CN111681783B - 一种激光聚变点火装置和聚变点火方法 - Google Patents

一种激光聚变点火装置和聚变点火方法 Download PDF

Info

Publication number
CN111681783B
CN111681783B CN202010584044.9A CN202010584044A CN111681783B CN 111681783 B CN111681783 B CN 111681783B CN 202010584044 A CN202010584044 A CN 202010584044A CN 111681783 B CN111681783 B CN 111681783B
Authority
CN
China
Prior art keywords
fuel
cones
compression
ignition
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010584044.9A
Other languages
English (en)
Other versions
CN111681783A (zh
Inventor
张�杰
张喆
王伟民
远晓辉
李玉同
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Jiaotong University
Institute of Physics of CAS
Original Assignee
Shanghai Jiaotong University
Institute of Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Jiaotong University, Institute of Physics of CAS filed Critical Shanghai Jiaotong University
Priority to CN202010584044.9A priority Critical patent/CN111681783B/zh
Publication of CN111681783A publication Critical patent/CN111681783A/zh
Application granted granted Critical
Publication of CN111681783B publication Critical patent/CN111681783B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21BFUSION REACTORS
    • G21B1/00Thermonuclear fusion reactors
    • G21B1/11Details
    • G21B1/19Targets for producing thermonuclear fusion reactions, e.g. pellets for irradiation by laser or charged particle beams
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Laser Beam Processing (AREA)

Abstract

公开了一种激光聚变点火装置,其包括:激光源;两个相同的相互分离的中空的压缩锥体,用于装填用于聚变的燃料,所述两个压缩锥体中的每一个的锥顶设置有孔,锥底开放,所述两个压缩锥体由金属制成,共轴且锥顶相对;以及点火组件,用于对从所述两个压缩锥体的所述孔中喷出并发生对撞的所述燃料进行加热,使其发生聚变点火;其中,所述激光源产生多路激光脉冲,分别从所述两个压缩锥体中的每一个的锥底朝向锥顶方向辐照所述燃料,以使所述燃料从所述两个压缩锥体的所述孔中相向喷出并发生对撞。该激光聚变点火装置可以降低实施聚变压缩和点火的激光的能量,并且能提高激光聚变点火的稳定性。还公开了一种激光聚变点火方法。

