CN111678452B - 一种用于分离式霍普金森杆的激光引伸计装置 - Google Patents

一种用于分离式霍普金森杆的激光引伸计装置 Download PDF

Info

Publication number
CN111678452B
CN111678452B CN202010417825.9A CN202010417825A CN111678452B CN 111678452 B CN111678452 B CN 111678452B CN 202010417825 A CN202010417825 A CN 202010417825A CN 111678452 B CN111678452 B CN 111678452B
Authority
CN
China
Prior art keywords
laser
test piece
metal test
laser detector
convex lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010417825.9A
Other languages
English (en)
Other versions
CN111678452A (zh
Inventor
刘福东
王文强
李良图
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Yuzhi Basin Management Technology Research Institute Co ltd
Original Assignee
Jiangsu Yuzhi Basin Management Technology Research Institute Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Yuzhi Basin Management Technology Research Institute Co ltd filed Critical Jiangsu Yuzhi Basin Management Technology Research Institute Co ltd
Priority to CN202010417825.9A priority Critical patent/CN111678452B/zh
Publication of CN111678452A publication Critical patent/CN111678452A/zh
Application granted granted Critical
Publication of CN111678452B publication Critical patent/CN111678452B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/16Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness

Abstract

本发明公开了一种用于分离式霍普金森杆的激光引伸计装置,包括金属试件、入射杆、透射杆、激光发射器、调光凸透镜、直角棱镜、入射端凸透镜、入射端激光探测器、透射端凸透镜、透射端激光探测器、分光镜、分光端凸透镜及分光端激光探测器,激光发射器发出的激光经过金属试件并被直角棱镜一分为二,入射端的光再被分光镜二次分光,一部分激光透过入射端凸透镜进入入射端激光探测器,另一部分激光透过分光端凸透镜进入分光端激光探测器;经过金属试件的光透过直角棱镜分光后的另一半激光透过透射端凸透镜进入透射端激光探测器。本发明可以准确测量金属材料的拉伸应变值,测量结果更准确,人为影响更少。

