CN111686262B - 一种核黄素衍生物在磁共振成像中的应用 - Google Patents

一种核黄素衍生物在磁共振成像中的应用 Download PDF

Info

Publication number
CN111686262B
CN111686262B CN201910198077.7A CN201910198077A CN111686262B CN 111686262 B CN111686262 B CN 111686262B CN 201910198077 A CN201910198077 A CN 201910198077A CN 111686262 B CN111686262 B CN 111686262B
Authority
CN
China
Prior art keywords
mouse
imaging
adenine dinucleotide
flavin adenine
magnetic resonance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910198077.7A
Other languages
English (en)
Other versions
CN111686262A (zh
Inventor
周欣
张肖肖
袁亚平
娄昕
郭茜旎
孙献平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan Institute of Physics and Mathematics of CAS
Original Assignee
Wuhan Institute of Physics and Mathematics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan Institute of Physics and Mathematics of CAS filed Critical Wuhan Institute of Physics and Mathematics of CAS
Priority to CN201910198077.7A priority Critical patent/CN111686262B/zh
Publication of CN111686262A publication Critical patent/CN111686262A/zh
Application granted granted Critical
Publication of CN111686262B publication Critical patent/CN111686262B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations

Landscapes

  • Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

本发明公开了一种核黄素核黄素‑5‑磷酸或黄素腺嘌呤二核苷酸化合物为造影剂在磁共振成像中的应用,针对磁共振成像灵敏度较低并且不具有靶向性导致临床观测正常组织和病变部位的对比不明显、诊断困难,以及含重金属离子造影剂易加重病人肝肾代谢负担等问题,本发明通过核黄素核黄素‑5‑磷酸或黄素腺嘌呤二核苷酸化合物,利用化学交换饱和转移磁共振成像技术探测核黄素核黄素‑5‑磷酸或黄素腺嘌呤二核苷酸化合物的信号,最终达到对肿瘤组织进行特异性成像,提高磁共振成像的灵敏度,具有实用意义和临床价值。

Description

一种核黄素衍生物在磁共振成像中的应用
技术领域
本发明属于磁共振造影剂及其生物环境检测技术领域,具体涉及一种核黄素-5-磷酸或黄素腺嘌呤二核苷酸化合物造影剂及其在磁共振成像中的应用。
背景技术
磁共振成像(Magnetic resonance imaging,MRI)方法具有较高的空间分辨率、无辐射损伤的安全性等特性,已经广泛的应用于临床医学诊断中。对于磁共振灵敏度较低导致临床发现某些不同组织或肿瘤组织的对比不明显、诊断困难等问题,目前临床用的造影剂主要通过改变组织局部弛豫特性,提高成像对比度,从而提高诊断的准确性。这类造影剂往往需要使用高剂量的重金属离子,例如,钆离子(gadolinium ions,Gd3+),铁离子(Ironions,Fe3+),锰离子(Manganeseions,Mn3+)等,而重金属离子的介入会加重病人肝肾代谢负担,尤其不适用于肝肾功能障碍的病人。因此,迫切需要发展一种无金属离子的造影剂。
化学交换饱和转移(Chemical exchange saturation transfer,CEST)是一类新型的MRI成像机制(J.Magn.Reson.2000,143,79–87)。其成像原理是利用选择性的饱和脉冲对特定化学位移的可交换质子进行预饱和,随着被饱和的质子与周围的水质子之间的化学交换,饱和转移到自由水上从而降低自由水的信号强度,因此通过检测水的信号变化可间接反映这种物质的信息。与目前临床使用的T1,T2造影剂相比,CEST成像不需要借助于顺磁性的Gd3+、Fe3+或者Mn3+等重金属离子,只需要抗磁性的可交换质子就可以实现磁共振成像。一些分子,例如糖蛋白(Nat.Comm.2015,6,6719),葡萄糖(Magn.Reson.Med.2012,68,1764–1773),糖原(Proc.Natl.Acad.Sci.USA 2007,104,4359–4364),肌醇(J.Neurosci.Methods2013,212,87–93),谷氨酸(Nat.Med.2012,18,302–306),多肽(Magn.Reson.Med.2008,60,803–812)等都含有大量的可交换质子,均可以用于CEST成像。这些分子上可交换质子的磁共振信号都处于0~4ppm内,探测这一区域内的信号通常会遇到强烈的背景信号的干扰。胸腺核苷酸衍生物也有着很好的交换速率和化学位移(5ppm),并且在不损失特异性的情况下能实现对小鼠脑内单纯疱疹病毒1型胸苷激酶(herpes simplex virus type-1thymidinekinase,HSV)突变基因的检测(J.Am.Chem.Soc.2013,135,1617–1624)。碘比醇中含有可交换的酰胺质子,其磁共振信号在5.6ppm,并且对酸很敏感。基于这一性质发展的碘比醇比例CEST方法可以来测量pH值,并用于肾损伤模型的磁共振成像(Magn.Reson.Med.2005,53,830–834;J.Am.Chem.Soc.2014,136,14333-14336)。水杨酸也可以作为造影剂实现对肾脏进行成像,其磁共振信号在相对于水低场9.3ppm处,远离了水和其它内源性质子信号区域,提高了MRI的信噪比和灵敏度(Angew.Chem.Int.Ed.2013,52,8116–8119)。目前在这一研究领域,大部分可交换质子都位于0-4ppm以内,并且不具有特异性,不能对病变部位进行特异性的成像。本专利报道一种新型的核磁共振造影剂,采用临床批准的维生素药物核黄素-5-磷酸和黄素腺嘌呤二核苷酸,实现对表达过的核黄素受体的活体检测。
发明内容
本发明在于克服现有技术的不足,目的是在于提供一种核黄素-5-磷酸或黄素腺嘌呤二核苷酸化合物造影剂及其在磁共振成像中的应用,本发明创造性的选择核黄素-5-磷酸或黄素腺嘌呤二核苷酸化合物作为造影剂,获得了6.25ppm的CEST磁共振信号,不易受到背景信号的干扰,有适用于活体肿瘤微环境检测的前景。
为了解决上述问题,本发明采取的技术方案为:
一种核黄素-5-磷酸或黄素腺嘌呤二核苷酸化合物作为磁共振成像中造影剂的应用。
一种核黄素-5-磷酸或黄素腺嘌呤二核苷酸化合物作为造影剂在磁共振成像中的应用。
具体的,所述核黄素-5-磷酸或黄素腺嘌呤二核苷酸化合物作为造影剂在磁共振成像中的应用,包括如下步骤:
(1)选取核黄素-5-磷酸或黄素腺嘌呤二核苷酸化合物;
(2)配置核黄素-5-磷酸或黄素腺嘌呤二核苷酸化合物溶液,并调节其pH值;
(3)选取合适体重的实验老鼠,将麻醉老鼠后固定于动物床上,然后送入MRI仪,并用呼吸监控观测老鼠呼吸频率;
(4)对MRI仪进行快速调谐、匀场、对频、调节增益、采集定位像;
(5)采集T1,T2成像,选择合适的层和层厚,老鼠肾部的轮廓清晰可见并突出肾盏部分,图像信噪比较高;
(6)对老鼠肾脏部位进行CEST成像采集;
(7)由于CEST成像采集过程中会伴随老鼠的呼吸运动产生的B0场偏移,必须校正B0场;利用强度为0.5μT的连续波采集化学位移-1.6~1.6ppm范围内的WASSR成像;
(8)对老鼠尾静脉注射作为磁共振造影剂的核黄素-5-磷酸或黄素腺嘌呤二核苷酸化合物溶液;
(9)保持老鼠位置不动,对相同肾脏部位做CEST成像采集;
(10)由于CEST成像采集过程中会伴随老鼠的呼吸运动产生的B0场偏移,必须校正B0场;利用强度为0.5μT的连续波采集化学位移-1.6~1.6ppm范围内的WASSR成像;
(11)使用Matlab程序进行数据处理和图像重建。
与现有技术相比,本发明具有以下的明显有益效果:
(1)传统CEST磁共振信号都在低场范围内,且大部分都处于0~4ppm,造成了CEST成像灵敏度较低,而本发明所用的核黄素-5-磷酸或黄素腺嘌呤二核苷酸化合物CEST信号处于高场5到6.25ppm,解决了CEST成像灵敏度低的问题,不易受到体内的背景信号的干扰,并且对酸性敏感,有适用于活体肿瘤微环境检测的潜力;
(2)癌细胞表面有过表达的核黄素转运蛋白,可以特异性的将核黄素-5-磷酸或黄素腺嘌呤二核苷酸运载到癌细胞内,实现对癌细胞的特异性识别。
附图说明
图1为本发明核黄素-5-磷酸或黄素腺嘌呤二核苷酸化合物作为造影剂在磁共振成像中应用的具体流程步骤;
图2为本发明实施例1小鼠注射前和注射1h后的肾脏部位CEST成像及T2成像的叠加图;
图3为本发明实施例1小鼠注射前和注射79分钟后肾脏部位的CEST信号对比图;
图4为本发明实施2例肿瘤模型裸鼠注射前和注射1h后的肿瘤部位CEST成像及T2成像的叠加图。
具体实施方式
下面以具体实施例子,进一步阐述本发明。下述实施例仅用于说明本发明而不用于限制本发明的范围。
实施例所采用的主要试剂以及材料来源如下:
核黄素-5-磷酸和黄素腺嘌呤二核苷酸化合物(百灵威科技有限公司产品)。
如无特殊说明,以上试剂均是分析纯级别,直接使用,未经过进一步的纯化。
所用PBS均为10mM磷酸缓冲液,水为去离子水,小鼠为巴比西(BALB/c)雄鼠体重20~25g。
实施例1
一种黄素腺嘌呤二核苷酸化合物作为造影剂在磁共振成像中的应用,包括如下步骤:
步骤1、选取黄素腺嘌呤二核苷酸;
步骤2、称取83mg黄素腺嘌呤二核苷酸,溶解于1mL去离子水中,然后用盐酸溶液(hydrochloric acid,HCl solution)或者氢氧化钠溶液(Sodium hydroxide,NaOHsolution)调节pH值至7,浓度为0.100mol/L的MRI造影剂;
步骤3、取体重20~25g的小鼠,用体积比为2~3%异氟烷(Isoflurane)/氧(Oxygen,O2)气体麻醉放置于动物床上的老鼠,使其呈俯卧位,肾脏部位处于线圈的中心部位,用胶带固定后送入MRI仪,并用呼吸监控跟踪器呼吸频率,通过异氟烷量将呼吸频率控制在20次/min左右;
步骤4、快速进行调谐,匀场,对频,调节增益,采集定位像,选择合适的层;
步骤5、采集T1,T2成像,选择合适的层和层厚(3mm);
步骤6、在9~-9ppm区间每隔0.2ppm做CEST成像。典型的采样参数:层厚3mm,重复时间TR=5s,回波时间TE=6.4ms,采样矩形阵matrix size=128*96,加速因子rarefactor=8,饱和照射功率ω1=5.4μT,饱和照射时间t=3s;
步骤7、在1.6~-1.6ppm区间每隔0.15ppm做B0场校正。校正参数:层厚3mm,重复时间TR=5s,回波时间TE=6.4ms,采样矩形阵matrix size=128*96,加速因子rare factor=8,饱和照射功率ω1=0.5μT,饱和照射时间t=0.3s;
步骤8、对小鼠用注射泵缓慢注射配制的0.1mL黄素腺嘌呤二核苷酸溶液,注射速度控制在0.02毫升每分钟,注意其呼吸频率;
步骤9、在9~-9ppm区间每隔0.2ppm做CEST成像。采样参数:层厚(3mm),重复时间TR=5s,回波时间TE=6.4ms,采样矩形阵matrix size=128*96,加速因子rare factor=8,饱和照射功率ω1=5.4μT,饱和照射时间t=3s;
步骤10、在1.6~-1.6ppm区间每隔0.15ppm做B0场校正。校正参数:层厚(3mm),重复时间TR=5s,回波时间TE=6.4ms,采样矩形阵matrix size=128*96,加速因子rarefactor=8,饱和照射功率ω1=0.5μT,饱和照射时间t=0.3s;
步骤11、使用Matlab程序进行数据处理和图像重建,CEST信号用磁化传递率不对称参数(magnetization transfer ratio asymmetry parameter,MTRasym)衡量结果;MTRasym=(S-Δω-S+Δω)/S0,其中,S-Δω是在-Δω处施加饱和脉冲时水的信号,S+Δω是在+Δω处施加饱和脉冲时水的信号,S0是不施加饱和脉冲时水的信号。
实验结果:
图2是注射前以及注射黄素腺嘌呤二核苷酸1h后在化学位移6.25ppm处的肾脏部位CEST成像和T1成像的叠加图,其中T1成像是对小鼠肾脏的定位,CEST图反应了注射前后黄素腺嘌呤二核苷酸对化学位移6.25ppm处小鼠肾脏部位CEST的影响,从而得出黄素腺嘌呤二核苷酸在肾脏部位的分布。图3是注射前和注射79分钟后在化学位移0~9ppm区间肾的CEST信号对比图,反应了注射前后黄素腺嘌呤二核苷酸对化学位移0~9ppm处小鼠肾脏部位CEST的影响。对比注射前小鼠肾脏部位的MTRasym曲线,注射后在化学位移6.25ppm处小鼠肾脏部位MTRasym为2.5%,分布在肾脏的肾皮质部分,并且远离较大内源性信号(0~4ppm)的范围。说明黄素腺嘌呤二核苷酸化合物的CEST信号在6.25ppm处可以有效的减少背景信号,提高了MRI的灵敏度。
实施例2
一种黄素腺嘌呤二核苷酸化合物作为造影剂在磁共振成像中的应用,包括如下步骤:
步骤1、选取黄素腺嘌呤二核苷酸;
步骤2、称取83mg黄素腺嘌呤二核苷酸,溶解于1mL去离子水中,然后用盐酸溶液(hydrochloric acid,HCl solution)或者氢氧化钠溶液(Sodium hydroxide,NaOHsolution)调节pH值至7,浓度为0.100mol/L的MRI造影剂;
步骤3、取腿部移植有宫颈癌细胞肿瘤的裸鼠,用体积比为2~3%异氟烷(Isoflurane)/氧(Oxygen,O2)气体麻醉放置于动物床上的老鼠,使其呈俯卧位,肾脏部位处于线圈的中心部位,用胶带固定后送入MRI仪,并用呼吸监控跟踪器呼吸频率,通过异氟烷量将呼吸频率控制在20次/min左右;
步骤4、快速进行调谐,匀场,对频,调节增益,采集定位像,选择合适的层;
步骤5、采集T1,T2成像,选择合适的层和层厚(3mm);
步骤6、在9~-9ppm区间每隔0.2ppm做CEST成像。典型的采样参数:层厚3mm,重复时间TR=5s,回波时间TE=6.4ms,采样矩形阵matrix size=128*96,加速因子rarefactor=8,饱和照射功率ω1=5.4μT,饱和照射时间t=3s;
步骤7、在1.6~-1.6ppm区间每隔0.15ppm做B0场校正。校正参数:层厚3mm,重复时间TR=5s,回波时间TE=6.4ms,采样矩形阵matrix size=128*96,加速因子rare factor=8,饱和照射功率ω1=0.5μT,饱和照射时间t=0.3s;
步骤8、对肿瘤模型裸鼠用注射泵缓慢注射配制的0.1mL黄素腺嘌呤二核苷酸溶液,注射速度控制在0.02毫升每分钟,注意其呼吸频率;
步骤9、在9~-9ppm区间每隔0.2ppm做CEST成像。采样参数:层厚(3mm),重复时间TR=5s,回波时间TE=6.4ms,采样矩形阵matrix size=128*96,加速因子rare factor=8,饱和照射功率ω1=5.4μT,饱和照射时间t=3s;
步骤10、在1.6~-1.6ppm区间每隔0.15ppm做B0场校正。校正参数:层厚(3mm),重复时间TR=5s,回波时间TE=6.4ms,采样矩形阵matrix size=128*96,加速因子rarefactor=8,饱和照射功率ω1=0.5μT,饱和照射时间t=0.3s;
步骤11、使用Matlab程序进行数据处理和图像重建,CEST信号用磁化传递率不对称参数(magnetization transfer ratio asymmetry parameter,MTRasym)衡量结果;MTRasym=(S-Δω-S+Δω)/S0,其中,S-Δω是在-Δω处施加饱和脉冲时水的信号,S+Δω是在+Δω处施加饱和脉冲时水的信号,S0是不施加饱和脉冲时水的信号。
实验结果:
图2是注射前以及注射黄素腺嘌呤二核苷酸79分钟后在化学位移6.25ppm处的肿瘤部位CEST成像和T2成像的叠加图,其中T2成像是对小鼠肾脏的定位,CEST图反应了注射前后黄素腺嘌呤二核苷酸对化学位移6.25ppm处小鼠肾脏部位CEST的影响,从而得出黄素腺嘌呤二核苷酸在肿瘤部位的分布。图4是注射前和注射79分钟后在化学位移0~9ppm区间左肾的CEST信号对比图,反应了注射前后黄素腺嘌呤二核苷酸对化学位移0~9ppm处肿瘤模型裸鼠肿瘤部位CEST的影响。对比注射前肿瘤模型裸鼠肿瘤部位的MTRasym曲线,注射后在化学位移6.25ppm出肿瘤模型裸鼠肿瘤部位MTRasym为2%,分布在肾脏的肾皮质部分,并且远离较大内源性信号(0~4ppm)的范围。说明黄素腺嘌呤二核苷酸化合物的CEST信号在6.25ppm处可以有效的减少背景信号,提高了MRI的灵敏度。
上述实施例只是为了说明本发明的技术构思及特点,其目的是在于让本领域内的普通技术人员能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡是根据本发明内容的实质所作出的等效的变化或修饰,都应涵盖在本发明的保护范围内。
上述实施例只是为了说明本发明的技术构思及特点,其目的是在于让本领域内的普通技术人员能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡是根据本发明内容的实质所作出的等效的变化或修饰,都应涵盖在本发明的保护范围内。

Claims (1)

1.一种黄素腺嘌呤二核苷酸在制备CEST磁共振成像造影剂中的应用,其特征在于,包括如下步骤:
(1)选取黄素腺嘌呤二核苷酸;
(2)配置黄素腺嘌呤二核苷酸溶液,并调节其pH值;
(3)选取合适体重的实验老鼠,将老鼠麻醉后固定于动物床上,然后送入MRI仪,并监控观测老鼠呼吸频率;
(4)对MRI仪进行快速调谐、匀场、对频、调节增益、采集定位像;
(5)采集T1,T2成像,选择合适的层或层厚,老鼠肾部的轮廓清晰可见并突出肾盏部分,图像信噪比较高;
(6)对老鼠肾脏部位进行CEST成像采集;
(7)由于CEST成像采集过程中会伴随老鼠的呼吸运动产生的B0场偏移,必须校正B0场;利用强度为0.5μT的连续波采集化学位移-1.6~1.6ppm范围内的WASSR成像;
(8)对老鼠尾静脉注射作为CEST磁共振造影剂的黄素腺嘌呤二核苷酸化合物溶液;
(9)保持老鼠位置不动,对相同肾脏部位做CEST成像采集;
(10)由于CEST成像采集过程中会伴随老鼠的呼吸运动产生的B0场偏移,必须校正B0场;利用强度为0.5μT的连续波采集化学位移-1.6~1.6ppm范围内的WASSR成像;
(11)使用Matlab程序进行数据处理或图像重建。
CN201910198077.7A 2019-03-15 2019-03-15 一种核黄素衍生物在磁共振成像中的应用 Active CN111686262B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910198077.7A CN111686262B (zh) 2019-03-15 2019-03-15 一种核黄素衍生物在磁共振成像中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910198077.7A CN111686262B (zh) 2019-03-15 2019-03-15 一种核黄素衍生物在磁共振成像中的应用

Publications (2)

Publication Number Publication Date
CN111686262A CN111686262A (zh) 2020-09-22
CN111686262B true CN111686262B (zh) 2023-03-31

Family

ID=72475876

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910198077.7A Active CN111686262B (zh) 2019-03-15 2019-03-15 一种核黄素衍生物在磁共振成像中的应用

Country Status (1)

Country Link
CN (1) CN111686262B (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108743977A (zh) * 2018-04-03 2018-11-06 中国科学院武汉物理与数学研究所 一种无重金属离子卟啉化合物造影剂及其在磁共振成像中的应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2494918B1 (en) * 2009-10-29 2015-08-19 Kyushu University, National University Corporation Method for detecting endogenous biomolecules

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108743977A (zh) * 2018-04-03 2018-11-06 中国科学院武汉物理与数学研究所 一种无重金属离子卟啉化合物造影剂及其在磁共振成像中的应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Riboflavin carrier protein-targeted fluorescent USPIO for the assessment of vascular metabolism in tumors;Jabadurai Jayapaul等;《Biomaterials》;20120906;第33卷;第8822-8829页 *
Simultaneous and Spectroscopic Redox Molecular Imaging of Multiple Free Radical Intermediates Using Dynamic Nuclear Polarization-Magnetic Resonance Imaging;Fuminori Hyodo等;《Anal. Chem.》;20140718;第86卷;第7234-7238页 *

Also Published As

Publication number Publication date
CN111686262A (zh) 2020-09-22

Similar Documents

Publication Publication Date Title
Day et al. Detecting response of rat C6 glioma tumors to radiotherapy using hyperpolarized [1‐13C] pyruvate and 13C magnetic resonance spectroscopic imaging
Wolf et al. Fluorine-19 NMR spectroscopic studies of the metabolism of 5-fluorouracil in the liver of patients undergoing chemotherapy
US20060204443A1 (en) Methods for tumor treatment using dendrimer conjugates
JPH0920785A (ja) 非イオン性常磁性イオン錯体およびこれを形成するための錯化剤
US7419654B2 (en) Charge neutral complexes of paramagnetic metals as intracellular magnetic resonance imaging contrast agents
Lim et al. Longitudinal measurements of intra-and extracellular pH gradient in a rat model of glioma
JP5563299B2 (ja) リンパ系撮像方法
CN108743977B (zh) 一种无重金属离子卟啉化合物造影剂及其在磁共振成像中的应用
Geninatti-Crich et al. Boronated compounds for imaging guided BNCT applications
Jones et al. Respiration gating and Bloch fitting improve pH measurements with acidoCEST MRI in an ovarian orthotopic tumor model
Hesse et al. Imaging glioblastoma response to radiotherapy using 2H magnetic resonance spectroscopy measurements of fumarate metabolism
US20110275928A1 (en) Blood signal suppressed enhanced magnetic resonance imaging
CN111686262B (zh) 一种核黄素衍生物在磁共振成像中的应用
CN103764174A (zh) 用于代谢显像的组合物和方法
US11229712B2 (en) In vivo detection of a xenon-binding cage molecule
US20220079905A1 (en) Magnetic resonance imaging drug containing deuterated sarcosine, and diagnostic method using said drug
CA2271735C (en) Magnetic resonance blood pool agents
Furuta et al. Treatment margins in radiotherapy for liver tumors visualized as T2*-hypointense areas on SPIO-enhanced MRI at 9.4 T
RU2541090C1 (ru) Модифицированные гадопентетатом производные бета-циклодекстрина
Ros et al. Metabolic imaging with hyperpolarized [1-13C] pyruvate in patient-derived preclinical mouse models of breast cancer
RU2718052C2 (ru) Препарат для магнитно-резонансной диагностики онкологических заболеваний, содержащий дейтерированную 3-о-метилглюкозу, и способ диагностики с использованием этого препарата
Brindle et al. Imaging glioblastoma response to radiotherapy using 2H magnetic resonance spectroscopy measurements of fumarate metabolism
CN114272395A (zh) 一种水溶性原卟啉聚合物、其制法及应用
WO1997030734A1 (en) Magnetic resonance blood pool agents
CN105214103A (zh) 用于恶性肿瘤和心脑血管相关疾病早期快速检测及多模态成像的金属离子试剂和影像制剂

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant