.5):1。
10.根据权利要求7所述的一种FeNi复合吸波材料的制备工艺,其特征在于,步骤1)中真空球磨,直至粉体粒径在5-15nm范围。
CN202010111653.2A 2020-02-24 2020-02-24 一种FeNi复合吸波材料及制备工艺 Withdrawn CN111704116A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010111653.2A CN111704116A (zh) 2020-02-24 2020-02-24 一种FeNi复合吸波材料及制备工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010111653.2A CN111704116A (zh) 2020-02-24 2020-02-24 一种FeNi复合吸波材料及制备工艺

Publications (1)

Publication Number Publication Date
CN111704116A true CN111704116A (zh) 2020-09-25

Family

ID=72536201

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010111653.2A Withdrawn CN111704116A (zh) 2020-02-24 2020-02-24 一种FeNi复合吸波材料及制备工艺

Country Status (1)

Country Link
CN (1) CN111704116A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113680388A (zh) * 2021-07-08 2021-11-23 烟台职业学院 一种催化剂及其制备方法和应用

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113680388A (zh) * 2021-07-08 2021-11-23 烟台职业学院 一种催化剂及其制备方法和应用

Similar Documents

Publication Publication Date Title
Feng et al. Synthesis of a hierarchical carbon fiber@ cobalt ferrite@ manganese dioxide composite and its application as a microwave absorber
Feng et al. Fabrication of NiFe 2 O 4@ carbon fiber coated with phytic acid-doped polyaniline composite and its application as an electromagnetic wave absorber
CN111392771B (zh) 壳层形貌可控的核壳结构氮掺杂碳包覆二氧化钛微球复合材料及其制备和应用
Ge et al. Optimizing the electromagnetic wave absorption performance of designed hollow CoFe2O4/CoFe@ C microspheres
Ren et al. Improved mechanical and microwave absorption properties of SiCf/SiC composites with SiO2 filler
Sun et al. Synthesis and microwave absorbing properties of SiC nanowires
Zhu et al. Porous Structure Fibers Based on Multi‐Element Heterogeneous Components for Optimized Electromagnetic Wave Absorption and Self‐Anticorrosion Performance
Cui et al. Carbon-encapsulated core–shell structure ZnFe 2 O 4 sphere composites coupled with excellent microwave absorption and corrosion resistance
CN114449877A (zh) 一种核壳Ni/Co合金@氮掺杂碳基吸波复合材料及其制备方法
CN111704116A (zh) 一种FeNi复合吸波材料及制备工艺
Yan et al. 3D-Printed (CoCrFeMnNi) 3O4@ C-GR dual core–shell composites: Multilevel control and mechanisms of microwave absorption performance
Qin et al. MOF-derived Co/ZnO/C nanocomposites with excellent microwave absorption properties
Liang et al. Preparation and properties of lightweight, conformal, and load‐bearing TiC/Si3N4 absorbing composites by gel casting
Jia et al. Electromagnetic wave absorption of polymer derived ceramic composites tuned by multi-component oxide solid solution
CN113277567B (zh) 一种介观有序排布且被碳包覆的四氧化三铁纳米复合材料的制备方法及应用
CN113816421B (zh) 锑锡氧化物/还原氧化石墨烯多功能气凝胶及制备方法
CN112573925B (zh) 高性能电磁屏蔽NdB6/SiO2复相陶瓷材料及其制备方法
Li et al. One-pot synthesis of FeCo alloy and iron borate composite nanorods with excellent electromagnetic wave absorption properties
Zhang et al. Electromagnetic and microwave absorption properties of Ti 3 SiC 2/NiFe 2 O 4/epoxy resin coatings
Tian et al. Resonance loss due to the polarization accumulation effect induced by phosphorus vacancies for enhancing electromagnetic wave absorption
Li et al. Enhanced microwave absorption of reduced graphene oxide/Ni0. 4Zn0. 4Co0. 2Fe2O4 composite at ultrathin thickness
Duan et al. Carbon vacancies regulation strategy for boosting the high-temperature microwave absorption performance of (Co 0.2 Mo 0.2 V 0.2 Nb 0.2 Ta 0.2) C x high-entropy carbides
Xu et al. A kind of Fe3N alloy powders prepared by high-temperature chemical nitriding treatment with excellent wave-absorbing properties in C band
Yao et al. Co/CeO 2/C composites derived from bimetallic metal–organic frameworks for efficient microwave absorption
Si et al. A multi-layer core–shell structure CoFe 2 O 4@ Fe 3 C@ NiO composite with high broadband electromagnetic wave-absorption performance

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication
WW01 Invention patent application withdrawn after publication

Application publication date: 20200925