Description

一种用于分离式霍普金森杆的激光引伸计装置
技术领域
本发明属于金属材料测试领域,涉及一种用于分离式霍普金森杆的激光引伸计装置。
背景技术
在基建工程日益发展的过程中,随着技术的进步,桥梁跨度越来越长,大厦越来越高。这其中,低质量高强度的金属材料起到了至关重要的作用。这些技术难度极高的建筑物的抗震等级要求很高,这就对了金属材料在地震荷载作用下的稳定性提出了很高的要求。因此,在实验室中准确测量金属材料在振动荷载作用下的性能是必不可少的。
分离式霍普金森杆是一种可以用来测试高应变率下金属构件动态抗拉性能的装置,而传统的测试动态荷载作用下金属材料应变值需要在试件表面粘贴应变片,在粘贴应变片时很难精确对正应变片与金属构件的轴线,这就导致在应变测量过程中很容易存在一定的人为误差,而且应变片仅仅可以测量应变片粘贴范围内的局部应变。
发明内容
发明目的:为了解决现有技术中分离式霍普金森杆在测试过程中应变片粘贴位置及测量误差对结果造成影响的问题,本发明提供一种用于分离式霍普金森杆的激光引伸计装置。
技术方案:一种用于分离式霍普金森杆的激光引伸计装置,包括金属试件、入射杆、透射杆、激光发射器、调光凸透镜、直角棱镜、入射端凸透镜、入射端激光探测器、透射端凸透镜、透射端激光探测器、分光镜、分光端凸透镜及分光端激光探测器,金属试件两端分别与入射杆、透射杆连接,激光发射器位于金属试件一侧,调光凸透镜位于激光发射器与金属试件之间,直角棱镜位于金属试件另一侧,且直角棱镜的直角正对金属试件的中轴线,入射端凸透镜、入射端激光探测器、分光端凸透镜及分光端激光探测器与入射杆位于直角棱镜的同一侧,经过金属试件的光透过直角棱镜分光后的一半激光经过分光镜二次分光,一部分激光透过入射端凸透镜进入入射端激光探测器,另一部分激光透过分光端凸透镜进入分光端激光探测器;经过金属试件的光透过直角棱镜分光后的另一半激光透过透射端凸透镜进入透射端激光探测器。
进一步地,还包括锁紧螺母,金属试件两端设有螺纹,金属试件两端分别与入射杆、透射杆通过螺纹连接,锁紧螺母用于锁紧金属试件与入射杆、金属试件与透射杆。
进一步地,激光发射器发射出的激光经过调光凸透镜后形成可穿过金属试件并照射在直角棱镜上的平行激光。
进一步地,所述平行激光具有宽度范围,宽度范围大于等于金属试件的长度。
进一步地,透射端激光探测器和分光端激光探测器采用同等精度的高分辨率的激光探测器。
进一步地,入射端激光探测器采用低分辨率的激光探测器。
进一步地,金属试件包括中部的标距段和两端的过渡段,标距段为圆柱体,过渡段为圆弧过渡段,圆弧过渡段的侧面向轴线凹陷。
进一步地,所述透射端激光探测器、入射端激光探测器和分光端激光探测器与控制器连接,控制器计算出试件标距段的应变为
Figure BDA0002495687700000021
ΔL=ΔLs-ΔLx,L为标距段总长度,
Figure BDA0002495687700000022
ε取εtot或εela,Ls为金属试件总长度,
Figure BDA0002495687700000023
其中R为圆弧过渡段的圆弧半径,是过渡段和标距段交界面的半径,Es是金属试件的弹性模量,r(x)为横坐标x对应的试件截面半径,F为试件上的载荷,对于固定形状的试件,r0,x0,R均为常数,
Figure BDA0002495687700000024
其中,u1(t)为入射端激光探测器输出电压,u3(t)为透射端激光探测器输出电压,Ls为金属试件总长度,
Figure BDA0002495687700000025
u2(t)为分光端激光探测器输出电压,k1、k2、k3为入射端激光探测器、分光端激光探测器及透射端激光探测器的激光灵敏度系数。
有益效果:本发明提供一种用于分离式霍普金森杆的激光引伸计装置,相比较现有技术,该装置采用激光分析来测量金属试件的应变,其原理是利用试件变形过程中导致激光强度的变化,高分辨率激光探测器将光信号的变化转化为电信号的变化,通过标定激光强度变化与应变值的关系,准确测量金属材料的拉伸应变值,相比较现有技术采用应变片的方法,测量结果更准确,人为影响更少。
附图说明
图1为用于分离式霍普金森杆的激光引伸计装置;
图2为金属试件的结构示意图;
图3为金属试件圆弧过渡段的示意图;
图中:1金属试件,2入射杆,3透射杆,4锁紧螺母,5激光发射器,6调光凸透镜,7直角棱镜,8透射端凸透镜,9透射端激光探测器,10分光镜,11入射端凸透镜,12入射端激光探测器,13分光端凸透镜,14分光端激光探测器。
具体实施方式
下面结合附图和具体实施例,对本发明作进一步说明。
如图1所示,一种用于分离式霍普金森杆的激光引伸计装置,包括金属试件1、入射杆2、透射杆3、锁紧螺母4、激光发射器5、调光凸透镜6、直角棱镜7、入射端凸透镜11、入射端激光探测器12、透射端凸透镜8、透射端激光探测器9、分光镜10、分光端凸透镜13及分光端激光探测器14。如图2,金属试件1两端设有螺纹,金属试件1两端分别与入射杆2、透射杆3通过螺纹连接,锁紧螺母4用于锁紧金属试件1与入射杆2、金属试件1与透射杆3。激光发射器5位于金属试件1一侧,调光凸透镜6位于激光发射器5与金属试件1之间,直角棱镜7位于金属试件1另一侧,且直角棱镜7的直角正对金属试件1的中轴线,激光发射器5发射出的激光经过调光凸透镜6后形成可穿过金属试件1并照射在直角棱镜7上的平行激光,平行激光具有一定的宽度范围,宽度范围大于等于金属试件1的长度,直角棱镜7的直角将激光光路一分为二。入射端凸透镜11、入射端激光探测器12、分光端凸透镜13及分光端激光探测器14与入射杆2位于直角棱镜7的同一侧,经过金属试件1的光透过直角棱镜7分光后的一半激光经过分光镜二次分光,一部分激光透过入射端凸透镜11进入入射端激光探测器12,另一部分激光透过分光端凸透镜13进入分光端激光探测器14,因此激光经分光镜分光后,入射杆端的应变同时被入射端激光探测器12和分光端激光探测器14测量;经过金属试件1的光透过直角棱镜7分光后的另一半激光透过透射端凸透镜8进入透射端激光探测器9。
透射端激光探测器9和分光端激光探测器14采用同等精度的高分辨率的激光探测器。因为相对于入射杆2,透射杆3的应变是很小的,透射杆3一侧的透射端激光探测器9就需要采用高分辨率的激光探测器,分辨率提高其量程就相对较小。
入射端激光探测器12采用低分辨率的激光探测器。因为入射杆2一侧有较大的应变和位移,为了满足较大的量程,入射端激光探测器12采用分辨率相对较低的激光探测器。
分光端激光探测器14采用与透射端激光探测器9同等精度的探测器,当测试方案为小应变测试时,入射端激光探测器12是无法满足测试精度要求的,此时采用透射端激光探测器9和分光端激光探测器14来测量金属试件1的应变值,详细内容如下文测试方法所述。
如图2,金属试件1包括中部的标距段和两端的过渡段,标距段为圆柱体,过渡段为圆弧过渡段,圆弧过渡段的侧面向中心线凹陷。圆弧过渡段是为了消除边界效应和应力集中的影响,激光测量出的应变值是金属试件的标距段应变和连段圆弧段的应变之和。
一种使用该用于分离式霍普金森杆的激光引伸计装置的测试方法,包括校准测试和应变测试,
1、校准测试包括:用固定在平移台上的不透明校准板阻挡激光束,平移台可实现微米级位移,以10μm的步长移动校准板,通过三个激光探测器测量激光强度的变化,确定输出电压与位移的关系,并将其作为激光探测器的灵敏度系数;
2、应变测试包括:
a)总应变测试:设入射端激光探测器、分光端激光探测器及透射端激光探测器的激光灵敏度系数分别为k1、k2、k3,分两种情况计算总应变可以使结果更加准确。
激光强度变化超过分光端激光探测器的量程时,认为应变较大,总应变作为入射端激光探测器和透射端激光探测器输出电压的函数,计算总应变εtot为:
Figure BDA0002495687700000041
其中,u1(t)为入射端激光探测器输出电压,u3(t)为透射端激光探测器输出电压,Ls为金属试件总长度;
当金属试件处于线弹性阶段时,激光强度变化未超过分光端激光探测器的量程时,应变较小,采用分光端激光探测器与透射端激光探测器的输出电压计算总应变εela
Figure BDA0002495687700000051
其中,u2(t)为分光端激光探测器输出电压;
b)过渡段变形测试:
金属试件总应变定义为:
Figure BDA0002495687700000052
其中ΔLs为试件总变形,包括标距段和过渡段;ε为总应变,可取εtot或εela,如图3所示,以金属试件的轴线为x轴,以过渡段与标距段的交界面过圆点的竖线为y轴建立直角坐标系,则在荷载F作用下过渡段的轴向应变计算公式如下:
Figure BDA0002495687700000053
其中,Es是金属试件的弹性模量,A(x)是x轴坐标对应的截面面积,其计算公式如下:
A(x)=πr2(x) (5)
其中,r(x)为横坐标x对应的试件截面半径,其计算公式如下:
Figure BDA0002495687700000054
其中,R为圆弧过渡段的圆弧半径,r0是过渡段和标距段交界面的半径,
对两个过渡段的总变形ΔLx,可通过对整个过渡段r(0)=r0,r(x0)=r1积分计算,根据式(4),(5),(6)可得:
Figure BDA0002495687700000061
对于固定形状的试件,r0,x0,R均为常数,式(7)可直接计算出过渡段的总变形;
c)试件标距段应变计算
根据金属试件总应变式(3)和式(7)计算金属试件标距段的总变形ΔL如下:
ΔL=ΔLs-ΔLx (8)
再根据标距段的总变形ΔL及标距段总长度计算标距段应变εL为:
Figure BDA0002495687700000062
其中L为标距段总长度。

Claims (6)

1.一种用于分离式霍普金森杆的激光引伸计装置,其特征在于,包括金属试件、入射杆、透射杆、激光发射器、调光凸透镜、直角棱镜、入射端凸透镜、入射端激光探测器、透射端凸透镜、透射端激光探测器、分光镜、分光端凸透镜及分光端激光探测器,金属试件两端分别与入射杆、透射杆连接,激光发射器位于金属试件一侧,调光凸透镜位于激光发射器与金属试件之间,直角棱镜位于金属试件另一侧,且直角棱镜的直角正对金属试件的中轴线,入射端凸透镜、入射端激光探测器、分光端凸透镜及分光端激光探测器与入射杆位于直角棱镜的同一侧,经过金属试件的光透过直角棱镜分光后的一半激光经过分光镜二次分光,一部分激光透过入射端凸透镜进入入射端激光探测器,另一部分激光透过分光端凸透镜进入分光端激光探测器;经过金属试件的光透过直角棱镜分光后的另一半激光透过透射端凸透镜进入透射端激光探测器;
金属试件包括中部的标距段和两端的过渡段,标距段为圆柱体,过渡段为圆弧过渡段,圆弧过渡段的侧面向轴线凹陷;
所述透射端激光探测器、入射端激光探测器和分光端激光探测器与控制器连接,控制器计算出金属试件标距段的应变为
Figure FDA0003296956150000011
△L=△Ls-△Lx,L为标距段总长度,ΔL为金属试件标距段的总变形,ΔLs为金属试件的总变形,ΔLx为两个过渡段的总变形;
金属试件总应变
Figure FDA0003296956150000012
ε取εtot或εela,Ls为金属试件总长度,εtot为激光强度变化超过分光端激光探测器的量程时的金属试件的总应变,εela为激光强度变化未超过分光端激光探测器的量程时的金属试件总应变;
Figure FDA0003296956150000013
其中R为圆弧过渡段的圆弧半径,r0是过渡段和标距段交界面的半径,Es是金属试件的弹性模量, F为金属 试件上的载荷,对于固定形状的金属 试件,r0,过渡段的末端对应的x坐标x0,R均为常数,
Figure FDA0003296956150000014
其中,u1(t)为入射端激光探测器输出电压,u3(t)为透射端激光探测器输出电压,
Figure FDA0003296956150000015
u2(t)为分光端激光探测器输出电压,k1、k2、k3为入射端激光探测器、分光端激光探测器及透射端激光探测器的激光的电压与位移的关系灵敏度系数。
2.根据权利要求1所述的用于分离式霍普金森杆的激光引伸计装置,其特征在于,还包括锁紧螺母,金属试件两端设有螺纹,金属试件两端分别与入射杆、透射杆通过螺纹连接,锁紧螺母用于锁紧金属试件与入射杆、金属试件与透射杆。
3.根据权利要求1或2任一所述的用于分离式霍普金森杆的激光引伸计装置,其特征在于,激光发射器发射出的激光经过调光凸透镜后形成可穿过金属试件并照射在直角棱镜上的平行激光。
4.根据权利要求3所述的用于分离式霍普金森杆的激光引伸计装置,其特征在于,所述平行激光具有宽度范围,宽度范围大于等于金属试件的长度。
5.根据权利要求1或2任一所述的用于分离式霍普金森杆的激光引伸计装置,其特征在于,透射端激光探测器和分光端激光探测器采用同等精度的高分辨率的激光探测器。
6.根据权利要求5所述的用于分离式霍普金森杆的激光引伸计装置,其特征在于,入射端激光探测器采用低分辨率的激光探测器。
CN202010417825.9A 2020-05-18 2020-05-18 一种用于分离式霍普金森杆的激光引伸计装置 Active CN111678452B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010417825.9A CN111678452B (zh) 2020-05-18 2020-05-18 一种用于分离式霍普金森杆的激光引伸计装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010417825.9A CN111678452B (zh) 2020-05-18 2020-05-18 一种用于分离式霍普金森杆的激光引伸计装置

Publications (2)

Publication Number Publication Date
CN111678452A CN111678452A (zh) 2020-09-18
CN111678452B true CN111678452B (zh) 2022-02-18

Family

ID=72433749

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010417825.9A Active CN111678452B (zh) 2020-05-18 2020-05-18 一种用于分离式霍普金森杆的激光引伸计装置

Country Status (1)

Country Link
CN (1) CN111678452B (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6343502B1 (en) * 1996-10-07 2002-02-05 Michigan Technological University Apparatus and method for determining the dynamic indentation hardness of materials
DE202008007270U1 (de) * 2008-05-29 2008-09-25 Spektra Schwingungstechnik Und Akustik Gmbh Dresden Vorrichtung zur Kalibrierung von Beschleunigungs- und Kraftsensoren
CN102072841A (zh) * 2010-12-24 2011-05-25 江苏大学 一种环形激光冲击动态拉伸试验方法与装置
KR101083223B1 (ko) * 2008-05-29 2011-11-11 스펙트라 슈빙궁스테흐니크 운트 아쿠스티크 게엠바하 드레스덴 가속도 및 힘 센서 교정 방법 및 장치
CN104406846A (zh) * 2014-11-28 2015-03-11 西安交通大学 利用挠曲电效应的霍普金森杆应力波测量系统和测量方法
CN103364261B (zh) * 2013-07-09 2015-07-01 西安交通大学 一种测定材料超高应变速率下本构模型参数的方法
CN104849153A (zh) * 2015-05-22 2015-08-19 中南大学 一种地下空间层裂强度的测试装置以及该装置的应用
CN107421808A (zh) * 2017-08-21 2017-12-01 北京交通大学 一种非接触式霍普金森压杆测量的装置和方法
CN109975138A (zh) * 2019-04-16 2019-07-05 中国矿业大学(北京) 一种动态加载的光弹-shpb同步实验系统及方法
CN209673574U (zh) * 2019-03-19 2019-11-22 河南理工大学 立式霍普金森压杆试验装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6343502B1 (en) * 1996-10-07 2002-02-05 Michigan Technological University Apparatus and method for determining the dynamic indentation hardness of materials
DE202008007270U1 (de) * 2008-05-29 2008-09-25 Spektra Schwingungstechnik Und Akustik Gmbh Dresden Vorrichtung zur Kalibrierung von Beschleunigungs- und Kraftsensoren
KR101083223B1 (ko) * 2008-05-29 2011-11-11 스펙트라 슈빙궁스테흐니크 운트 아쿠스티크 게엠바하 드레스덴 가속도 및 힘 센서 교정 방법 및 장치
CN102072841A (zh) * 2010-12-24 2011-05-25 江苏大学 一种环形激光冲击动态拉伸试验方法与装置
CN103364261B (zh) * 2013-07-09 2015-07-01 西安交通大学 一种测定材料超高应变速率下本构模型参数的方法
CN104406846A (zh) * 2014-11-28 2015-03-11 西安交通大学 利用挠曲电效应的霍普金森杆应力波测量系统和测量方法
CN104849153A (zh) * 2015-05-22 2015-08-19 中南大学 一种地下空间层裂强度的测试装置以及该装置的应用
CN107421808A (zh) * 2017-08-21 2017-12-01 北京交通大学 一种非接触式霍普金森压杆测量的装置和方法
CN209673574U (zh) * 2019-03-19 2019-11-22 河南理工大学 立式霍普金森压杆试验装置
CN109975138A (zh) * 2019-04-16 2019-07-05 中国矿业大学(北京) 一种动态加载的光弹-shpb同步实验系统及方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
分离式大直径Hopkinson杆实验技术研究进展;郭瑞奇等;《兵工学报》;20190731;第40卷(第7期);全文 *

Also Published As

Publication number Publication date
CN111678452A (zh) 2020-09-18

Similar Documents

Publication Publication Date Title
CN108519175B (zh) 基于布拉格光纤光栅的可变量程的土体压力测量方法
CN108204876B (zh) 一种螺栓装配过程中预紧力实时检测装置与方法
Zhao et al. Development of a laser-speckle imaging device to determine the transfer length in pretensioned concrete members.
CN105806203B (zh) 一种三维相对位移传感器
CN101182994A (zh) 非接触式测量间接拉伸应变的方法
US4836031A (en) Method and apparatus for measuring deformations of test samples in testing machines
CN111678452B (zh) 一种用于分离式霍普金森杆的激光引伸计装置
CN111678453B (zh) 用于分离式霍普金森杆的激光引伸计装置的测试方法
Flynn et al. A re-examination of stresses in a tension bar with symmetrical U-shaped grooves: Results of two-dimensional photoelastic study confirm previous observation that maximum stress concentration may occur in bars with grooves of finite depth rather than with infinitely deep grooves
CN103344192B (zh) 一种长距离大范围光纤应变产生装置及产生方法
CN110186654B (zh) 一种纵向分辨率测试装置
CN103557790B (zh) 光栅影像复合自动测量方法
CN105571752A (zh) 一种光弹性实验中超声波应力定量测量方法
DE4337049C1 (de) Verwendung einer Vorrichtung zur Kalibrierung von Dehnungsmeßgeräten an Werkstoffprüfmaschinen
Watson et al. Precision strain standard by moiré interferometry for strain-gage calibration: Moiré interferometry is proposed as the datum for strain-gage calibration
Li The interferometric strain rosette technique
EP0119266A4 (en) SELECTION CIRCUIT FOR EXTENSOMETERS.
CN2695959Y (zh) 一体化双视场实时薄膜微变形测量仪
CN110953987B (zh) 一种钢桥面板疲劳裂纹外变形测量方法及测量装置
Wimmer et al. Equibiaxial tension testing of rubber on a universal tension-testing machine
Mir Shafiee et al. Design and simulation of a laser measurement technique in split Hopkinson pressure bar test
Wu et al. Research on the zero-calibration gauge device
Frederiksen et al. On calibration of adjustable strain transducers
Ghuku et al. Design development and performance analysis of leaf spring testing set up in elastic domain
Bergqvist Use of extensometers with spherically pointed pin ends for accurate determination of material qualities

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant