CN111703580A - 电推进旋翼飞行器动力系统及其控制方法 - Google Patents

电推进旋翼飞行器动力系统及其控制方法 Download PDF

Info

Publication number
CN111703580A
CN111703580A CN202010468701.3A CN202010468701A CN111703580A CN 111703580 A CN111703580 A CN 111703580A CN 202010468701 A CN202010468701 A CN 202010468701A CN 111703580 A CN111703580 A CN 111703580A
Authority
CN
China
Prior art keywords
power
aircraft
lithium battery
super capacitor
inverter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010468701.3A
Other languages
English (en)
Other versions
CN111703580B (zh
Inventor
陈方
田沛东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Jiaotong University
Original Assignee
Shanghai Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Jiaotong University filed Critical Shanghai Jiaotong University
Priority to CN202010468701.3A priority Critical patent/CN111703580B/zh
Publication of CN111703580A publication Critical patent/CN111703580A/zh
Priority to PCT/CN2020/124377 priority patent/WO2021238047A1/zh
Application granted granted Critical
Publication of CN111703580B publication Critical patent/CN111703580B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plant in aircraft; Aircraft characterised thereby
    • B64D27/02Aircraft characterised by the type or position of power plant
    • B64D27/24Aircraft characterised by the type or position of power plant using steam, electricity, or spring force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/40Electric propulsion with power supplied within the vehicle using propulsion power supplied by capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/10Propulsion
    • B64U50/19Propulsion using electrically powered motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/10Air crafts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • B64U2201/20Remote controls
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/44The network being an on-board power network, i.e. within a vehicle for aircrafts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种电推进旋翼飞行器动力系统及其控制方法,所述的飞行器动力系统包括融合储能系统、无刷直流电机调速器、无刷直流电机、安装在所述无刷直流电机上的螺旋桨、飞控计算机、飞行器惯性传感器、高度传感器以及遥控信号接收器。本发明飞行器动力系统能够预测飞行器功率需求,以达到较好的管理储能系统的功率输出。通过该动力系统控制方法,能够以更低重量的动力系统满足飞行器实时功率需求和功率储备需求,同时,该动力系统控制方法还能延长能源系统使用寿命,使得飞行器安全性、机动性和续航能力提高。

Description

电推进旋翼飞行器动力系统及其控制方法
技术领域
本发明涉及飞行器,特别是一种电推进旋翼飞行器动力系统及其控制方法。
背景技术
我们正处于电动发动机革命的前夜,电能替换传统的能源形式是必然的发展方向,普及电推进势必打破目前传统飞机和发动机制造的格局。电推进技术优势显著,基于电推进的自主载人飞行器是城市空中交通解决方案的技术发展方向。纯电驱动动力系统是电推进飞行器的核心技术。
随着近年来新能源领域的快速发展,对各类储能单元的研究已经趋于成熟,但各个储能单元都具有本身不可避免的缺陷。其中,锂电池具有高能量密度的优势,但比功率较低、循环寿命较短等缺陷,因此其能量释放的能力较差;超级电容具有高功率密度的优势,但比能量参数方面处于明显劣势,因此储能性能较差。
现阶段电推进系统在飞行器上应用的主要瓶颈是飞行器不同飞行状态功率需求差异大,传统的基于单一储能元件的动力系统无法同时兼顾高输出效率和快速响应飞行器快速变化的功率需求。例如,目前电推进飞行器动力系统广泛采用基于锂电池的动力系统,面对飞行器不同飞行模式功率需求的大幅变化具有响应速度慢,导致功率匹配效果差、电池寿命损耗高等缺陷。
发明内容
本发明目的是提供一种电推进旋翼飞行器动力系统及其控制方法。实现在满足对飞行器功率需求快速响应的基础上,同时实现动力系统的高效率输出。因此本发明的核心在于飞行器功率需求和储能系统功率输出的匹配。通过基于飞行器飞行模式识别的动力系统控制方法,飞行器动力系统能够预测飞行器功率需求,以达到较好的管理储能系统的功率输出的目的。
通过该动力系统控制方法,能够以更低重量的动力系统满足飞行器实时功率需求和功率储备需求,同时,该动力系统控制方法还能延长能源系统使用寿命,使得飞行器安全性、机动性和续航能力提高。
本发明的技术解决方案如下:
一种电推进旋翼飞行器动力系统,其特点在于该飞行器动力系统包括融合储能系统、无刷直流电机调速器、无刷直流电机、安装在所述无刷直流电机上的螺旋桨、飞控计算机、飞行器惯性传感器、高度传感器以及遥控信号接收器;
所述的无刷直流电机调速器由第一交流逆变器、第二交流逆变器、第三交流逆变器、第四交流逆变器构成,所述的飞行器惯性传感器、高度传感器以及遥控信号接收器的输出端与所述的飞控计算机相连,所述的融合储能系统包括锂电池和超级电容,所述的超级电容的输出端采用双向DC/DC交换器控制能量流向,并与所述的锂电池并联,所述的锂电池并联的电压传感器的输出端与所述的飞控计算机的输入端相连,所述的超级电容并联的电压传感器的输出端与所述的飞控计算机的输入端相连,所述的锂电池的正极分别与所述的第一交流逆变器、第二交流逆变器、第三交流逆变器、第四交流逆变器的输入端的正极相连,所述的锂电池的负极分别与所述的第一交流逆变器、第二交流逆变器、第三交流逆变器、第四交流逆变器的输入端的负极相连,所述的第一交流逆变器、第二交流逆变器、第三交流逆变器、第四交流逆变器的输出端与所述的第一无刷直流电机、第二无刷直流电机、第三无刷直流电机、第四无刷直流电机一一对应相连,所述的飞控计算机的控制输出端分别与所述的双向DC/DC交换器、第一交流逆变器、第二交流逆变器、第三交流逆变器、第四交流逆变器的控制端相连。
所述的飞行器高度传感器为超声波距离传感器或气压高度计。
上述电推进旋翼飞行器动力系统的控制方法,其特点在于该方法包括下列步骤:
1)飞行器飞行模式识别及功率预测,包括:
①所述的飞控计算机采集所述的飞行器惯性传感器的数据并滤波,得到飞行器姿态角
Figure BDA0002513527240000021
θ,ψ,飞行器机体坐标系下三轴加速度ax,ay,az,飞行器机体坐标系下三轴角速度ωx,ωy,ωz及角加速度p,q,r信息,采集所述的飞行器高度传感器的数据并滤波,得到飞行器距离地面高度信息h;
②基于飞行器惯性传感器数据,所述的飞行控制计算机判别飞行器的飞行速度变化模式,姿态变化模式,高度变化模式;
③所述的飞行控制计算机结合飞行器控制指令输入,依据预设权重值预测飞行器功率需求类别是低功率,瞬时高功率,还是长时高功率;
2)所述的飞行控制计算机按照飞行器功率需求类别,对锂电池和超级电容工作模式进行分级设定:锂电池的工作模式划分为预设输出功率为P1,P2,P3,P4的4个级别且P1<P2<P3<P4,超级电容的工作模式划分为断开、放电、缓慢充电、较快速充电和快速充电5个模式,用SOC表示超级电容荷电状态,定义分级超级电容荷电状态:一级SOC的上限为H1,二级SOC的上限为H2,一级SOC的下限为L1,二级SOC的下限为L2且0<L2<L1<H1<H2<100%,所述的锂电池和超级电容工作模式的判定方式如下:
若此时飞行器功率需求类别为低功耗:
判定SOC>H2,则锂电池预设输出功率设定为P1,超级电容工作模式为断开;
判定H1<SOC<H2,则锂电池预设输出功率设定为P2,超级电容工作模式为缓慢充电;
判定L1<SOC<H2,则锂电池预设输出功率设定为P3,超级电容工作模式为较快速充电;
判定SOC<L1,则锂电池预设输出功率设定为P4,超级电容工作模式为快速充电;
若此时飞行器功率需求类别为瞬时高功耗:
判断SOC>L2,则锂电池预设输出功率设定为P3,超级电容工作模式为放电;
判断SOC<L2,则锂电池预设输出功率设定为P4,超级电容工作模式为断开;
若此时飞行器功率需求类别为长时高功耗:
判断SOC>L1,则锂电池预设输出功率设定为P3,超级电容工作模式为放电;
判断SOC<L1,则锂电池预设输出功率设定为P4,超级电容工作模式为断开;
3)锂电池和超级电容输出功率设定:基于滤波算法使锂电池输出功率平滑,采用超级电容补足缺少的功率或储存过剩的功率,使得总功率输出满足飞行器功率需求的同时,锂电池输出波动较小且接近步骤2)所述的锂电池预设输出功率;
4)通过所述的双向DC\DC交换器控制所述的超级电容的功率输出,通过所述的第一交流逆变器、第二交流逆变器、第三交流逆变器、第四交流逆变器控制能源系统的整体功率输出,驱动所述的第一无刷直流电机、第二无刷直流电机、第三无刷直流电机、第四无刷直流电机,为所述的螺旋桨提供所需动力。
本发明的技术效果如下:
1、本发明实现在满足对飞行器功率需求快速响应的基础上,同时实现动力系统的高效率输出。因此本发明的核心在于飞行器功率需求和储能系统功率输出的匹配。通过基于飞行器飞行模式识别的动力系统控制方法,飞行器动力系统能够预测飞行器功率需求,以达到较好的管理储能系统的功率输出的目的。
2、通过该动力系统控制方法,能够以更低重量的动力系统满足飞行器实时功率需求和功率储备需求,同时,该动力系统控制方法还能延长能源系统使用寿命,使得飞行器安全性、机动性和续航能力提高。
附图说明
图1是本发明动力系统的电路结构及控制信号示意图;
图2是本发明所述动力系统控制方法工作原理流程图;
图3是本发明所述飞行器模式识别方法原理流程图;
图4是本发明所述锂电池和超级电容工作模式设定方法原理流程图;
具体实施方式
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变化和改进。这些都属于本发明的保护范围。
下面结合图1-4说明本具体实施方式。先请参阅图1,由图可见,本发明基于飞行模式识别的电推进旋翼飞行器动力系统,包括:融合储能系统、无刷直流电机调速器、无刷直流电机、安装在所述无刷直流电机上的螺旋桨、飞控计算机、飞行器惯性传感器、高度传感器以及遥控信号接收器;所述的无刷直流电机调速器由第一交流逆变器、第二交流逆变器、第三交流逆变器、第四交流逆变器构成,所述的飞行器惯性传感器、高度传感器以及遥控信号接收器的输出端与所述的飞控计算机相连,所述的融合储能系统包括锂电池和超级电容,所述的超级电容的输出端采用双向DC/DC交换器控制能量流向,并与所述的锂电池并联,所述的锂电池并联的电压传感器的输出端与所述的飞控计算机的输入端相连,所述的超级电容并联的电压传感器的输出端与所述的飞控计算机的输入端相连,所述的锂电池的正极分别与所述的第一交流逆变器、第二交流逆变器、第三交流逆变器、第四交流逆变器的输入端的正极相连,所述的锂电池的负极分别与所述的第一交流逆变器、第二交流逆变器、第三交流逆变器、第四交流逆变器的输入端的负极相连,所述的第一交流逆变器、第二交流逆变器、第三交流逆变器、第四交流逆变器的输出端分别与所述的第一无刷直流电机、第二无刷直流电机、第三无刷直流电机、第四无刷直流电机相连,其中交流逆变器的输出端三相接头分别与无刷直流电机的三相接头相接,接头不区分特定连接顺序。调换任意两相接头的连接可改变无刷直流电机通电后旋转方向,所述的飞控计算机的控制输出端分别与所述的双向DC/DC交换器、第一交流逆变器、第二交流逆变器、第三交流逆变器、第四交流逆变器的控制端相连。
所述的飞行器高度传感器为超声波距离传感器或气压高度计。
本实施方法采用如图2所示的动力系统控制方法工作原理,即:
步骤1飞行器飞行模式识别及功率预测;
步骤2锂电池和超级电容荷电状态识别;
步骤3锂电池和超级电容工作模式设定;
步骤4锂电池和超级电容输出功率设定。
步骤5通过双向DC\DC交换器控制超级电容的功率输出,通过交流逆变器控制能源系统的整体功率输出,驱动无刷直流电机,带动螺旋桨提供所需动力。
进一步的,本实施方法中,步骤1所述的飞行器飞行模式识别及功率预测通过如图3所示的飞行器模式识别方法原理实施。所述的飞行器模式识别方法原理步骤为:
步骤1-1所述的飞控计算机采集飞行器惯性传感器数据并滤波,得到飞行器姿态角
Figure BDA0002513527240000041
θ,ψ,飞行器机体坐标系下三轴加速度ax,ay,az,飞行器机体坐标系下三轴角速度ωx,ωy,ωz及角加速度p,q,r,采集飞行器高度传感器(可为超声波距离传感器或气压高度计)数据并滤波,得到飞行器距离地面高度h;
步骤1-2判断飞行器飞行速度变化模式。本实施方法中采用了非线性自回归时间序列神经网络,通过该网络生成的神经网络函数预测下一时间步的功率需求,并识别该飞行状态下的功率需求模式。本实施方法所述非线性自回归时间序列神经网络通过计算机仿真和飞行器飞行试验数据训练得到。通过所述非线性自回归时间序列神经网络函数,可利用步骤1-1所述飞行器姿态角
Figure BDA0002513527240000042
θ,ψ,飞行器机体坐标系下三轴加速度ax,ay,az,飞行器机体坐标系下三轴角速度ωx,ωy,ωz及角加速度p,q,r,飞行器距离地面高度h数据求解飞行器的飞行速度变化模式,姿态变化模式,高度变化模式时间序列。
步骤1-3识别飞行器功率需求类别。功率需求类别为:低功率,瞬时高功率,长时高功率。本实施方法中采用了模糊推理算法识别该飞行状态下飞行器功率需求类别。利用步骤1-2所述飞行器的飞行速度变化模式,姿态变化模式,高度变化模式时间序列,飞行器遥控指令输入作为模糊输入变量。其中,飞行速度变化模式具有三个隶属函数:静止(STA),减速(DEC)和加速(ACC);高度变化模式具有五个隶属函数:高速下降(MDEC),下降(DEC),定高(HAV),上升(CLI)和高速上升(MCLI);姿态变化模式具有三个隶属函数:稳定(STA),转动(ROT),高速转动(MROT)。输出变量为飞行器功率需求类别,其范围为[0,1],具有三个隶属函数:低功率(LOW),瞬时高功率(IH),长时高功率(LH);飞行器遥控指令输入具有两个隶属函数:低(LOW)和高(HIGH)。在总结专家经验的基础上,建立模糊控制规则库。通过模糊逻辑运算实现基于飞行速度变化模式,姿态变化模式,高度变化模式时间序列,飞行器遥控指令输入的飞行器功率需求类别识别。
进一步的,本实施方法中,步骤3所述锂电池和超级电容工作模式设定通过如图4所示的锂电池和超级电容工作模式设定方法原理实施。所述锂电池和超级电容工作模式设定方法具体为:
按照飞行器功率需求类别,对锂电池和超级电容工作模式进行分级设定。锂电池的工作模式划分为预设输出功率为P1,P2,P3,P4的4个级别(P1<P2<P3<P4),超级电容的工作模式划分为断开、放电、缓慢充电、较快速充电和快速充电5个模式。用SOC表示超级电容荷电状态,定义分级超级电容荷电状态:一级SOC上限H1,二级SOC上限H2,一级SOC下限L1,二级SOC下限L2((0<L2<L1<H1<H2<100%),其具体判定方式为:
若此时飞行器功率需求类别为低功耗,判定SOC>H2,则锂电池预设输出功率设定为P1,超级电容工作模式为断开;判定H1<SOC<H2,则锂电池预设输出功率设定为P2,超级电容工作模式为缓慢充电;判定L1<SOC<H2,则锂电池预设输出功率设定为P3,超级电容工作模式为较快速充电;判定SOC<L1,则锂电池预设输出功率设定为P4,超级电容工作模式为快速充电。
若此时飞行器功率需求类别为瞬时高功耗,判断SOC>L2,则锂电池预设输出功率设定为P3,超级电容工作模式为放电;判断SOC<L2,则锂电池预设输出功率设定为P4,超级电容工作模式为断开。
若此时飞行器功率需求类别为长时高功耗,判断SOC>L1,则锂电池预设输出功率设定为P3,超级电容工作模式为放电;判断SOC<L1,则锂电池预设输出功率设定为P4,超级电容工作模式为断开。
根据本发明的第四方面,提供一种锂电池和超级电容输出功率设定方法,所述方法包括:基于滤波算法使锂电池输出功率平滑,采用超级电容补足缺少的功率或储存过剩的功率,使得总功率输出满足飞行器功率需求的同时,锂电池输出波动较小且接近权利要求3所述的锂电池预设输出功率。
以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变化或修改,这并不影响本发明的实质内容。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。

Claims (3)

1.一种电推进旋翼飞行器动力系统,其特征在于该动力系统包括:融合储能系统、无刷直流电机调速器、无刷直流电机、安装在所述无刷直流电机上的螺旋桨、飞控计算机、飞行器惯性传感器、高度传感器以及遥控信号接收器;
所述的无刷直流电机调速器由第一交流逆变器、第二交流逆变器、第三交流逆变器、第四交流逆变器构成,所述的飞行器惯性传感器、高度传感器以及遥控信号接收器的输出端与所述的飞控计算机相连,所述的融合储能系统包括锂电池和超级电容,所述的超级电容的输出端采用双向DC/DC交换器控制能量流向,并与所述的锂电池并联,所述的锂电池并联的电压传感器的输出端与所述的飞控计算机的输入端相连,所述的超级电容并联的电压传感器的输出端与所述的飞控计算机的输入端相连,所述的锂电池的正极分别与所述的第一交流逆变器、第二交流逆变器、第三交流逆变器、第四交流逆变器的输入端的正极相连,所述的锂电池的负极分别与所述的第一交流逆变器、第二交流逆变器、第三交流逆变器、第四交流逆变器的输入端的负极相连,所述的第一交流逆变器、第二交流逆变器、第三交流逆变器、第四交流逆变器的输出端与所述的第一无刷直流电机、第二无刷直流电机、第三无刷直流电机、第四无刷直流电机一一对应相连,所述的飞控计算机的控制输出端分别与所述的双向DC/DC交换器、第一交流逆变器、第二交流逆变器、第三交流逆变器、第四交流逆变器的控制端相连。
2.根据权利要求1所述的电推进旋翼飞行器动力系统,其特征在于所述的飞行器高度传感器为超声波距离传感器或气压高度计。
3.权利要求1所述的电推进旋翼飞行器动力系统的控制方法,其特征在于该方法包括下列步骤:
1)飞行器飞行模式识别及功率预测,包括:
①所述的飞控计算机采集所述的飞行器惯性传感器的数据并滤波,得到飞行器姿态角
Figure FDA0002513527230000011
θ,ψ,飞行器机体坐标系下三轴加速度ax,ay,az,飞行器机体坐标系下三轴角速度ωx,ωy,ωz及角加速度p,q,r信息,采集所述的飞行器高度传感器的数据并滤波,得到飞行器距离地面高度信息h;
②基于飞行器惯性传感器数据,所述的飞行控制计算机判别飞行器的飞行速度变化模式,姿态变化模式,高度变化模式;
③所述的飞行控制计算机结合飞行器控制指令输入,依据预设权重值预测飞行器功率需求类别是低功率,瞬时高功率,还是长时高功率;
2)所述的飞行控制计算机按照飞行器功率需求类别,对锂电池和超级电容工作模式进行分级设定:锂电池的工作模式划分为预设输出功率为P1,P2,P3,P4的4个级别且P1<P2<P3<P4,超级电容的工作模式划分为断开、放电、缓慢充电、较快速充电和快速充电5个模式,用SOC表示超级电容荷电状态,定义分级超级电容荷电状态:一级SOC的上限为H1,二级SOC的上限为H2,一级SOC的下限为L1,二级SOC的下限为L2且0<L2<L1<H1<H2<100%,所述的锂电池和超级电容工作模式的判定方式如下:
若此时飞行器功率需求类别为低功耗:
判定SOC>H2,则锂电池预设输出功率设定为P1,超级电容工作模式为断开;
判定H1<SOC<H2,则锂电池预设输出功率设定为P2,超级电容工作模式为缓慢充电;
判定L1<SOC<H2,则锂电池预设输出功率设定为P3,超级电容工作模式为较快速充电;
判定SOC<L1,则锂电池预设输出功率设定为P4,超级电容工作模式为快速充电;
若此时飞行器功率需求类别为瞬时高功耗:
判断SOC>L2,则锂电池预设输出功率设定为P3,超级电容工作模式为放电;
判断SOC<L2,则锂电池预设输出功率设定为P4,超级电容工作模式为断开;
若此时飞行器功率需求类别为长时高功耗:
判断SOC>L1,则锂电池预设输出功率设定为P3,超级电容工作模式为放电;
判断SOC<L1,则锂电池预设输出功率设定为P4,超级电容工作模式为断开;
3)锂电池和超级电容输出功率设定:基于滤波算法使锂电池输出功率平滑,采用超级电容补足缺少的功率或储存过剩的功率,使得总功率输出满足飞行器功率需求的同时,锂电池输出波动较小且接近步骤2)所述的锂电池预设输出功率;
4)通过所述的双向DC\DC交换器控制所述的超级电容的功率输出,通过所述的第一交流逆变器、第二交流逆变器、第三交流逆变器、第四交流逆变器控制能源系统的整体功率输出,驱动所述的第一无刷直流电机、第二无刷直流电机、第三无刷直流电机、第四无刷直流电机,为所述的螺旋桨提供所需动力。
CN202010468701.3A 2020-05-28 2020-05-28 电推进旋翼飞行器动力系统及其控制方法 Active CN111703580B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202010468701.3A CN111703580B (zh) 2020-05-28 2020-05-28 电推进旋翼飞行器动力系统及其控制方法
PCT/CN2020/124377 WO2021238047A1 (zh) 2020-05-28 2020-10-28 电推进旋翼飞行器动力系统及其控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010468701.3A CN111703580B (zh) 2020-05-28 2020-05-28 电推进旋翼飞行器动力系统及其控制方法

Publications (2)

Publication Number Publication Date
CN111703580A true CN111703580A (zh) 2020-09-25
CN111703580B CN111703580B (zh) 2021-02-12

Family

ID=72537337

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010468701.3A Active CN111703580B (zh) 2020-05-28 2020-05-28 电推进旋翼飞行器动力系统及其控制方法

Country Status (2)

Country Link
CN (1) CN111703580B (zh)
WO (1) WO2021238047A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112629489A (zh) * 2020-12-31 2021-04-09 广州极飞科技有限公司 测量飞行器近地飞行高度的方法和装置
CN113342020A (zh) * 2021-06-14 2021-09-03 西北工业大学 一种电推进无人机推进功率预测方法
WO2021238047A1 (zh) * 2020-05-28 2021-12-02 上海交通大学 电推进旋翼飞行器动力系统及其控制方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115352286B (zh) * 2022-09-20 2023-10-27 首凯高科技(江苏)有限公司 一种复合电源及能量管理系统及其控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202309194U (zh) * 2011-11-11 2012-07-04 中国飞行试验研究院 飞机地面复合电源系统
CN106394862A (zh) * 2016-10-13 2017-02-15 马飞 一种折叠式的混合动力无人机
CN206164125U (zh) * 2016-08-23 2017-05-10 四川长虹电源有限责任公司 一种用于直升机的动力电源系统
CN207403931U (zh) * 2017-09-28 2018-05-25 南昌航空大学 一种新型油电混合式四旋翼个人飞行器
CN110209182A (zh) * 2019-05-21 2019-09-06 云南民族大学 一种基于avr单片机的四旋翼飞行器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105703452A (zh) * 2016-04-25 2016-06-22 中物院成都科学技术发展中心 一种具有供电电池与超级电容的供电系统和供电方法
KR101936465B1 (ko) * 2016-09-21 2019-01-08 현대자동차주식회사 배터리 충전 시스템 및 방법
DE102018102525A1 (de) * 2018-02-05 2019-08-08 Airbus Defence and Space GmbH Antriebssystem für ein Luftfahrzeug und Verfahren zum Bereitstellen einer Antriebsleistung für ein Luftfahrzeug
CN110001975A (zh) * 2019-04-12 2019-07-12 易航时代(北京)科技有限公司 一种电动无人机组合供电装置、方法及系统
CN111703580B (zh) * 2020-05-28 2021-02-12 上海交通大学 电推进旋翼飞行器动力系统及其控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202309194U (zh) * 2011-11-11 2012-07-04 中国飞行试验研究院 飞机地面复合电源系统
CN206164125U (zh) * 2016-08-23 2017-05-10 四川长虹电源有限责任公司 一种用于直升机的动力电源系统
CN106394862A (zh) * 2016-10-13 2017-02-15 马飞 一种折叠式的混合动力无人机
CN207403931U (zh) * 2017-09-28 2018-05-25 南昌航空大学 一种新型油电混合式四旋翼个人飞行器
CN110209182A (zh) * 2019-05-21 2019-09-06 云南民族大学 一种基于avr单片机的四旋翼飞行器

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021238047A1 (zh) * 2020-05-28 2021-12-02 上海交通大学 电推进旋翼飞行器动力系统及其控制方法
CN112629489A (zh) * 2020-12-31 2021-04-09 广州极飞科技有限公司 测量飞行器近地飞行高度的方法和装置
CN113342020A (zh) * 2021-06-14 2021-09-03 西北工业大学 一种电推进无人机推进功率预测方法

Also Published As

Publication number Publication date
WO2021238047A1 (zh) 2021-12-02
CN111703580B (zh) 2021-02-12

Similar Documents

Publication Publication Date Title
CN111703580B (zh) 电推进旋翼飞行器动力系统及其控制方法
Lee et al. Active power management system for an unmanned aerial vehicle powered by solar cells, a fuel cell, and batteries
US20200277080A1 (en) Systems and methods for in-flight operational assessment
CN110348595B (zh) 一种基于飞行数据的无人机混合推进系统能量管控方法
EP3947073A1 (en) Systems and methods for maintaining attitude control under degraded energy source conditions using multiple propulsors
CN102009599B (zh) 电动汽车及其控制系统
Wall et al. A survey of hybrid electric propulsion for aircraft
CN110001975A (zh) 一种电动无人机组合供电装置、方法及系统
CN103869255A (zh) 微小型电动无人机续航时间估算方法
CN105652886B (zh) 一种持续续航的互联网无人机
CN109733621A (zh) 一种多推进模式的混合动力无人机
CN108263618A (zh) 一种混合动力多轴旋翼无人机
CN110348611A (zh) 一种联网无人机预约5g基站充电坪的最优分配方法及系统
CN106155083B (zh) 一种复合翼无人机应急操作方法
Xue Design and Optimization of Lithium-Ion Batteries for Electric-Vehicle Applications.
Joshi et al. Comprehensive review on electric propulsion system of unmanned aerial vehicles
Wang et al. An efficient optimal sizing strategy for a hybrid electric air-ground vehicle using adaptive spiral optimization algorithm
CN110015149A (zh) 一种无人机电池管理方法及系统
Rajabi et al. Drone delivery systems and energy management: a review and future trends
Scholz et al. Feasibility analysis and comparative assessment of structural power technology in all-electric composite aircraft
Recoskie et al. Hybrid power plant design for a long-range dirigible UAV
Wang et al. An enhanced hypotrochoid spiral optimization algorithm based intertwined optimal sizing and control strategy of a hybrid electric air-ground vehicle
CN207141405U (zh) 一种油电混合长续航多旋翼无人机动力系统
CN107963202A (zh) 一种小型长航时固定翼无人机电源控制器系统及运行方法
Shehu et al. A review on unmanned aerial vehicle energy sources and management

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant