CN111693073A - 一种双向冗余磁电编码器及其冗余检测方法 - Google Patents

一种双向冗余磁电编码器及其冗余检测方法 Download PDF

Info

Publication number
CN111693073A
CN111693073A CN202010595044.9A CN202010595044A CN111693073A CN 111693073 A CN111693073 A CN 111693073A CN 202010595044 A CN202010595044 A CN 202010595044A CN 111693073 A CN111693073 A CN 111693073A
Authority
CN
China
Prior art keywords
encoder
hall
pair
fault
angle value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010595044.9A
Other languages
English (en)
Other versions
CN111693073B (zh
Inventor
王磊
韦欣
肖磊
张永德
姜金刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin University of Science and Technology
Original Assignee
Harbin University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin University of Science and Technology filed Critical Harbin University of Science and Technology
Priority to CN202010595044.9A priority Critical patent/CN111693073B/zh
Publication of CN111693073A publication Critical patent/CN111693073A/zh
Application granted granted Critical
Publication of CN111693073B publication Critical patent/CN111693073B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/24457Failure detection
    • G01D5/24461Failure detection by redundancy or plausibility

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

本发明公开了一种双向冗余磁电编码器及其检测方法,它涉及编码器制造领域。本发明结构霍尔解算板、发电机、钢柱、磁钢。本发明通过在磁钢左右两侧安装编码器信号解算板,两个编码器信号解算板上各自安装两颗相位差90°的霍尔,磁钢产生轴向磁场,霍尔元件解算磁场的变化并进行模数转换得到磁钢转过的角度值,并且当某个编码器信号解算板发生故障时,另一侧的编码器信号解算板可以继续正常工作,使得磁电编码器的工作更加稳定、精确。

Description

一种双向冗余磁电编码器及其冗余检测方法
技术领域
本发明涉及一种双向冗余磁电编码器及其冗余检测方法,属于磁电编码器制造领域。
背景技术
磁电编码器是一种测量装置,其原理是采用磁阻或者霍尔元件等传感器对磁性材料的角度或者位移进行测量,磁性材料的角度或者位移的变化会引起电阻或者电压的变化,通过放大电路对变化量进行放大,通过单片机处理后输出脉冲信号或者模拟量信号,从而达到测量的目的。磁电编码器具有抗振动、抗腐蚀、抗污染、抗干扰和宽温度的特性,因此,可广泛应用于工业控制、机械制造、船舶、纺织、印刷、航空、航天、雷达、通讯、军工等领域。
常用的测量角度的传统磁电编码器一般包括定子、转子、永久磁铁、霍尔传感器和信号处理板。永久磁铁粘接在转子上,霍尔传感器固定在信号处理板上。在单对极磁钢的作用下,编码器信号解算板上的2个霍尔元件上产生相位相差90°的电压信号,通过模数转换就可以转换为标准的数字量,最后进行角度的正切值计算便可以得到当前的角度值。
然而,在实际工作环境中,因为环境振动或温度过高等问题常出现磁编码器信号解算板毁坏现象,最终导致编码器无法正常工作。针对该问题本发明提出了一种双向磁电编码器冗余系统,当一侧的磁编码器信号解算板发生故障时,可以依靠另一个磁编码器信号解算板继续解算转过的圈数,提高了控制系统的可靠性。
发明内容
针对上述问题,本发明提出了一种双向冗余磁电编码器及其冗余检测方法,本发明解决其技术问题的解决方案为:
一种双向冗余磁电编码器冗余检测方法,本方法应用于一种双向冗余磁电编码器;
一种双向冗余磁电编码器冗余检测方法,所述方法的具体实现过程为:
步骤一:
解算俩组单对极角度值;具体为电机转轴转动,磁钢与电机转轴胶接,从而单对极磁钢转动,单对极磁钢会产生轴向磁场,单对极霍尔a1、单对极霍尔a2与编码器信号解算板a焊锡焊接,且单对极霍尔a1与单对极霍尔a2互相垂直,位于单对极磁钢的左侧,单对级霍尔b1、单对级霍尔b2与编码器信号解算板b焊锡焊接,单对级霍尔b1与单对级霍尔b2互相垂直,位于单对极磁钢的右侧,此时单对极磁钢转动,单对极霍尔a1、单对极霍尔a2采集单对极角度值信号A+、A-,编码器信号解算板a对角度值模拟信号A+、A-进行模数转换,得到角度值数字信号HA+、HA-,再对得到的单对极角度值数字信号HA+、HA-进行解算,得到单对极角度值θ1,解算公式(1)所示:
Figure BDA0002557212810000021
单对级霍尔b1、单对级霍尔b2采集单对极角度值信号B+、B-,编码器信号解算板b对角度值模拟信号B+、B-进行模数转换,得到角度值数字信号HB+、HB-,再对得到的单对极角度值数字信号HB+、HB-进行解算,得到单对极角度值θ2,解算公式(2)如下:
Figure BDA0002557212810000031
步骤二:
以其中一组单对极角度值为制表依据,对另一组单对极角度值进行校正,俩组编码器计算得到角度值的相互获取采用串口双向通讯,保证了角度值计算值获取的同步性;使俩组单对极角度值输出幅值及趋势一致,具体为同步输出俩组单对极角度值θ1,θ2
为了使单对极角度值θ2与单对极角度值θ1变化趋势一致,将俩组角度值进行比较,得到倆者间角度差值,并将角度值误差θerr存储在单片机的内存中作为补偿表格,当前计算周期角度值补偿误差值θerr(i)可以如式(3)所示:
θerr(i)=θ1(i)-θ2(i) (3)
上式中i为第i个采样点;
最终,经过补偿的第二组编码器单对极角度值输出θ2f(i)可以如式(4)所示:
θ2f(i)=θ2(i)+θerr(i) (4)
此时经过补偿修正,单对极角度值θ1与θ2f角度值,输出趋势一致;
步骤三:
依据俩组单对极角度值计算俩组编码器角速度,并依据角速度状态判断俩组编码器角度值是否处于故障状态,并进行修正:具体为依据单对极角度值θ1,计算当前计算周期的编码器旋转角速度ω1如式(5)所示:
Figure BDA0002557212810000032
上式中i为第i个采样点,i-1为第i-1个采样点,Ts为计算周期;
依据单对极角度值θ2f,计算另一组编码器的当前计算周期编码器旋转角速度ω2如式(6)所示;
Figure BDA0002557212810000041
设定速度偏差正常阈值为ξ,依据俩组计算得到的编码器旋转角速度ω1,ω2偏差ωerr如式(7)所示,对当前编码器故障状态进行判断:
ωerr=ω12 (7)
当|ωerr|<=ξ时,编码器旋转角速度处于正常范围,认为无故障出现;
当|ωerr|>ξ时,编码器旋转角速度超出正常范围,认为故障出现,当|ω1(i)-ω1(i-1)|>ξ,则认为ω1角度解算过程所在的编码器板出现故障,则使用单对极角度值θ2f作为最终的角度值输出,若该故障持续出现超过2秒,则认为该编码器板出现硬件不可恢复故障,若该故障持续出现小于2秒,则认为时系统噪声等原因造成的瞬时故障,该编码器板在故障恢复后仍可继续使用;
当|ω2(i)-ω2(i-1)|>ξ,则认为ω2角度解算过程所在的编码器板出现故障,则使用单对极角度值θ1作为最终的角度值输出,若该故障持续出现超过2秒,则认为该编码器板出现硬件不可恢复故障,若该故障持续出现小于2秒,则认为时系统噪声等原因造成的瞬时故障,该编码器板在故障恢复后仍可继续使用;
根据故障状态可能出现的示意图,此时θ1在第1000个采样点出现故障,该计算点则使用θ2f作为最终输出;
根据故障状态可能出现的示意图,此时θ1在第8210个采样点出现故障,该计算点则使用θ2f作为最终输出;θ2f在第9500个采样点出现故障,该计算点则使用θ1作为最终输出,从该故障案例可以看出,该编码器方案可以保证最终角度值的持续稳定输出,提高了编码器的可靠性;
根据故障状态可能出现的示意图,此时θ2f在第9500个采样点持续出现故障超过2s,在该种状态下认为时硬件出现不可恢复故障,磁电编码器则使用θ1作为最终输出。
本发明的有益效果是:
1.采用两个编码器信号解算板安装在磁钢的两侧提高了编码器的可靠性和稳定性,当其中一组编码器板因为电源或霍尔器件等硬件产生永久性故障时,另外一组编码器可以维持工作,该种编码器可靠的工作性能使其十分适用于工作环境复杂的军民航天工业领域中。
2.一号与二号编码器板角度值通过初始相互校正过程,输出角度值幅值趋势一致,当因为噪声导致其中一号编码器解算角度值产生角度值跳点时,可以使用二号编码器解算出的角度值,同理,当二号编码器角度值解算出现跳点时,可以使用一号编码器角度值解算的数据,因为俩组编码器角度值输出幅值及趋势完全一致,因此可以有效的避免其中任何一个出现角度值跳点所造成的不良影响。
3.该种编码器结构充分利用永磁体磁力线在空间的分布特性,采用一个永磁体与俩组编码器板配合使用,在降低成本的同时,提高编码器结构的紧凑型,减小编码器轴向尺寸。
4.依据俩组编码器计算得到角速度差值对当前编码器工作故障状态进行判断,角度值计算过程简单,判断方法采用差值对比方法,易于实现,计算过程简单,易于编程,占用极少的单片机计算资源。
5.俩组编码器板计算角度值数据采用双向通讯,保证了通讯过程的一致性和实时性。
附图说明
为了易于说明,本发明由下述的具体实施及附图作以详细描述。
附图1:本发明的整体结构示意图;
附图2:本发明的编码器示意图;
附图3:本发明的电机示意图;
附图4:同步输出两组单对极角度值示意图;
附图5:当前计算周期角度值补偿误差波形图;
附图6:补偿修正后单对极角度值波形图;
附图7:第一种可能出现的故障状态示意图;
附图8:第二种可能出现的故障状态示意图;
附图9:第三种可能出现的故障状态示意图;
图中,1、磁电编码器,1-1、编码器信号解算板a,1-2、编码器信号解算板b,1-3、单对极霍尔a1,1-4、单对级霍尔a2,1-5、单对级霍尔b1,1-6、单对级霍尔b2,1-7、单对极磁钢,2、电机,2-1、法兰盘,2-2、转轴,2-3、电机主体。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明了,下面通过附图中示出的具体实施例来描述本发明。但是应该理解,这些描述只是示例性的,而并非要限制本发明的范围。此外,在以下说明中,省略了对公知结构和技术的描述,以避免不必要地混淆本发明的概念。
以下结合附图进一步说明本发明的具体结构及实施方式。
本发明的结构组成如图1、图2、图3;
所述的一种双向冗余磁电编码器,由磁电编码器1、电机2、钢柱3三部分组成,其特征在于:所述的磁电编码器1通过钢柱3与电机2铰制孔连接;所述的磁电编码器1由编码器信号解算板a 1-1、编码器信号解算板b 1-2、单对极霍尔a1 1-3、单对级霍尔a2 1-4、单对级霍尔b1 1-5、单对级霍尔b2 1-6、单对极磁钢1-7组成,单对极霍尔a1 1-3、单对极霍尔a21-4编码器信号解算板a 1-1焊锡焊接,单对级霍尔b1 1-5、单对级霍尔b2 1-6与编码器信号解算板b 1-2焊锡焊接,编码器信号解算板a 1-1、编码器信号解算板b 1-2与钢柱3铰制孔连接,钢柱3与法兰盘2-1铰制孔连接,单对极磁钢1-7与转轴2-2胶接;所述的电机2由法兰盘2-1、转轴2-2、电机主体2-3组成,发电机主体2-3与转轴2-2轴承连接,法兰盘2-1与电机主体2-3螺钉连接;
电机转轴2-2转动,磁钢1-7与电机转轴2-2胶接,从而单对极磁钢1-7转动,单对极磁钢1-7会产生轴向磁场,单对极霍尔a1 1-3、单对极霍尔a2 1-4与编码器信号解算板a 1-1焊锡焊接,且单对极霍尔a1 1-3与单对极霍尔a2 1-4互相垂直,位于单对极磁钢1-7的左侧,单对级霍尔b1 1-5、单对级霍尔b2 1-6与编码器信号解算板b 1-2焊锡焊接,单对级霍尔b1 1-5与单对级霍尔b2 1-6互相垂直,位于单对极磁钢1-7的右侧,此时单对极磁钢1-7转动,单对极霍尔a1 1-3、单对极霍尔a2 1-4采集单对极角度值信号,编码器信号解算板a1-1对角度值模拟信号进行模数转换,得到角度值数字信号;
综上,实现双向冗余磁电编码器的冗余检测。
一种双向磁电编码器冗余系统,本方法应用于一种双向磁电编码器;
一种双向磁电编码器冗余系统,所述方法的具体实现过程为:
步骤一:
解算俩组单对极角度值;具体为电机转轴转动,磁钢与电机转轴胶接,从而单对极磁钢转动,单对极磁钢会产生轴向磁场,单对极霍尔a1、单对极霍尔a2与编码器信号解算板a焊锡焊接,且单对极霍尔a1与单对极霍尔a2互相垂直,位于单对极磁钢的左侧,单对级霍尔b1、单对级霍尔b2与编码器信号解算板b焊锡焊接,单对级霍尔b1与单对级霍尔b2互相垂直,位于单对极磁钢的右侧,此时单对极磁钢转动,单对极霍尔a1、单对极霍尔a2采集单对极角度值信号A+、A-,编码器信号解算板a对角度值模拟信号A+、A-进行模数转换,得到角度值数字信号HA+、HA-,再对得到的单对极角度值数字信号HA+、HA-进行解算,得到单对极角度值θ1,解算公式(1)所示:
Figure BDA0002557212810000081
单对级霍尔b1、单对级霍尔b2采集单对极角度值信号B+、B-,编码器信号解算板b对角度值模拟信号B+、B-进行模数转换,得到角度值数字信号HB+、HB-,再对得到的单对极角度值数字信号HB+、HB-进行解算,得到单对极角度值θ2,解算公式(2)如下:
Figure BDA0002557212810000082
步骤二:
以其中一组单对极角度值为制表依据,对另一组单对极角度值进行校正,俩组编码器计算得到角度值的相互获取采用串口双向通讯,保证了角度值计算值获取的同步性;使俩组单对极角度值输出幅值及趋势一致,具体为同步输出俩组单对极角度值θ1,θ2,如图4所示;
为了使单对极角度值θ2与单对极角度值θ1变化趋势一致,将俩组角度值进行比较,得到倆者间角度差值,并将角度值误差θerr存储在单片机的内存中作为补偿表格,当前计算周期角度值补偿误差值θerr(i)可以如式(3)所示,当前计算周期角度值补偿误差波形图如图5所示;
θerr(i)=θ1(i)-θ2(i) (3)
上式中i为第i个采样点;
最终,经过补偿的第二组编码器单对极角度值输出θ2f(i)可以如式(4)所示:
θ2f(i)=θ2(i)+θerr(i) (4)
此时经过补偿修正,单对极角度值θ1与θ2f角度值,输出趋势一致如图6所示;
步骤三:
依据俩组单对极角度值计算俩组编码器角速度,并依据角速度状态判断俩组编码器角度值是否处于故障状态,并进行修正:具体为依据单对极角度值θ1,计算当前计算周期的编码器旋转角速度ω1如式(5)所示:
Figure BDA0002557212810000091
上式中i为第i个采样点,i-1为第i-1个采样点,Ts为计算周期;
依据单对极角度值θ2f,计算另一组编码器的当前计算周期编码器旋转角速度ω2如式(6)所示:
Figure BDA0002557212810000092
设定速度偏差正常阈值为ξ,依据俩组计算得到的编码器旋转角速度ω1,ω2偏差ωerr如式(7)所示,对当前编码器故障状态进行判断:
ωerr=ω12 (7)
当|ωerr|<=ξ时,编码器旋转角速度处于正常范围,认为无故障出现;
当|ωerr|>ξ时,编码器旋转角速度超出正常范围,认为故障出现,当|ω1(i)-ω1(i-1)|>ξ,则认为ω1角度解算过程所在的编码器板出现故障,则使用单对极角度值θ2f作为最终的角度值输出,若该故障持续出现超过2秒,则认为该编码器板出现硬件不可恢复故障,若该故障持续出现小于2秒,则认为时系统噪声等原因造成的瞬时故障,该编码器板在故障恢复后仍可继续使用;
当|ω2(i)-ω2(i-1)|>ξ,则认为ω2角度解算过程所在的编码器板出现故障,则使用单对极角度值θ1作为最终的角度值输出,若该故障持续出现超过2秒,则认为该编码器板出现硬件不可恢复故障,若该故障持续出现小于2秒,则认为时系统噪声等原因造成的瞬时故障,该编码器板在故障恢复后仍可继续使用;
故障状态可能出现的示意图如图7,此时θ1在第1000个采样点出现故障,该计算点则使用θ2f作为最终输出;
故障状态可能出现的示意图如图8,此时θ1在第8210个采样点出现故障,该计算点则使用θ2f作为最终输出;θ2f在第9500个采样点出现故障,该计算点则使用θ1作为最终输出,从该故障案例可以看出,该编码器方案可以保证最终角度值的持续稳定输出,提高了编码器的可靠性;
故障状态可能出现的示意图如图9,此时θ2f在第9500个采样点持续出现故障超过2s,在该种状态下认为时硬件出现不可恢复故障,磁电编码器则使用θ1作为最终输出。
以上显示和描述了本发明的基本原理和主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。

Claims (1)

1.一种双向冗余磁电编码器冗余检测方法,本方法应用于一种双向冗余磁电编码器,双向冗余磁电编码器,它包括磁电编码器(1)、电机(2)、钢柱(3)三部分组成;所述的磁电编码器(1)通过钢柱(3)电机(2)固接。所述的磁电编码器(1),它包括编码器信号解算板a(1-1)、编码器信号解算板b(1-2)、单对极霍尔a1(1-3)、单对级霍尔a2(1-4)、单对级霍尔b1(1-5)、单对级霍尔b2(1-6)、单对极磁钢(1-7)组成,其中单对极霍尔a1(1-3)、单对极霍尔a2(1-4)与编码器信号解算板a(1-1)焊锡焊接,单对级霍尔b1(1-5)、单对级霍尔b2(1-6)与编码器信号解算板b(1-2)焊锡焊接,编码器信号解算板a(1-1)、编码器信号解算板b(1-2)与钢柱(3)铰制孔连接,钢柱(3)与法兰盘铰制孔连接,单对极磁钢(1-7)与转轴(2-2)胶接;所述的电机(2),它包括法兰盘(2-1)、转轴(2-2)、电机主体(2-3)组成,电机主体(2-3)与转轴(2-2)轴承连接,法兰盘(2-1)与电机主体(2-3)螺钉连接;
其特征在于:所述方法的具体实施过程为:
步骤一:
解算俩组单对极角度值;具体为电机转轴转动,磁钢与电机转轴胶接,从而单对极磁钢转动,单对极磁钢会产生轴向磁场,单对极霍尔a1、单对极霍尔a2与编码器信号解算板a焊锡焊接,且单对极霍尔a1与单对极霍尔a2互相垂直,位于单对极磁钢的左侧,单对级霍尔b1、单对级霍尔b2与编码器信号解算板b焊锡焊接,单对级霍尔b1与单对级霍尔b2互相垂直,位于单对极磁钢的右侧,此时单对极磁钢转动,单对极霍尔a1单对极霍尔a2采集单对极角度值信号A+、A-,编码器信号解算板a对角度值模拟信号A+、A-进行模数转换,得到角度值数字信号HA+、HA-,再对得到的单对极角度值数字信号HA+、HA-进行解算,得到单对极角度值θ1,解算公式(1)所示:
Figure FDA0002557212800000021
单对级霍尔b1、单对级霍尔b2采集单对极角度值信号B+、B-,编码器信号解算板b对角度值模拟信号B+、B-进行模数转换,得到角度值数字信号HB+、HB-,再对得到的单对极角度值数字信号HB+、HB-进行解算,得到单对极角度值θ2,解算公式(2)如下:
Figure FDA0002557212800000022
步骤二:
以其中一组单对极角度值为制表依据,对另一组单对极角度值进行校正,俩组编码器计算得到角度值的相互获取采用串口双向通讯,保证了角度值计算值获取的同步性;使俩组单对极角度值输出幅值及趋势一致,具体为同步输出俩组单对极角度值θ1,θ2
为了使单对极角度值θ2与单对极角度值θ1变化趋势一致,将俩组角度值进行比较,得到倆者间角度差值,并将角度值误差θerr存储在单片机的内存中作为补偿表格,当前计算周期角度值补偿误差值θerr(i)可以如式(3)所示:
θerr(i)=θ1(i)-θ2(i) (3)
上式中i为第i个采样点;
最终,经过补偿的第二组编码器单对极角度值输出θ2f(i)可以如式(4)所示:
θ2f(i)=θ2(i)+θerr(i) (4)
此时经过补偿修正,单对极角度值θ1与θ2f角度值,输出趋势一致;
步骤三:
依据俩组单对极角度值计算俩组编码器角速度,并依据角速度状态判断俩组编码器角度值是否处于故障状态,并进行修正:具体为依据单对极角度值θ1,计算当前计算周期的编码器旋转角速度ω1如式(5)所示:
Figure FDA0002557212800000031
上式中i为第i个采样点,i-1为第i-1个采样点,Ts为计算周期;
依据单对极角度值θ2f,计算另一组编码器的当前计算周期编码器旋转角速度ω2如式(6)所示:
Figure FDA0002557212800000032
设定速度偏差正常阈值为ξ,依据俩组计算得到的编码器旋转角速度ω1,ω2偏差ωerr如式(7)所示,对当前编码器故障状态进行判断:
ωerr=ω12 (7)
当|ωerr|<=ξ时,编码器旋转角速度处于正常范围,认为无故障出现;
当|ωerr|>ξ时,编码器旋转角速度超出正常范围,认为故障出现,当|ω1(i)-ω1(i-1)|>ξ,则认为ω1角度解算过程所在的编码器板出现故障,则使用单对极角度值θ2f作为最终的角度值输出,若该故障持续出现超过2秒,则认为该编码器板出现硬件不可恢复故障,若该故障持续出现小于2秒,则认为时系统噪声等原因造成的瞬时故障,该编码器板在故障恢复后仍可继续使用;
当|ω2(i)-ω2(i-1)|>ξ,则认为ω2角度解算过程所在的编码器板出现故障,则使用单对极角度值θ1作为最终的角度值输出,若该故障持续出现超过2秒,则认为该编码器板出现硬件不可恢复故障,若该故障持续出现小于2秒,则认为时系统噪声等原因造成的瞬时故障,该编码器板在故障恢复后仍可继续使用;
根据故障状态可能出现的示意图,此时θ1在第1000个采样点出现故障,该计算点则使用θ2f作为最终输出;
根据故障状态可能出现的示意图,此时θ1在第8210个采样点出现故障,该计算点则使用θ2f作为最终输出;θ2f在第9500个采样点出现故障,该计算点则使用θ1作为最终输出,从该故障案例可以看出,该编码器方案可以保证最终角度值的持续稳定输出,提高了编码器的可靠性;
根据故障状态可能出现的示意图,此时θ2f在第9500个采样点持续出现故障超过2s,在该种状态下认为时硬件出现不可恢复故障,磁电编码器则使用θ1作为最终输出。
CN202010595044.9A 2020-06-28 2020-06-28 一种双向冗余磁电编码器及其冗余检测方法 Active CN111693073B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010595044.9A CN111693073B (zh) 2020-06-28 2020-06-28 一种双向冗余磁电编码器及其冗余检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010595044.9A CN111693073B (zh) 2020-06-28 2020-06-28 一种双向冗余磁电编码器及其冗余检测方法

Publications (2)

Publication Number Publication Date
CN111693073A true CN111693073A (zh) 2020-09-22
CN111693073B CN111693073B (zh) 2022-01-25

Family

ID=72484080

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010595044.9A Active CN111693073B (zh) 2020-06-28 2020-06-28 一种双向冗余磁电编码器及其冗余检测方法

Country Status (1)

Country Link
CN (1) CN111693073B (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112361945A (zh) * 2020-10-30 2021-02-12 哈尔滨理工大学 一种电机主轴轴向窜动检测的磁电编码器
CN112362089A (zh) * 2020-10-30 2021-02-12 哈尔滨理工大学 一种多对极磁电编码器及其高分辨率高可靠角度解算方法
CN114440940A (zh) * 2022-03-17 2022-05-06 哈尔滨理工大学 基于异形齿轮的双霍尔磁电编码器角度估算方法及装置
CN115940519A (zh) * 2022-10-21 2023-04-07 哈尔滨理工大学 一种磁电编码器与轴承一体化集成装置及其冗余解算方法
CN115931036A (zh) * 2023-03-09 2023-04-07 深圳市好盈科技股份有限公司 一种磁编码器故障检测方法、装置、电子设备和存储介质
CN115979312A (zh) * 2022-11-24 2023-04-18 哈尔滨理工大学 基于蚁群算法的磁电编码器角度值跳点抑制方法及装置
CN116222630A (zh) * 2023-03-17 2023-06-06 哈尔滨理工大学 一种高可靠的轴向双侧磁感应式磁电编码器及角度解算方法
CN116222371A (zh) * 2023-03-01 2023-06-06 哈尔滨理工大学 一种磁栅式磁电编码器及其角度解算方法

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4606008A (en) * 1983-07-25 1986-08-12 Cain Encoder Company Angular position detector
CA1295709C (en) * 1987-12-21 1992-02-11 Donatas V. Gasiunas Hall effect printwheel encoder
CN101521480A (zh) * 2008-11-21 2009-09-02 西北工业大学 一种旋转变压器信号解算方法及解算器
CN202216964U (zh) * 2011-09-26 2012-05-09 中国航空工业第六一八研究所 一种多余度转速传感器
WO2013063205A1 (en) * 2011-10-26 2013-05-02 The Timken Company Rotational encoder with additional independent hall effekt sensor
CN103472263A (zh) * 2013-09-03 2013-12-25 清华大学 一种永磁同步电机霍尔传感器故障诊断方法
CN103683789A (zh) * 2013-12-04 2014-03-26 兰州飞行控制有限责任公司 一种双余度永磁无刷电机霍尔传感器安装结构
CN205642281U (zh) * 2016-03-29 2016-10-12 哈尔滨理工大学 一种双霍尔信号采样磁电编码器
CN107607037A (zh) * 2017-09-18 2018-01-19 哈尔滨理工大学 一种基于反正切跨区间制表法的磁电编码器标定方法
CN108088476A (zh) * 2017-05-14 2018-05-29 张洪国 一种抑制干扰与温漂的霍尔信号采样磁电编码器
CN108896074A (zh) * 2018-06-04 2018-11-27 哈尔滨理工大学 八霍尔分布磁电编码器高分辨率角度值解算方法及装置
CN109029509A (zh) * 2018-07-13 2018-12-18 株洲时菱交通设备有限公司 一种冗余式磁编码器
CN109099938A (zh) * 2018-07-04 2018-12-28 哈尔滨理工大学 基于极数查表的角度区间扫描角度值跳点抑制方法及装置
CN109256905A (zh) * 2017-07-13 2019-01-22 罗斯蒙特航天公司 用于转子位置估计的环形磁体
CN110095142A (zh) * 2019-03-14 2019-08-06 哈尔滨理工大学 一种基于单对极角度值拟合的角度值跳点抑制方法及装置
CN209355861U (zh) * 2018-12-29 2019-09-06 上海精传电子科技有限公司 一种冗余的霍尔式与电感式方向盘角度传感器
CN110736486A (zh) * 2019-09-27 2020-01-31 连云港杰瑞电子有限公司 一种紧凑型双冗余绝对式编码器
CN210629283U (zh) * 2019-10-17 2020-05-26 浙江航驱汽车科技有限公司 一种用于eps无刷电机的双芯片冗余磁性编码器

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4606008A (en) * 1983-07-25 1986-08-12 Cain Encoder Company Angular position detector
CA1295709C (en) * 1987-12-21 1992-02-11 Donatas V. Gasiunas Hall effect printwheel encoder
CN101521480A (zh) * 2008-11-21 2009-09-02 西北工业大学 一种旋转变压器信号解算方法及解算器
CN202216964U (zh) * 2011-09-26 2012-05-09 中国航空工业第六一八研究所 一种多余度转速传感器
WO2013063205A1 (en) * 2011-10-26 2013-05-02 The Timken Company Rotational encoder with additional independent hall effekt sensor
CN103472263A (zh) * 2013-09-03 2013-12-25 清华大学 一种永磁同步电机霍尔传感器故障诊断方法
CN103683789A (zh) * 2013-12-04 2014-03-26 兰州飞行控制有限责任公司 一种双余度永磁无刷电机霍尔传感器安装结构
CN205642281U (zh) * 2016-03-29 2016-10-12 哈尔滨理工大学 一种双霍尔信号采样磁电编码器
CN108088476A (zh) * 2017-05-14 2018-05-29 张洪国 一种抑制干扰与温漂的霍尔信号采样磁电编码器
CN109256905A (zh) * 2017-07-13 2019-01-22 罗斯蒙特航天公司 用于转子位置估计的环形磁体
CN107607037A (zh) * 2017-09-18 2018-01-19 哈尔滨理工大学 一种基于反正切跨区间制表法的磁电编码器标定方法
CN108896074A (zh) * 2018-06-04 2018-11-27 哈尔滨理工大学 八霍尔分布磁电编码器高分辨率角度值解算方法及装置
CN109099938A (zh) * 2018-07-04 2018-12-28 哈尔滨理工大学 基于极数查表的角度区间扫描角度值跳点抑制方法及装置
CN109029509A (zh) * 2018-07-13 2018-12-18 株洲时菱交通设备有限公司 一种冗余式磁编码器
CN209355861U (zh) * 2018-12-29 2019-09-06 上海精传电子科技有限公司 一种冗余的霍尔式与电感式方向盘角度传感器
CN110095142A (zh) * 2019-03-14 2019-08-06 哈尔滨理工大学 一种基于单对极角度值拟合的角度值跳点抑制方法及装置
CN110736486A (zh) * 2019-09-27 2020-01-31 连云港杰瑞电子有限公司 一种紧凑型双冗余绝对式编码器
CN210629283U (zh) * 2019-10-17 2020-05-26 浙江航驱汽车科技有限公司 一种用于eps无刷电机的双芯片冗余磁性编码器

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
WANG LEI 等: "Study on the Temperature Drift Adaptive Compensation Algorithm of a Magneto-Electric Encoder Based on a Simple Neuron", 《JOURNAL OF POWER ELECTRONICS》 *
ZHANG Z 等: "A method for measurement of absolute angular position and application in a novel electromagnetic encoder system", 《JOURNAL OF SENSORS》 *
倪风雷等: "多传感器的关节故障检测及容错策略", 《哈尔滨工业大学学报》 *
张修文: "多余度永磁同步电机及容错控制研究", 《中国优秀硕士学位论文全文数据库 工程科技II辑》 *
张庆利等: "多自由度空间机构模块化关节研究", 《机械与电子》 *
梁东等: "基于容错双余度电机的舵控系统设计", 《微特电机》 *
郝双晖等: "绝对式多极磁电轴角编码器的设计", 《光学精密工程》 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112361945A (zh) * 2020-10-30 2021-02-12 哈尔滨理工大学 一种电机主轴轴向窜动检测的磁电编码器
CN112362089A (zh) * 2020-10-30 2021-02-12 哈尔滨理工大学 一种多对极磁电编码器及其高分辨率高可靠角度解算方法
CN112362089B (zh) * 2020-10-30 2022-05-27 哈尔滨理工大学 一种多对极磁电编码器及其高分辨率高可靠角度解算方法
CN114440940A (zh) * 2022-03-17 2022-05-06 哈尔滨理工大学 基于异形齿轮的双霍尔磁电编码器角度估算方法及装置
CN114440940B (zh) * 2022-03-17 2022-11-01 哈尔滨理工大学 基于异形齿轮的双霍尔磁电编码器角度估算方法及装置
CN115940519A (zh) * 2022-10-21 2023-04-07 哈尔滨理工大学 一种磁电编码器与轴承一体化集成装置及其冗余解算方法
CN115979312A (zh) * 2022-11-24 2023-04-18 哈尔滨理工大学 基于蚁群算法的磁电编码器角度值跳点抑制方法及装置
CN116222371A (zh) * 2023-03-01 2023-06-06 哈尔滨理工大学 一种磁栅式磁电编码器及其角度解算方法
CN116222371B (zh) * 2023-03-01 2023-08-15 哈尔滨理工大学 一种磁栅式磁电编码器及其角度解算方法
CN115931036A (zh) * 2023-03-09 2023-04-07 深圳市好盈科技股份有限公司 一种磁编码器故障检测方法、装置、电子设备和存储介质
CN116222630A (zh) * 2023-03-17 2023-06-06 哈尔滨理工大学 一种高可靠的轴向双侧磁感应式磁电编码器及角度解算方法
CN116222630B (zh) * 2023-03-17 2023-10-20 哈尔滨理工大学 一种高可靠的轴向双侧磁感应式磁电编码器及角度解算方法

Also Published As

Publication number Publication date
CN111693073B (zh) 2022-01-25

Similar Documents

Publication Publication Date Title
CN111693073B (zh) 一种双向冗余磁电编码器及其冗余检测方法
US7603250B2 (en) Abnormality judging apparatus
CN112361945A (zh) 一种电机主轴轴向窜动检测的磁电编码器
US7343254B2 (en) Resolver digital converter
JP6265305B2 (ja) 電動パワーステアリング装置
WO2011024730A1 (ja) 回転角検出装置
JPWO2010119958A1 (ja) トルクセンサ
Murray et al. Resolver position sensing system with integrated fault detection for automotive applications
CN112067023A (zh) 一种两霍尔磁电编码器及其角度值温漂补偿方法
CN111721329B (zh) 一种三霍尔磁电编码器及免反正切计算角度解算方法
US10256754B2 (en) Apparatus and method for compensating for position error of resolver
CN111623807A (zh) 一种多对极磁电编码器角度值冗余输出方法及装置
US20070251332A1 (en) Rotational position measuring device
JP2002350182A (ja) 位置検出装置および異常検出装置
US20200064416A1 (en) Magnetic sensor
CN111446821B (zh) 一种磁编码多霍尔冗余装置
CN117348612B (zh) 工业级自动控制系统
CN117411371A (zh) 高精度伺服控制系统
EP2609400B1 (en) A method and a system for determining the angular position of a rotary element, and a bearing including such a system
CN117200627A (zh) 高精度闭环伺服系统
EP3505894A1 (en) Torque sensor
CN115589180A (zh) 一种基于正余弦位置编码器的正交误差补偿方法
JP2005114442A (ja) 故障検出機能付レゾルバ/デジタル変換器
JP6953351B2 (ja) 状態判別装置および方法ならびに物理量情報生成装置
JP3411012B2 (ja) レゾルバ角度精度診断方法及び診断回路

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant