CN111697628A - 一种光伏电解水制氢系统及控制方法 - Google Patents

一种光伏电解水制氢系统及控制方法 Download PDF

Info

Publication number
CN111697628A
CN111697628A CN202010658869.0A CN202010658869A CN111697628A CN 111697628 A CN111697628 A CN 111697628A CN 202010658869 A CN202010658869 A CN 202010658869A CN 111697628 A CN111697628 A CN 111697628A
Authority
CN
China
Prior art keywords
hydrogen production
control
photovoltaic
level
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010658869.0A
Other languages
English (en)
Inventor
张雷
李海东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Lei Jing Zhi Chuang Technology Co ltd
Original Assignee
Beijing Lei Jing Zhi Chuang Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Lei Jing Zhi Chuang Technology Co ltd filed Critical Beijing Lei Jing Zhi Chuang Technology Co ltd
Priority to CN202010658869.0A priority Critical patent/CN111697628A/zh
Publication of CN111697628A publication Critical patent/CN111697628A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/388Islanding, i.e. disconnection of local power supply from the network
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/02Process control or regulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/10Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers
    • H02H7/12Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers
    • H02H7/1213Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers for DC-DC converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • H02J2300/26The renewable source being solar energy of photovoltaic origin involving maximum power point tracking control for photovoltaic sources
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • H02M3/1586Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel switched with a phase shift, i.e. interleaved
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Automation & Control Theory (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

本发明专利公开了一种光伏电解水制氢系统及控制方法,包括光伏电池组件、三电平制氢电源、电解槽、监测单元、氢气纯化单元、供水循环单元、控制单元。本发明专利光伏电池组件直接接入制氢电源,制氢电源实现光伏组件的最大功率跟踪控制,并能够实现电解槽的电流控制;制氢电源采用基于飞跨电容的三电平拓扑,能够提高工作电压等级,通过并联使用,可以提高电解水的功率等级。本发明专利能够实现大规模光伏离网制氢,具有转换效率高、功率大的特点。

Description

一种光伏电解水制氢系统及控制方法
技术领域
本实发明专利涉及一种光伏电解水制氢系统及控制方法,特别涉及光伏电解水制氢领域。
背景技术
光伏发电行业发展迅速,在发全国发电量的占比逐年提高,光伏发电消纳问题凸显,电解水制氢是解决消纳问题的途径之一。传统制氢电源多是由变压器和晶闸管构成的整流器,这种电源适用于交流电网制氢,无法用于光伏直接制氢。为了实现光伏发电大规模低成本制氢,本发明专利提出了一种基于飞跨电容三电平拓扑的制氢电源的光伏电解水制氢系统及控制方法,可以有效提高电源的额定电压等级,采用常规1200V耐压的IGBT功率器件输入电压即可达到1500V,适用于1500V光伏发电系统的直接接入,同时制氢电源由多个三电平支路交错并联组成,提高电源的功率等级。
发明内容
本发明目的在于克服现有技术存在的上述问题,提供一种高效率、低成本的大功率光伏电解水制氢系统及控制方法。
本发明所述的一种光伏电解水制氢系统由光伏电池组件、三电平制氢电源、电解槽、监测单元、氢气纯化单元、供水循环单元、控制单元组成;所述控制方法包括光伏组件最大功率跟踪(MPPT)控制、电解槽电流控制以及对电解水制氢流程的控制。
所述光伏电解水制氢系统的三电平制氢电源为飞跨电容三电平DC/DC拓扑结构,由多个三电平电路并联构成,且多个电路直接的开关管移相交错开通。所述的三电平制氢电源具备飞跨电容的预充电电路,预充电电路与三电平电路最下面开关管配合完成对飞跨电容的预充电。
所述光伏电解水制氢系统的控制单元采用DSP(数字信号处理器)作为控制芯片,控制模块给定三电平交错并联DC/DC模块的控制电流,并控制开关管导通和关断时序以实现交错工作;控制单元还具备故障保护功能,所述的故障保护包括过电流故障、过电压故障、欠电压故障,控制单元还控制纯化装置启动停止。
所述光伏电解水制氢系统的监测单元采用氢气传感器监测氢气是否有泄露,采用括温度和湿度传感器监测环境温度和湿度。
所述光伏电解水制氢系统控制方法,包括最大功率跟踪(MPPT)控制、电解槽电流控制以及对纯化系统的控制。最大功率跟踪控制采用爬坡法,通过制氢电源增加在制氢电源中实现MPPT控制,无需额外的光伏逆变器或MPPT控制器;电解槽电流控制是在满足电解槽启动特性和最大电流限定条件下按光伏组件MPPT控制所输出的电流;所述控制方法还包括了制氢电源的预充电控制,先给母线电容预充电,母线电容预充电完成后再闭合飞跨电容预充电接触器同时开通每个三电平支路最下面一个开关管,当飞跨电容充电电压达到1/2母线电压时,断开飞跨电容预充电接触器和最下面一个开关管
本发明专利提供的一种光伏电解水制氢系统及控制方法,通过上述结构及其作用,针对光伏发电直接电解水制氢可以实现高效率、低成本、高功率等级的特征。
附图说明
图1光伏电解水制氢系统图
图2基于飞跨电容三电平制氢电源原理图
图3飞跨电容充电示意图
图4光伏电解水制氢系统控制方法流程图
图5三电平制氢电源电流控制流程图
具体实施方式
以下结合附图和具体实施方式进一步说明本发明。
本发明提供了一种光伏电解水制氢系统及控制方法,如图1所示,所述的光伏电解水制氢系统由光伏电池组件(1)、三电平制氢电源(2)、控制单元(3)、电解槽(4)、监测单元(5)、氢气纯化单元(6)、供水循环单元(7)组成。
上述光伏电解水制氢系统,将光伏电池组件(1)直接接入三电平制氢电源(2),光伏组件(1)的正极负极分别与三电平制氢电源(2)输入的正极和负极相连接。三电平制氢电源(2)输出正负极分别与电解槽(4)的正负极相连接。三电平制氢电源经DC/DC变换输出适合电解槽需求的电流,监测单元(5)由氢气传感器、温度传感器、湿度传感器组成,用于监测环境氢气泄露、环境和电解槽温度和环境湿度。氢气纯化单元(6)与电解槽(4)出水口想连接,水和氢气混合体经过氢气纯化单元分离水得到高纯度的氢气;供水循环单元(7)输入为外部补水口和纯化单元分离输出的水,供水循环单元输出接入到电解槽的如水口。
上述光伏电解水制氢系统的三电平制氢电源,如图2所示,三电平制氢电源主要包括母线电容预充电电路(201)、主开关(202)、飞跨电容预充电电路(203)、多个由4个开关管(206、207、208、209)组成的三电平桥臂、LC滤波电路(210)。三电平制氢电源多个三电平桥臂之间交错工作。
上述光伏电解水制氢系统的三电平制氢电源在启动前需要对母线电容和飞跨电容进行预充电,飞跨电容充电示意图如图3所示。首先预充电电路(201)的接触器闭合,实现母线电容的预充电,母线电容预充电完成后断开充电电路(201)的接触器,然后,闭合飞跨电容预充电电路(203)的接触器,同时控制最下面开关管(209)导通,控制单元检测飞跨电容电压,当电压达到母线电容电压的1/2时,关断开关管(209),同时断开飞跨电容预充电电路(203)的接触器。
所述光伏电解水制氢系统的控制单元(3)采用DSP(数字信号处理器)作为控制芯片,控制单元控制三电平制氢电源(2)的电流,并控制开关管导通和关断时序以实现交错工作;控制单元还具备故障保护功能,所述的故障保护包括过电流故障、过电压故障、欠电压故障,控制单元还控制纯化装置(6)和供水循环单元(7)启动停止。
所述的监测单元(5)由氢气传感器、温度传感器和湿度传感器构成,控制单元(3)连接到监测单元(5),监测氢气泄露和环境的温度、湿度。
所述光伏电解水制氢系统控制方法,其控制流程如图4所示。具体控制方法:首先,由控制单元采集执行监视信号采集模块(S1),执行故障状态判断模块(S2),如果有故障则不继续执行,返回继续执行(S1)模块,直至故障清除;如无故障执行启动条件判断模块(S3),如果不满足启动条件,则返回到最初执行(S1)模块,如果满足启动条件,执行启动供水循环单元模块(S6)、启动氢气纯化单元模块(S7),最后执行三电平制氢电源电流控制模块(S8)。
所述三电平制氢电源电流控制模块(S8),其控制流程图如图5所示,主要包括母线电容预充电控制模块(S802)、飞跨电容预充电控制模块(S805)、MPPT算法模块(S806)、限流算法模块(S807)和移相交错脉冲发生模块(S808)。其具体控制方法:首先执行信号采集模块(S801)采集输入电压、输出电压、功率开关管温度等信号;接下来执行母线电容预充电完成状态判断模块(S803),若母线电容预充电未完成,则执行跳到结束位置;若预充电完成,则执行飞跨电容预充电完成判断模块(S804),若飞跨电容预充电未完成,则跳出到结束位置;若飞跨电容预充电完成,则执行MPPT算法模块(S806),MPPT算法模块采用爬坡法进行最大功率跟踪。MPPT算法计算得到的电流还需经过限流算法模块(S807),该模块主要功能是根据电解槽特性和启动电流变化率等参数给出最大电流限制。最后,执行移相交错脉冲发生模块(S808),该模块根据电流指令计算每个支路开关管的开通时序。
所述的飞跨电容预充电完成判断模块(S804),实现飞跨预充电的方法是:首先,闭合飞跨电容预充电电路(203)的所有预充电接触器,同时开通每个支路上最下面的开关管,并实时监测每个支路上飞跨电容的电压值,当某个飞跨电容电压达到母线电容电压的1/2时,断开该支路最下面的开关管,同时断开该支路对应的预充电接触器,完成该支路飞跨电容的预充电过程。

Claims (6)

1.一种光伏电解水制氢系统及控制方法,其特征在于所述制氢系统包括光伏电池组件、三电平制氢电源、电解槽、监测单元、氢气纯化单元、供水循环单元、控制单元;所述控制方法包括光伏组件最大功率跟踪(MPPT)控制、电解槽电流控制以及对制氢流程的控制。
2.根据权利要求1所述的光伏电解水制氢系统及控制方法,其特征在于所述的三电平制氢电源为飞跨电容三电平结构,由多个三电平电路并联构成,且多个电路直接的开关管移相交错开通。
3.根据权利要求1所述的光伏电解水制氢系统及控制方法,其特征在于所述的三电平制氢电源具备飞跨电容的预充电电路,预充电电路与三电平电路最下面开关管配合完成对飞跨电容的预充电。
4.根据权利要求1所述的光伏电解水制氢系统及控制方法,其特征在于所述的控制单元采用DSP(数字信号处理器)作为控制芯片,控制单元控制三电平制氢电源的电流,并控制开关管导通和关断时序以实现交错工作;控制单元还具备故障保护功能,所述的故障保护包括过电流故障、过电压故障、欠电压故障;控制单元还控制纯化单元和供水循环单元的工作。
5.据权利要求1所述的光伏电解水制氢系统及控制方法,其特征在于所述的监测单元包括氢气传感器,用于监测氢气泄露,还包括温度、湿度传感器,用于监测环境温度和湿度。
6.根据权利要求1所示光伏电解水制氢系统及控制方法,其特征在于所述的控制方法包括最大功率跟踪(MPPT)控制、电解槽电流控制以及对纯化系统的控制,最大功率跟踪控制采用爬坡法,在制氢电源中实现MPPT控制,无需增加光伏逆变器;三电平制氢电源的电流控制是在满足电解槽启动特性和最大电流限定条件下按光伏组件MPPT控制所输出的电流;所述控制方法还包括了制氢电源的预充电控制,先给母线电容预充电,母线电容预充电完成后再闭合飞跨电容预充电接触器同时开通每个每个三电平支路最下面一个开关管,当飞跨电容充电电压达到1/2母线电压时,断开飞跨电容预充电接触器和最下面一个开关管。
CN202010658869.0A 2020-07-09 2020-07-09 一种光伏电解水制氢系统及控制方法 Pending CN111697628A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010658869.0A CN111697628A (zh) 2020-07-09 2020-07-09 一种光伏电解水制氢系统及控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010658869.0A CN111697628A (zh) 2020-07-09 2020-07-09 一种光伏电解水制氢系统及控制方法

Publications (1)

Publication Number Publication Date
CN111697628A true CN111697628A (zh) 2020-09-22

Family

ID=72485786

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010658869.0A Pending CN111697628A (zh) 2020-07-09 2020-07-09 一种光伏电解水制氢系统及控制方法

Country Status (1)

Country Link
CN (1) CN111697628A (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112134469A (zh) * 2020-09-27 2020-12-25 上海绿巨人爱爵能源科技有限公司 一种适用于大功率和超大功率电解水制氢的电源装置
CN112968605A (zh) * 2021-02-20 2021-06-15 河北建投新能源有限公司 一种双交错buck拓扑的制氢电源及其控制方法
CN113862713A (zh) * 2021-09-30 2021-12-31 佛山仙湖实验室 Pem纯水电解制氢测试系统
CN113862729A (zh) * 2021-10-27 2021-12-31 国网青海省电力公司 一种基于电导增量法的光伏制氢系统控制方法
WO2023050223A1 (zh) * 2021-09-29 2023-04-06 西门子(中国)有限公司 制氢系统及其控制方法
WO2023050215A1 (zh) * 2021-09-29 2023-04-06 西门子(中国)有限公司 制氢系统
CN117433588A (zh) * 2023-12-20 2024-01-23 武汉雷施尔光电信息工程有限公司 一种用于电解水制氢电解槽的光纤温湿度监测系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107196418A (zh) * 2017-06-30 2017-09-22 重庆大学 独立光伏‑燃料电池‑回收动力电池联合发电储能系统
CN108063547A (zh) * 2016-11-08 2018-05-22 台达电子工业股份有限公司 预充电装置及变频器
CN108429474A (zh) * 2018-03-30 2018-08-21 广东电网有限责任公司电力科学研究院 一种多电平全桥变换器及多电平隔离式双向dc-dc变换器
CN108462381A (zh) * 2018-04-27 2018-08-28 合肥博鳌电气科技有限公司 一种半桥三电平变换器及其软启动方法
CN108471235A (zh) * 2018-03-28 2018-08-31 江苏固德威电源科技股份有限公司 三电平双向dc/dc电路
CN109193906A (zh) * 2018-10-31 2019-01-11 苏州融硅新能源科技有限公司 一种三电平mppt太阳能控制器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108063547A (zh) * 2016-11-08 2018-05-22 台达电子工业股份有限公司 预充电装置及变频器
CN107196418A (zh) * 2017-06-30 2017-09-22 重庆大学 独立光伏‑燃料电池‑回收动力电池联合发电储能系统
CN108471235A (zh) * 2018-03-28 2018-08-31 江苏固德威电源科技股份有限公司 三电平双向dc/dc电路
CN108429474A (zh) * 2018-03-30 2018-08-21 广东电网有限责任公司电力科学研究院 一种多电平全桥变换器及多电平隔离式双向dc-dc变换器
CN108462381A (zh) * 2018-04-27 2018-08-28 合肥博鳌电气科技有限公司 一种半桥三电平变换器及其软启动方法
CN109193906A (zh) * 2018-10-31 2019-01-11 苏州融硅新能源科技有限公司 一种三电平mppt太阳能控制器

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112134469A (zh) * 2020-09-27 2020-12-25 上海绿巨人爱爵能源科技有限公司 一种适用于大功率和超大功率电解水制氢的电源装置
CN112134469B (zh) * 2020-09-27 2024-04-26 上海巨人能源科技有限公司 一种适用于大功率和超大功率电解水制氢的电源装置
CN112968605A (zh) * 2021-02-20 2021-06-15 河北建投新能源有限公司 一种双交错buck拓扑的制氢电源及其控制方法
WO2023050223A1 (zh) * 2021-09-29 2023-04-06 西门子(中国)有限公司 制氢系统及其控制方法
WO2023050215A1 (zh) * 2021-09-29 2023-04-06 西门子(中国)有限公司 制氢系统
CN113862713A (zh) * 2021-09-30 2021-12-31 佛山仙湖实验室 Pem纯水电解制氢测试系统
CN113862729A (zh) * 2021-10-27 2021-12-31 国网青海省电力公司 一种基于电导增量法的光伏制氢系统控制方法
CN117433588A (zh) * 2023-12-20 2024-01-23 武汉雷施尔光电信息工程有限公司 一种用于电解水制氢电解槽的光纤温湿度监测系统
CN117433588B (zh) * 2023-12-20 2024-03-19 武汉雷施尔光电信息工程有限公司 一种用于电解水制氢电解槽的光纤温湿度监测系统

Similar Documents

Publication Publication Date Title
CN111697628A (zh) 一种光伏电解水制氢系统及控制方法
CN102545257B (zh) 太阳能光伏发电单相并网逆变器的控制方法
CN106953525B (zh) 阻抗型多模块串联式光伏直流升压变换器
CN112803472A (zh) 一种直流耦合制氢系统及其控制方法
WO2021098172A1 (zh) 新能源复合制氢系统及其控制方法
CN103269068B (zh) 一种光电直流微网电源装置及控制方法
CN112725832A (zh) 一种水电解制氢控制方法、系统及控制器
CN104868748A (zh) 一种换流器模块单元、换流器、直流输电系统及控制方法
CN102082462B (zh) 一种光伏ups系统及控制方法
CN112968605B (zh) 一种双交错buck拓扑的制氢电源及其控制方法
CN109962482B (zh) 基于市电功率补偿的风电非并网制氢系统及其控制方法
CN204721229U (zh) 变频空调器及其室外机的电源电路
CN115418655A (zh) 一种电解水制氢系统及制氢方法
CN110649640B (zh) 一种网侧能量抑制的超级电容储能控制装置
CN113410829B (zh) 一种真双极直流微网母线电压平衡装置及其控制方法
CN108233713A (zh) 一种非隔离三端口直流开关变换器及其控制方法
CN202940630U (zh) 具有无功补偿功能的大功率充放电机
CN114204567A (zh) 一种基于交直流混合供电的光储一体化供电系统及方法
CN103762630A (zh) 一种整流电路及其ups系统
CN205453288U (zh) 一种喷漆工业机器人不间断供电系统
CN106183856B (zh) 一种电动汽车的辅助供电装置及其控制方法
CN202197217U (zh) 一种氢氟酸电解用开关电源
CN205882727U (zh) 家用光伏储能电能控制器
CN108565951A (zh) 一种光伏智能配电系统及方法
CN111101137B (zh) 一种用于浓硫酸不锈钢酸冷器阳极保护的恒电位仪

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20200922