Description

一种激光聚变点火装置和聚变点火方法
技术领域
本申请涉及激光驱动惯性约束聚变领域,具体地涉及一种激光聚变点火装置和一种激光聚变点火方法。
背景技术
由于激光聚变(ICF)过程中激光等离子体参量不稳定性、流体力学不稳定性、内爆混合过程等高度复杂的内禀物理问题,激光聚变过程具有高度复杂性。
期望一种激光聚变点火装置和相应点火方法,可以实质性降低激光聚变点火过程的复杂性,降低激光聚变压缩和点火过程中对激光能量的总需求。
发明内容
一方面,公开了一种激光聚变点火装置,其包括激光源;两个相同的相互分离的中空的压缩锥体,用于装填用于聚变的燃料,所述两个压缩锥体中的每一个的锥顶设置有孔,锥底开放,所述两个压缩锥体由金属制成,共轴且锥顶相对;以及点火组件,用于对从所述两个压缩锥体的所述孔中喷出并发生对撞的所述燃料进行加热,使其发生聚变点火;其中,所述激光源产生多路激光脉冲,分别从所述两个压缩锥体中的每一个的锥底朝向锥顶方向辐照所述燃料以使所述燃料从所述两个压缩锥体的所述孔中相向喷出并发生对撞。
在一些实施例中,所述两个压缩锥体由金制成,其平面投影角为90度-120度,锥顶之间相距80-120微米,所述孔的内径为80-120微米,所述燃料为冷冻球壳状氘氚燃料,其内径为400-2000微米,厚度为40-100微米。
在一些实施例中,所述激光源产生的多路激光脉冲包括:多路压缩激光脉冲,其相向辐照在所述两个压缩锥体中以对所述燃料进行近等熵压缩;以及多路加速激光脉冲,其辐照在近等熵压缩后的所述燃料上,以加速所述燃料从所述孔喷出。
在一些实施例中,所述压缩激光脉冲的脉冲宽度为3~15纳秒,最高功率为0.5-1太瓦,所述加速激光脉冲的脉冲宽度为50-500皮秒,最高功率为70-90太瓦。
在一些实施例中,所述点火组件包括多个相互分离的中空的点火锥体,所述多个点火锥体由金属制成,所述多个点火锥体的锥顶封闭、彼此相对并靠近所述两个压缩锥体的锥顶,所述多个点火锥体的锥底开放;所述激光源产生的激光脉冲进一步包括用于对发生对撞的所述燃料进行聚变点火的多路激光脉冲,其分别从所述多个点火锥体中的每一个的锥底朝锥顶方向辐照锥体内部以产生电子;且所述点火组件进一步包括磁场源,所述磁场源在所述两个压缩锥体的锥顶及其周围施加磁场,将所述电子引导到发生对撞的所述燃料所在区域
另一方面,还公开了一种激光聚变点火方法,其包括:在两个相同的相互分离的中空的压缩锥体中装填用于聚变的燃料,所述两个压缩锥体中的每一个的锥顶设置有孔,锥底开放,所述两个压缩锥体由金属制成,共轴且锥顶相对;将激光脉冲分别从所述两个压缩锥体中的每一个的锥底朝向锥顶方向照射所述燃料以使所述燃料从所述两个压缩锥体的所述孔中相向喷出并发生对撞;对从所述两个压缩锥体的所述孔中喷出并发生对撞的所述燃料进行加热,使其发生聚变点火。
在一些实施例中,所述两个压缩锥体由金制成,其平面投影角为90度-120度,锥顶之间相距80-120微米,所述孔的内径为80-120微米,所述燃料为冷冻球壳状氘氚燃料,其内径为400-2000微米,厚度为40-100微米。
在一些实施例中,使用多路压缩激光脉冲相向辐照在所述两个压缩锥体中以对所述燃料进行近等熵压缩;以及使用多路加速激光脉冲辐照在近等熵压缩后的所述燃料上,以加速所述燃料从所述孔喷出。
在一些实施例中,所述压缩激光脉冲的脉冲宽度为3~15纳秒,最高功率为0.5-1太瓦,所述加速激光脉冲的脉冲宽度为50-500皮秒,最高功率为70-90太瓦。
在一些实施例中,对发生对撞的所述燃料进行聚变点火包括:使用多路激光脉冲,分别从多个相互分离的中空的点火锥体中的每一个的锥底朝锥顶方向辐照锥体内部以产生电子,所述多个点火锥体由金属制成,所述多个点火锥体的锥顶封闭、彼此相对并靠近所述两个压缩锥体的锥顶,所述多个点火锥体的锥底开放;且在所述两个压缩锥体的锥顶及其周围施加磁场,将所述电子引导到发生对撞的所述燃料所在区域。
附图说明
图1为根据本申请一个实施例的激光聚变点火装置的剖面示意图;
图2为根据本申请一个实施例的激光聚变点火方法的示例;
图3为根据本申请一个实施例的示意图;
图4为根据本申请一个实施例的压缩激光脉冲的波形;
图5为根据本申请一个实施例的加速激光脉冲的波形;
图6为根据本申请一个实施例的示意图;
图7为根据本申请一个实施例的加热激光脉冲的波形;
图8为根据本申请一个实施例的点火组件产生的磁场示意图。
具体实施方式
本申请提出了一种激光聚变点火装置,其利用高功率激光压缩、烧蚀、加速锥形结构内的燃料,并结合锥形结构的横向箍缩作用,实现燃料的三维球对称向心聚爆,从而实现激光聚变点火。其中,燃料是能够发生聚变的燃料,例如氘氚。
为使本申请的目的、技术方案和优点更加清楚明白,下面结合具体实施例,并参照附图,对本申请做进一步的详细说明。在附图中,将相同的附图标记赋予基本上具有相同或类似结构和功能的组成部分,并且将省略关于它们的重复描述。
图1示出了本申请的激光聚变点火装置的一个实施例100的沿两个压缩锥体110的锥轴SS’的剖面示意图。
该激光聚变点火装置100包括两个相同的相互分离的中空的压缩锥体110,用于装填燃料130,图1中燃料130的位置为燃料所在的初始位置,燃料的形状可以根据实际情况而定。每个压缩锥体110的锥顶设置有孔111,锥底开放,所述两个压缩锥体由金属制成,共轴SS’,且锥顶相对。
激光源(图1中未示出)产生多路激光脉冲140,分别从每个压缩锥体110的锥底朝向锥顶方向辐照燃料130,对燃料130进行压缩、烧灼、冲击,使其从每个压缩锥体110的锥顶处的孔111中喷出并发生相向对撞。点火组件120邻近两个压缩锥体110的锥顶,当燃料130从两个孔111处喷出并发生对撞的时候,点火组件120对燃料进行快速加热,使其发生聚变点火。
燃料130的形状可以根据实际应用而设定,例如,对于氘氚燃料,可以是处于冷冻状态的中空球壳形,冷冻温度可以为绝对温度2.5K;其中,图1中所示点火组件120的位置和形状仅仅是示意,并不对点火组件120的位置和形状进行任何限制,点火组件120可以包含多个部件,例如,可以包含多个点火锥体,对从孔111中喷出并发生对撞的燃料进行快速加热,点火组件还可以包括磁场源,对发生对撞的燃料施加磁场,提高加热效率,促进聚变点火过程;在进行激光聚变点火的整个过程中,激光源(图1未示出)在不同的阶段可以根据实际需要产生不同的激光脉冲,例如,波形和功率可以不同,激光脉冲的光束的数量可以不同,各种激光脉冲的个数可以不同,各种激光脉冲之间的时延可以通过电路和光路进行设定和控制。
在一些实施例中,两个压缩锥体110由高原子序数且弹性模量大的金属制成,优选为用金制成。每一个压缩锥体的平面投影角为90度-120度(对应空间立体角为0.58~1π),在锥顶处的孔111的内径为80-120微米,两个压缩锥体110的锥顶之间相距80-120微米。
根据一个实施例,燃料130为氘氚,冷冻温度为绝对温度2.5K,为球壳状,球壳内径为400-2000微米,厚度为40-100微米。
图2示出了根据本申请的一个实施例的激光聚变点火方法200的示例,其将激光聚变过程分解成4个步骤:等熵压缩步骤210、烧蚀冲击混合加速步骤220、对撞预加热步骤230以及聚变点火步骤240。
图3示出了根据本申请的一个实施例的激光聚变点火装置300和激光聚变点火方法200的相结合的示意图。
两个压缩锥体110共轴SS’。在近等熵压缩步骤210中,激光源产生压缩激光脉冲141,分别从每个压缩锥体110的锥底朝锥顶方向辐照在燃料130上,对燃料130进行近等熵压缩。在烧蚀冲击混合加速步骤220中,激光源产生加速激光脉冲142,分别从每个压缩锥体110的锥底朝锥顶方向辐照在燃料130上,对燃料130进行进一步压缩,并通过烧蚀压沿着压缩锥体110轴向的引导,使得燃料130纵向加速到更高动能,从每一个压缩锥体110的孔111中喷出。这时候,就进入对撞预加热步骤230,两团成高密度等离子体形态的燃料130相向运动,发生对撞,对撞后的燃料密度倍增,达到聚变所需要的密度;从而进入聚变点火步骤240,点火组件120对发生对撞的燃料130进行加热,使对撞后的燃料130发生聚变点火。在实际应用过程中,压缩激光脉冲141和加速激光脉冲142可以包括多路激光脉冲,每一路激光脉冲可以包含连续多个激光脉冲。点火组件120可以是任何可行的形状,可以包括多个部件。
传统的激光聚变点火是一个高度复杂性的过程。本申请的激光聚变点火装置100或500通过沿锥形结构(即压缩锥体)向心内爆简化了球对称内爆,放松了对球对称内爆的对称性要求,再将向心内爆压缩与同步加热点火的复杂物理过程有效分解为等熵压缩过程、烧蚀冲击混合加速过程(即高密度等离子体加速过程)、对撞预加热过程和聚变点火过程等四个紧密相联的分解物理过程,大幅节省了压缩激光与点火激光的能量,减轻了对压缩激光辐照匀滑要求,实质性降低了实现激光聚变点火的难度。下面,结合具体实施例详述每一个具体步骤。
在近等熵压缩步骤210中,激光源产生多路压缩激光脉冲,这些压缩激光脉冲分别同时从每一个压缩锥体110的锥底朝其锥顶方向,辐照在燃料130上,对燃料130进行近等熵压缩。在多路压缩激光脉冲的纵向近等熵烧蚀压缩和压缩锥体110的横向箍缩的共同作用下,实现对燃料130在压缩锥体110中的近等熵压缩。
图4是本申请的一个实施例所采用的压缩激光脉冲的示例。该压缩激光脉冲是一种双斜角波组合脉冲,脉冲宽度为3~15纳秒,优选为5~10纳秒,最高功率为0.5-1太瓦。
根据一个实施例,激光源分别用16~32束多路压缩激光脉冲以动态聚焦形式叠合到每一个压缩锥体110中装填的燃料上,例如氘氚燃料球壳表面,采用近等熵压缩方式在压缩锥体110内将燃料130(例如氘氚燃料)压缩至高密度低温等离子体状态。在压缩过程中,由于采用双斜角波组合脉冲对氘氚等离子体实施近等熵压缩,可以获得很好的压缩效果,同时近等熵压缩阶段第一个斜角波的较低光强也可抑制激光等离子体参量不稳定性的早期发展和流体不稳定性的发展。
根据一个实施例,压缩激光脉冲的波形经过束匀滑处理。
在烧蚀冲击混合加速步骤220中,激光源产生多路加速激光脉冲,这些加速激光脉冲分别同时从每一个压缩锥体110的锥底朝其锥顶方向,辐照在燃料130上,将经过近等熵压缩后变成高密度等离子体形态的燃料130进行进一步压缩,并通过烧蚀压沿着压缩锥体轴向的引导,使得燃料130纵向加速到更高动能,从每一个压缩锥体110的孔111中喷出。
图5是根据本申请的一个实施例的加速激光脉冲的波形。该加速激光脉冲的脉冲宽度为50-500皮秒,优选为100皮秒,最高功率为70-90太瓦。
根据一个实施例,激光源分别用4~8束多路加速激光脉冲叠合聚焦到每一个压缩金锥110内,烧蚀冲击压缩后变成高密度等离子体形态的燃料130,使得燃料130得到进一步的压缩,在孔111处的燃料密度最高可以达到150g/cm3,并使得燃料130从每个孔111中加速喷出,喷出速度可以达到300km/s。
根据一个实施例,在近等熵压缩步骤210结束后,延迟-100ps~+100ps后发送加速激光脉冲,即,在多路压缩激光脉冲尾部时延-100ps~+100ps,发送加速激光脉冲。
当燃料分别从两个孔111中喷出后,进入对撞预加热步骤230。两个压缩锥体的锥顶相对,从两个孔111中加速喷出的两团具有高速度高动能的以高密度等离子体形态存在的相向运动的燃料130在两个孔111之间发生对撞,在对撞减速过程中,燃料的密度倍增,达到聚变所需要的密度。此时,燃料最高密度可以达到300g/cm3。与此同时,燃料在发生对撞前的动能也将在碰撞的作用下转化成热能,使得对撞后,以高密度等离子体形式存在的燃料130被预加热到超过1千电子伏特(1电子伏特=11604.5K)的温度,且燃料核心区的高密度状态可维持数百皮秒以上的惯性约束时间。
在聚变点火步骤240中,点火组件120对发生对撞的燃料130进行加热,使其发生聚变点火。
点火组件120可以包括多个组成部分,这些组成部份可以相同。点火组件120可以是任何可行的装置,只要能够对发生对撞的燃料130进行加热,使其发生聚变点火即可。
根据一个实施例,点火组件120邻近压缩锥体110的孔111。
根据一个实施例,点火组件120包括多个相互分离的中空的点火锥体,这些点火锥体由金属制成,锥顶封闭,各个点火锥体的锥顶之间彼此相对,邻近两个压缩锥体110的锥顶。这些点火锥体的锥底开放。
根据一个实施例,各个点火锥体围绕两个压缩锥体的中心点排列。
在聚变点火步骤240中,激光源产生的激光可以射入点火锥体。在一些实施例中,制成点火锥体的金属是高原子序数的金属,例如金。
根据一个实施例,每个点火锥体的平面投影角为45度-90度,且均由金制成。
图6是本申请激光聚变点火装置的一个实施例600的示意图,点火组件120包括4个点火锥体121,分成两组,每组两个点火锥体,同组的两个点火锥体共轴,锥顶相对。两组点火锥体的轴PP’和QQ’在一个与两个压缩锥体的轴SS’相互垂直的平面上,三轴之间相互垂直,且相交于同一点,即两个压缩锥体110的中心点。四个点火锥体121围绕此中心点对称排列,且锥顶靠近此中心点。
在聚变点火步骤240中,激光源产生点火激光脉冲143,点火激光脉冲143可以包括多路激光脉冲,这些激光脉冲可以是多束的。点火激光脉冲143从每个点火锥体121的锥底朝锥顶方向射入点火锥体121内测,使点火锥体121释放出能量为兆电子伏特量级的超热电子,这些释放出的超热电子在点火锥体的轴向引导下到达压缩锥体的锥顶附近,用于加热所在区域的燃料130,可以使处于高密度等离子体状态的燃料130加热到聚变点火所需的温度,从而发生聚变点火。
根据一个实施例,每组点火锥体中的两个点火锥体锥顶之间相距80-120微米。
根据一个实施例,点火激光脉冲其宽度为1-20皮秒,最高功率为1拍瓦(1000太瓦)。图7示出本申请点火激光脉冲的一个实施例。
根据一个实施例,点火激光脉冲相对于加速激光脉冲时延约100~400皮秒。
上述产生的超热电子,由于其产生的物理机制决定了其自生的发散角较大,通常为45~60度。因此,并不能确保所有超热电子都能到达燃料130发生对撞之后所在区域。可以使用外加磁场源对超热电子进行进一步引导。
根据一个实施例,激光聚变点火装置600中的点火组件120还包括磁场源(图中未示出),当激光源产生点火激光脉冲的同时,磁场源在压缩锥体和点火锥体的锥顶周围施加强度为1-3千特斯拉的磁场,将点火锥体释放出的超热电子进一步引导到两个压缩锥体的锥顶及周围区域,即从两个孔111中喷出的燃料130发生对撞后所在区域,对燃料130进行加热,使得燃料温度可以达到5-10千电子伏特从而发生聚变点火。
图8是沿激光聚变点火装置600的4个点火锥体的轴PP’和QQ’所在平面的激光聚变点火装置100的剖面示意图,黑色带箭头的线180为施加的磁场中磁力线方向,在这个示例中,磁场的灰度代表磁场的强弱,T代表磁场强度单位特斯拉。图8中有4个点火锥体121。在点火锥体121内的箭头160标出了点火锥体121在多路点火激光脉冲的作用下释放出来的超热电子在磁场的进一步引导下的输运方向。图8中心的圆170为发生对撞后的高密度等离子体形态的燃料所在区域。
从图8中可见,在施加的磁场的作用下,超热电子的发散角减小了,超热电子可以准直的沿磁力线方向进行传输,因此,大量超热电子将被引导到达激光聚变点火装置100中心的高密度等离子体形态的燃料所在区域。
本申请的各种实施例,由于将压缩与加热这两个物理过程分离,能够控制压缩过程中不稳定性发展,因此在激光-靶丸耦合效率、靶丸辐照均匀性、束靶耦合和综合靶场构型等方面都具有独特优势。
其次,与传统的完全球对称向心聚爆技术相比,压缩锥体的烧蚀压缩的设计,一方面可以在更低激光能量下实现更高的辐照光强,降低对压缩激光总能量的要求,另一方面可以利用压缩锥体的横向箍缩,有效提高等离子体形态的燃料的密度,有利地促进聚变过程。
而且,本申请的各种实施例,将对以高密等离子体形态存在的燃料的加热分解为对撞预加热与聚变点火两个过程,有望降低对皮秒点火激光的能量需求。
另外,和传统的激光聚变点火过程相比,点火激光脉冲直接入射专用的点火锥体,而不是入射压缩锥体,可以避免压缩锥体内可能残留的燃料造成的点火激光脉冲的能量的损失,有利于超热电子的产生,从而更有效地对对撞后的燃料进行加热,促进激光聚变点火过程。而且,在聚变点火过程中施加外磁场,点火锥体释放出的超热电子更集中地引导到发生对撞后的燃料所在区域,可以提高在激光聚变点火过程中对燃料的加热效率。
虽然已经描述了本申请的一些实施例,但是这些实施例仅作为示例而呈现,而不会限制本申请的范围。实际上,在本文中所描述的激光聚变点火装置和激光聚变点火方法可以采用多种其它形式来实施。另外,在不脱离本申请的范围的情况下,在本文中所描述的激光聚变点火装置和激光聚变点火方法在形式上可以做出各种省略、替换和改变。
贯穿说明书和权利要求书,除非上下文清楚地另有要求,否则措词“包括”、“包含”等应当以与排他性或穷尽性的意义相反的包括性的意义来解释,也就是说,应当以“包括但不限于”的意义来解释。另外,措词“在本文中”、“上文”、“下文”以及相似含义的措词在本申请中使用时应当指作为整体的本申请,而不是本申请的任何具体部分。在上下文允许时,在使用单数或复数的以上描述中的措词也可以分别包括复数或单数。关于在提及两个或多个项目的列表时的措词“或”,该措词涵盖该措词的以下解释中的全部:列表中的任何项目,列表中的所有项目,以及列表中的项目的任何组合。另外,措词“第一”、“第二”等旨在用于区分,而不是用于强调次序或重要程度。

Claims (6)

1.一种激光聚变点火装置,包括:
激光源;
两个相同的相互分离的中空的压缩锥体,用于装填用于聚变的燃料,所述两个压缩锥体中的每一个的锥顶设置有孔,锥底开放,所述两个压缩锥体由金属制成,共轴且锥顶相对;以及
点火组件,用于对从所述两个压缩锥体的所述孔中喷出并发生对撞的所述燃料进行加热,使其发生聚变点火;
其中,所述激光源产生多路激光脉冲,分别从所述两个压缩锥体中的每一个的锥底朝向锥顶方向辐照所述燃料,以使所述燃料从所述两个压缩锥体的所述孔中相向喷出并发生对撞
所述激光源产生的多路激光脉冲包括:
多路压缩激光脉冲,其相向辐照在所述两个压缩锥体中以对所述燃料进行近等熵压缩;以及
多路加速激光脉冲,其辐照在近等熵压缩后的所述燃料上,以加速所述燃料从所述孔喷出,
所述压缩激光脉冲的脉冲宽度为3~15纳秒,最高功率为0.5-1太瓦,所述加速激光脉冲的脉冲宽度为50-500皮秒,最高功率为70-90太瓦。
2.如权利要求1所述的激光聚变点火装置,其中,所述两个压缩锥体由金制成,其平面投影角为90度-120度,锥顶之间相距80-120微米,所述孔的内径为80-120微米,所述燃料为冷冻球壳状氘氚燃料,其内径为400-2000微米,厚度为40-100微米。
3.如权利要求1所述的激光聚变点火装置,其中,
所述点火组件包括多个相互分离的中空的点火锥体,所述多个点火锥体由金属制成,所述多个点火锥体的锥顶封闭、彼此相对并靠近所述两个压缩锥体的锥顶,所述多个点火锥体的锥底开放;
所述激光源产生的激光脉冲进一步包括用于对发生对撞的所述燃料进行聚变点火的多路激光脉冲,其分别从所述多个点火锥体中的每一个的锥底朝锥顶方向辐照锥体内部以产生电子;且
所述点火组件进一步包括磁场源,所述磁场源在所述两个压缩锥体的锥顶及其周围施加磁场,将所述电子引导到发生对撞的所述燃料所在区域。
4.如权利要求1-3中任一项所述的激光聚变点火装置的操作方法,包括:
在两个相同的相互分离的中空的压缩锥体中装填用于聚变的燃料,所述两个压缩锥体中的每一个的锥顶设置有孔,锥底开放,所述两个压缩锥体由金属制成,共轴且锥顶相对;
将激光脉冲分别从所述两个压缩锥体中的每一个的锥底朝向锥顶方向照射所述燃料以使所述燃料从所述两个压缩锥体的所述孔中相向喷出并发生对撞;以及
对从所述两个压缩锥体的所述孔中喷出并发生对撞的所述燃料进行加热,使其发生聚变点火。
5.如权利要求4所述的操作方法,其中:
使用多路压缩激光脉冲相向辐照在所述两个压缩锥体中以对所述燃料进行近等熵压缩;以及
使用多路加速激光脉冲辐照在近等熵压缩后的所述燃料上,以加速所述燃料从所述孔喷出。
6.如权利要求4所述的操作方法,其中,对发生对撞的所述燃料进行聚变点火包括:
使用多路激光脉冲,分别从多个相互分离的中空的点火锥体中的每一个的锥底朝锥顶方向辐照锥体内部以产生电子,所述多个点火锥体由金属制成,所述多个点火锥体的锥顶封闭、彼此相对并靠近所述两个压缩锥体的锥顶,所述多个点火锥体的锥底开放;且
在所述两个压缩锥体的锥顶及其周围施加磁场,将所述电子引导到发生对撞的所述燃料所在区域。
CN202010584044.9A 2020-06-23 2020-06-23 一种激光聚变点火装置和聚变点火方法 Active CN111681783B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010584044.9A CN111681783B (zh) 2020-06-23 2020-06-23 一种激光聚变点火装置和聚变点火方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010584044.9A CN111681783B (zh) 2020-06-23 2020-06-23 一种激光聚变点火装置和聚变点火方法

Publications (2)

Publication Number Publication Date
CN111681783A CN111681783A (zh) 2020-09-18
CN111681783B true CN111681783B (zh) 2022-07-19

Family

ID=72456448

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010584044.9A Active CN111681783B (zh) 2020-06-23 2020-06-23 一种激光聚变点火装置和聚变点火方法

Country Status (1)

Country Link
CN (1) CN111681783B (zh)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB996239A (en) * 1962-08-10 1965-06-23 Litton Industries Inc Improvements in or relating to nuclear fusion reactors
US4608222A (en) * 1971-01-29 1986-08-26 Kms Fusion, Inc. Method of achieving the controlled release of thermonuclear energy
US4172008A (en) * 1977-08-23 1979-10-23 Dubble Whammy, Inc. Nuclear fusion reactor
US20050271181A1 (en) * 2003-04-24 2005-12-08 Board Of Regents Of The University And Community College System Of Nevada Apparatus and method for ignition of high-gain thermonuclear microexplosions with electric-pulse power
CN100504566C (zh) * 2006-04-21 2009-06-24 中国科学院物理研究所 一种啁啾脉冲压缩方法及装置
CN103470401B (zh) * 2013-07-23 2016-08-17 中国科学院宁波材料技术与工程研究所 核聚变脉冲式直喷发动机
DE102014004032A1 (de) * 2014-03-23 2015-09-24 Heinrich Hora Hocheffiziente Laser-Kernfusion mit Magnetkanalisierung
US20170323691A1 (en) * 2016-02-10 2017-11-09 Richard Gorski Nuclear fusion reactor using an array of conical plasma injectors

Also Published As

Publication number Publication date
CN111681783A (zh) 2020-09-18

Similar Documents

Publication Publication Date Title
Ruhl et al. Collimated electron jets by intense laser-beam–plasma surface interaction under oblique incidence
US20190214154A1 (en) Single-pass, heavy ion systems for large-scale neutron source applications
Sylla et al. Short intense laser pulse collapse in near-critical plasma
Tresca et al. Spectral modification of shock accelerated ions using a hydrodynamically shaped gas target
US6924600B2 (en) Laser plasma generation method and structure thereof
Meyer-ter-Vehn Fast ignition of ICF targets: an overview
US9805829B2 (en) Laser fusion device and nuclear fusion generating method
Tahir et al. Heavy-ion-beam–induced hydrodynamic effects in solid targets
CN111681783B (zh) 一种激光聚变点火装置和聚变点火方法
JP4081029B2 (ja) 核融合ターゲット及び核融合点火方法
Bonvalet et al. Laser-driven collisionless shock acceleration of protons from gas jets tailored by one or two nanosecond beams
Meyer‐ter‐Vehn et al. Accelerator and target studies for heavy ion fusion at the Gesellschaft für Schwerionenforschung
Wan et al. Two-stage laser acceleration of high quality protons using a tailored density plasma
Esirkepov et al. Coulomb explosion of a cluster irradiated by a high intensity laser pulse
Lécz et al. Substantial enhancement of betatron radiation in cluster targets
US10395779B2 (en) Single pass RF driver
Ban et al. Quasi-monoenergetic tens-of-MeV proton beams by a laser-illuminated funnel-like target
US8106366B2 (en) Ion beam control apparatus and method
Meyer-ter-Vehn Prospects of inertial confinement fusion
Salehi et al. Acceleration of quasi-mono-energetic electron bunches to 5 MeV at 1 kHz with few-cycle laser pulses
JP5790992B2 (ja) サイドレーザ照射器
Ditmire Laser fusion on a tabletop
Rad et al. The feasibility study of ion driven shock ignition of reactor-size targets in inertial confinement fusion
Wang et al. Research on in the interaction between laser and electron-positron plasma in cone target
Umstadter Laboratory Study of Nonlinear QED in Intense Laser-Matter Interactions

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant