CN111676012A - 发光铕配合物纳米材料的lb膜及其制备方法和应用 - Google Patents

发光铕配合物纳米材料的lb膜及其制备方法和应用 Download PDF

Info

Publication number
CN111676012A
CN111676012A CN202010409220.5A CN202010409220A CN111676012A CN 111676012 A CN111676012 A CN 111676012A CN 202010409220 A CN202010409220 A CN 202010409220A CN 111676012 A CN111676012 A CN 111676012A
Authority
CN
China
Prior art keywords
film
nano
methanol
tpy
ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010409220.5A
Other languages
English (en)
Other versions
CN111676012B (zh
Inventor
钱东金
马跃洋
马冬梅
先禹
冯颖欣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fudan University
Original Assignee
Fudan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fudan University filed Critical Fudan University
Priority to CN202010409220.5A priority Critical patent/CN111676012B/zh
Publication of CN111676012A publication Critical patent/CN111676012A/zh
Application granted granted Critical
Publication of CN111676012B publication Critical patent/CN111676012B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/003Compounds containing elements of Groups 3 or 13 of the Periodic Table without C-Metal linkages
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N21/643Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" non-biological material
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/182Metal complexes of the rare earth metals, i.e. Sc, Y or lanthanide
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N2021/6432Quenching

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Immunology (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Materials Engineering (AREA)
  • Biochemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biophysics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Molecular Biology (AREA)
  • Luminescent Compositions (AREA)

Abstract

本发明属于纳米发光薄膜技术领域,具体为一种发光铕配合物纳米材料的LB膜及其制备方法和应用。本发明首先利用界面硅烷化、取代和配位反应,在纳米二氧化硅的表面形成铕配合物的单层膜;然后利用气液界面的LB技术固体基片表面制备纳米二氧化硅‑铕配合物杂化材料LB膜。本发明制备的铕配合物杂化材料LB膜,其中铕离子的荧光发射具有被有毒金属离子淬灭的现象,而且该LB膜兼有铕离子的强荧光发射、长荧光寿命和纳米材料的高比表面积、强机械强度的特点,还具有灵敏度高、易于携带和储存、可实时监测的优点,可用于有毒无机离子的可视监测,特别用于水溶液中的毒性金属离子重铬酸根和高锰酸根的可视监测。

Description

发光铕配合物纳米材料的LB膜及其制备方法和应用
技术领域
本发明属于纳米发光薄膜技术领域,具体涉及一种用于重铬酸根和高锰酸根等有毒离子可视监测的铕配合物纳米材料的LB膜及其制备方法。
背景技术
重铬酸盐和高锰酸盐作为常见的氧化剂,在工农业生产等领域扮演着重要的角色,如重铬酸盐广泛用于电镀和冶金等工业过程,高锰酸盐在农业、城市水等的消毒处理中起到重要作用。但是,这两种盐中的阴离子对环境和人体健康都具有严重的危害性,除了会造成环境污染和生态系统的破坏外,重铬酸根(Cr2O7 2-)离子中的Cr(VI)还具有致癌性。研究表明,即使比较低浓度的Cr(VI)也会造成人体DNA受损,如果长期接触Cr(VI),可能会引起遗传基因缺陷甚至呼吸癌。另外,过量的高锰酸根(MnO4 -)离子会造成肝、肾的损伤,也可能引发癌症。因此,探索高效、快速、准确的监测水中的Cr2O7 2-和MnO4 -离子的方法,对于环境保护和维护人类生命健康都具有重要的意义。
目前,已经有不少分析技术应用于这两种有毒离子的监测中,如原子吸收光谱法、伏安法、电感耦合等离子体质谱法等,但这些方法大多受限于仪器昂贵和操作复杂等因素。荧光检测法具有使用方便、成本低、响应速度快和灵敏度高等优点,近来年引起了人们的广泛关注。
稀土铕配合物是一类很强的红色荧光发射的发光材料,其荧光发射机理为,首先由具有强光吸收能力的有机配体或其它光吸收单元吸收光能跃迁到激发态,然后经过系间穿越,将所吸收的能量转移到铕离子的激发态能级,最后,受激发的电子从铕离子的激发态返回基态,释放能量发出铕离子的特征红色荧光。由于铕配合物的荧光是由配体吸收能量和内层f电子的跃迁引起的,所以基于铕配合物的发光材料通常具有发光谱带窄、色纯度高、发射波长分布区域宽、荧光寿命长和不受环境影响等优点。这些优点使得铕配合物已经发展成为一种优异的荧光探针材料,用于很多物质的荧光监测。
目前的荧光监测主要集中在液相中,而从实际应用的角度出发,若能将荧光发光材料与薄膜材料结合或固定在一些固体基底材料的表面,更有利于提高操作的简易性、加快监测速度和扩大实际应用范围。另外,即使利用固体材料或者薄膜,一般是通过涂膜或者吸附等技术,监测的灵敏度、重复性和薄膜的稳定性等方面还有很多不足。
Langmuir-Blodgett (LB)膜技术是一种能够从分子层次比较准确地控制材料,特别是双亲分子,在薄膜中的有序排列的自下而上的界面组装技术。该技术由I. Langmuir和他的学生K. Blodgett在上世纪二三十年代提出。近年来,随着分子自组装、分子电子学和纳米科学技术等领域的发展,该技术在发展先进材料和技术等方面受到了广泛关注。除了传统的双亲分子的界面组装外,研究人员发现,利用LB技术可以实现在气-液或液-液界面控制和组装许多由无机纳米材料和有机-无机杂化材料构成的二维或三维超薄膜。这些薄膜材料往往具有可控的层状有序结构,良好的稳定性和机械性能,不仅可以保持杂化材料优异的光电化学性能,还具有易于从反应体系中分离,可循环使用和环境友好等优点,在光电器件、传感器、仿生和环境保护等领域都有广泛的应用。
本发明中,我们基于分子自组装的设计理念,选取比表面积大、表面易修饰和生物相容性好的纳米SiO2为组装原料,先利用硅烷化反应将烷基脂肪胺自组装到纳米SiO2的表面形成脂肪胺单层膜修饰的纳米SiO2(nanoSiO2NH2),然后通过三联吡啶衍生物的苄溴基团与纳米SiO2表面的氨基的取代反应,将三联吡啶官能团嫁接到纳米SiO2的表面,形成三联吡啶功能化的nanoSiO2Tpy纳米配体。其次,基于稀土金属Eu3+与纳米配体表面Tpy的配位作用,在气液界面形成了配位键驱动的排列有序的铕配合物纳米材料nanoSiO2TPy@EuDPA单层膜。最后,借助LB技术,将上述单层膜转移到石英基片表面,构造了结构有序、具有强稀土荧光、可用于有毒离子可视监测的LB膜。
发明内容
本发明的目的在于提供一种用于毒性重铬酸根和高锰酸根可视监测的铕配合物纳米材料LB膜及其制备方法和应用。
本发明提供的铕配合物纳米材料的LB膜,是一种具有强荧光发射的超薄膜,是基于固-液界面的硅烷化和取代反应以及气-液界面的LB膜技术形成的;其前驱材料为纳米二氧化硅、苄溴化三联吡啶(TPyBenBr)、氯化铕(EuCl3)和2,6-吡啶二甲酸 (DPA)。
前驱材料中的苄溴化三联吡啶和2,6-吡啶二甲酸的化学结构如下所示:
Figure DEST_PATH_IMAGE001
本发明提供的用于重铬酸根和高锰酸根等有毒离子可视监测的铕配合物纳米材料的LB膜的制备方法,具体步骤如下:
(一)利用自组装方法,通过亲水化的纳米二氧化硅(nanoSiO2)与苄溴化三联吡啶(TPyBenBr)之间的反应,形成三吡啶(TPy)单层膜修饰的纳米杂化材料,记为nanoSiO2TPy;
(二)利用LB膜技术,将气液界面形成的nanoSiO2TPy@EuDPA纳米复合材料的单层膜转移到固体基片(如玻璃、云母或者石英等)的表面,形成nanoSiO2TPy@EuDPA纳米复合材料的LB膜。
本发明中,步骤(一)的操作流程为:
首先,将表面已经亲水化的纳米SiO2分散在甲醇-DMF混合溶剂(甲醇与DMF体积比为1:(0.8-1.2))中,加入3-氨基丙基三甲氧基硅烷,3-氨基丙基三甲氧基硅烷的量为纳米二氧化硅质量的5-10%;在60-80 ℃的水浴或油浴反应器中搅拌反应20-48小时; 冷却至室温,3500-4500 rpm离心分离,并用甲醇充分洗涤,除去未反应的3-氨基丙基三甲氧基硅烷,得到氨基化的纳米SiO2
然后,氨基化纳米SiO2与苄溴化三联吡啶分散在甲醇-DMF混合溶剂(甲醇与DMF体积比为1:(0.8-1.2))中,苄溴化三联吡啶的量为氨基化纳米二氧化硅质量的5-10%;于60-80 ℃的水浴或油浴反应器中搅拌反应8-12小时;冷却至室温,3500-4500 rpm离心分离,并用DMF和甲醇充分洗涤,除去未反应的有机物,生成三联吡啶配体单层膜修饰的纳米SiO2,即nanoSiO2TPy。
其中, 纳米SiO2分散在甲醇-DMF混合溶剂中,纳米SiO2的浓度为10-50 mg/mL;最终nanoSiO2NH2的浓度为10-50 mg/mL。
本发明中,步骤(二)的操作流程为:
将上述纳米配体nanoSiO2TPy分散在甲醇-甲苯混合溶液中(甲醇与甲苯体积比为1:(0.8-1.2)),浓度为1-5 mg/mL。取上述分散液100-500 μL铺展在1-5 mmol/L的EuCl3-DPA亚相表面;等待20-30分钟,待有机溶剂挥发后,在10-30 mN/m的表面压下,通过垂直提拉的方法将nanoSiO2TPy@EuDPA单层膜转移至石英基片表面,即得nanoSiO2TPy@EuDPA的LB膜。
其中,nanoSiO2TPy分散在甲醇-甲苯混合溶液中nanoSiO2TPy的浓度为1-5 mg/mL;EuCl3-DPA亚相水溶液的浓度为1-5 mmol/L。
本发明制备的nanoSiO2TPy@EuDPA纳米材料的LB膜,分别浸泡在相同浓度的不同阴离子水溶液中,1-5 min后取出吹干,于紫外灯下观察,发现Cr2O7 2-和MnO4 -的水溶液可以强烈猝灭荧光LB膜的荧光,而其他阴离子对于荧光LB膜的荧光强度基本没有影响,表明该LB膜可用于有毒离子的可视监测。
进一步地,可用于水溶液中的毒性金属离子重铬酸根和高锰酸根的可视监测。
将nanoSiO2TPy@EuDPA-LB膜插入盛有水的比色皿中,逐步加入不同量的Cr2O7 2-/MnO4 -离子的水溶液,测试其荧光光谱的变化情况,随着Cr2O7 2-/MnO4 -浓度的增大,LB膜的荧光强度逐步降低。
本发明中,LB膜的层数为1-5层,毒性阴离子的浓度范围为0-5 mmol/L;涉及的干扰离子有F-, Cl-, Br-, I-, SO4 2-, NO3 -, CO3 2-, NO2 -, OAc-等。
本发明中,在空气-水界面构筑nanoSiO2TPy@EuDPA单层膜时,尽管纳米配体表面的TPy可以较好地敏化Eu3+离子,使其具有荧光发光性质,但此时Eu3+由于配位不完全,很容易受溶液中一些极性基团(如-OH)的影响,使荧光强度减弱,稳定性降低。因此,我们在EuCl3水溶液亚相中加入一定量的DPA配体,即EuCl3和DPA的混合亚相,一方面DPA与Eu3+具有强的配位能力,可以减少水溶液的干扰;另一方面,DPA的激发态能级与Eu3+的三线态能级匹配性好,同样可作为敏化配体,增强发光强度,提高量子产率和荧光寿命等,这对于荧光监测薄膜的构筑提供了良好的基本条件。
本发明基于LB膜技术,将铕配合物纳米二氧化硅有机-无机杂化材料以薄膜的形式固定在固体基片表面,具有如下优点:
(1)本发明的LB膜是使用生物相容性好和价格低廉易得的纳米SiO2作为基底材料形成,因而薄膜具有较强的实用性和环境友好性;
(2)本发明的LB膜是基于纳米配体与稀土配合物的配位作用形成,因而薄膜的荧光同样具有单色性好、荧光寿命长和不易受环境因素影响的特点;
(3)本发明的LB膜是借助LB膜技术,采用自下而上的方法形成,因而薄膜的组成和分布具有分子层次的可控性和有序性,可以有效提高荧光强度和监测灵敏度以及降低检测限;
(4)由于本发明的LB膜是负载在固体基片表面,因此该薄膜在实际使用中具有监测简单和方便易携的特性;
(5)制备过程中,除第一层自组装单层膜是在60 ℃的水浴或油浴中完成,其它各部分的自组装均是在室温下进行。固体产物的分离通过离心机来进行,并用反应溶剂充分洗涤,不需要特殊的反应设备。
本发明方法的制备过程简单易行,对设备、生产环境要求低,对环境友好。得到的薄膜荧光强度强,肉眼可分辨,稳定性好(在水中放置7天,荧光强度没有明显猝灭),灵敏度高(荧光猝灭常数Ksv为2.55 × 105 M-1),检测限低(检测限低至0.078 μM,低于世界卫生组织规定的饮用水中Cr6+ 的最大含量),检测速度快(即插即检测),适合于实际生活中有毒离子的可视监测;尤其适用于水溶液中的毒性金属离子重铬酸根和高锰酸根的可视监测。
附图说明
图1. nanoSiO2TPy纳米配体的结构及其制备过程。气液界面nanoSiO2TPy@EuDPA杂化材料LB膜的制备过程示意图。
图2. nanoSiO2TPy@EuDPA-LB膜浸泡在不同离子水溶液后,在254 nm紫外灯照射下的荧光照片。
图3. nanoSiO2TPy@EuDPA-LB膜在加入0-25 μM/L 的Cr2O7 2-离子水溶液后的荧光发射光谱的变化情况--随着Cr2O7 2-浓度的增加,LB膜的荧光强度逐渐减弱。
图4. 以I0/I-1为纵坐标,Cr2O7 2-浓度为横坐标绘制的标准曲线,其中I0和I分别为加入Cr2O7 2-前后LB膜的荧光强度。
具体实施方式
下面通过实施例进一步描述本发明。
实施例1
取10 g含量为40%的纳米SiO2分散在300 mL的甲醇-DMF混合溶剂(体积比1:1)中,加入1 g 3-氨基丙基三甲氧基硅烷的甲醇-DMF溶液(20 mL),在60 ℃的水浴或油浴反应器中搅拌反应24小时。冷却至室温,4000 rpm离心分离,并用甲醇充分洗涤,除去未反应的3-氨基丙基三甲氧基硅烷,得到氨基化的纳米SiO2
取5 g氨基化纳米SiO2分散在150 mL的甲醇-DMF混合溶剂(体积比1:1)中,加入0.5 g 苄溴化三联吡啶(溶解在10 mL甲醇-DMF混合溶剂中),60 ℃的水浴或油浴反应器中搅拌反应10小时。冷却至室温,4000 rpm离心分离,并用DMF和甲醇充分洗涤,生成三联吡啶配体单层膜修饰的纳米SiO2, 即nanoSiO2TPy。
取50 mg nanoSiO2TPy分散在50 mL的甲醇-甲苯混合溶液(体积比1:1)中,超声分散均匀。用进样针取上述分散液100 μL,滴加在含有5 mmol/L的EuCl3-DPA亚相表面,静置20min。待有机溶剂挥发后,在20 mN/m的表面压下,通过垂直提拉的方法,将nanoSiO2TPy@EuDPA单层膜转移至石英基片的表面,即得nanoSiO2TPy@EuDPA的LB膜。
将附着有nanoSiO2TPy@EuDPA LB膜的石英片浸泡在1 mmol/L的不同阴离子(F-,Cl-, Br-, I-, SO4 2-, NO3 -, CO3 2-, NO2 -, OAc-, Cr2O7 2-, MnO4 -)水溶液中,计时1 min后取出,用氮气吹干,置于紫外灯下观察,观察LB膜的荧光。通过荧光强度的变化,可以发现该荧光LB膜对不同阴离子的响应情况,其中F-, Cl-, Br-, I-, SO4 2-, NO3 -, CO3 2-, NO2 -, OAc-等离子存在下,LB膜可以保持较强的红色荧光;而Cr2O7 2-, MnO4 -会将LB膜的荧光完全猝灭。
将附着有nanoSiO2TPy@EuDPA-LB膜的石英片插入装有3 mL纯净水的比色皿中,逐步加入不同体积的1 mmol/L 的K2Cr2O7或者KMnO4的水溶液,观察LB膜表面的荧光强度并测量荧光发射光谱的变化情况。通过荧光发射光谱强度的变化,可以看出,随着Cr2O7 2-/MnO4 -浓度的增加,荧光LB膜的荧光强度逐渐减弱,表明其对Cr2O7 2-/MnO4 -具有良好的响应性。以Cr2O7 2-为例,其荧光线性变化范围为0-10 μM,荧光猝灭常数Ksv为2.55×105 M-1,检测限低至0.078 μM。
实施例2
取10 g含量为40%的纳米SiO2分散在300 mL的甲醇-DMF混合溶剂(体积比0.8:1)中,加入0.5 g 3-氨基丙基三甲氧基硅烷的甲醇-DMF溶液(20 mL),在70 ℃的水浴或油浴反应器中搅拌反应36小时。冷却至室温,3500 rpm离心分离,并用甲醇充分洗涤,除去未反应的3-氨基丙基三甲氧基硅烷,得到氨基化的纳米SiO2
取5 g氨基化纳米SiO2分散在150 mL的甲醇-DMF混合溶剂(体积比0.8:1)中,加入0.25 g 苄溴化三联吡啶(溶解在10 mL甲醇-DMF混合溶剂中),70 ℃的水浴或油浴反应器中搅拌反应8小时。冷却至室温,3500 rpm离心分离,并用DMF和甲醇充分洗涤,生成三联吡啶配体单层膜修饰的纳米SiO2, 即nanoSiO2TPy。
取50 mg nanoSiO2TPy分散在10 mL的甲醇-甲苯混合溶液(体积比0.8:1)中,超声分散均匀。用进样针取上述分散液200 μL,滴加在含有3 mmol/L的EuCl3-DPA亚相表面,静置25min。待有机溶剂挥发后,在15 mN/m的表面压下,通过垂直提拉的方法,将nanoSiO2TPy@EuDPA单层膜转移至石英基片的表面,即得nanoSiO2TPy@EuDPA的LB膜。
将附着有nanoSiO2TPy@EuDPA LB膜的石英片浸泡在2 mmol/L的不同阴离子(F-,Cl-, Br-, I-, SO4 2-, NO3 -, CO3 2-, NO2 -, OAc-, Cr2O7 2-, MnO4 -)水溶液中,计时3 min后取出,用氮气吹干,置于紫外灯下观察,观察LB膜的荧光。通过荧光强度的变化,可以发现该荧光LB膜对不同阴离子的响应情况,其中F-, Cl-, Br-, I-, SO4 2-, NO3 -, CO3 2-, NO2 -, OAc-等离子存在下,LB膜可以保持较强的红色荧光;而Cr2O7 2-, MnO4 -会将LB膜的荧光完全猝灭。
将附着有nanoSiO2TPy@EuDPA-LB膜的石英片插入装有3 mL纯净水的比色皿中,逐步加入不同体积的2 mmol/L 的K2Cr2O7或者KMnO4的水溶液,观察LB膜表面的荧光强度并测量荧光发射光谱的变化情况。通过荧光发射光谱强度的变化,可以看出,随着Cr2O7 2-/MnO4 -浓度的增加,荧光LB膜的荧光强度逐渐减弱,表明其对Cr2O7 2-/MnO4 -具有良好的响应性。以Cr2O7 2-为例,其荧光线性变化范围为0-10 μM,荧光猝灭常数Ksv为2.55×105 M-1,检测限低至0.078 μM。
实施例3
取10 g含量为40%的纳米SiO2分散在300 mL的甲醇-DMF混合溶剂(体积比1:1.2)中,加入0.8 g 3-氨基丙基三甲氧基硅烷的甲醇-DMF溶液(20 mL),在80 ℃的水浴或油浴反应器中搅拌反应48小时。冷却至室温,4500 rpm离心分离,并用甲醇充分洗涤,除去未反应的3-氨基丙基三甲氧基硅烷,得到氨基化的纳米SiO2
取5 g氨基化纳米SiO2分散在150 mL的甲醇-DMF混合溶剂(体积比1:1.2)中,加入0.4 g 苄溴化三联吡啶(溶解在10 mL甲醇-DMF混合溶剂中),80 ℃的水浴或油浴反应器中搅拌反应12小时。冷却至室温,4500 rpm离心分离,并用DMF和甲醇充分洗涤,生成三联吡啶配体单层膜修饰的纳米SiO2, 即nanoSiO2TPy。
取50 mg nanoSiO2TPy分散在30 mL的甲醇-甲苯混合溶液(体积比1:1.2)中,超声分散均匀。用进样针取上述分散液500 μL,滴加在含有1 mmol/L的EuCl3-DPA亚相表面,静置30min。待有机溶剂挥发后,在30 mN/m的表面压下,通过垂直提拉的方法,将nanoSiO2TPy@EuDPA单层膜转移至石英基片的表面,即得nanoSiO2TPy@EuDPA的LB膜。
将附着有nanoSiO2TPy@EuDPA LB膜的石英片浸泡在5 mmol/L的不同阴离子(F-,Cl-, Br-, I-, SO4 2-, NO3 -, CO3 2-, NO2 -, OAc-, Cr2O7 2-, MnO4 -)水溶液中,计时5 min后取出,用氮气吹干,置于紫外灯下观察,观察LB膜的荧光。通过荧光强度的变化,可以发现该荧光LB膜对不同阴离子的响应情况,其中F-, Cl-, Br-, I-, SO4 2-, NO3 -, CO3 2-, NO2 -, OAc-等离子存在下,LB膜可以保持较强的红色荧光;而Cr2O7 2-, MnO4 -会将LB膜的荧光完全猝灭。
将附着有nanoSiO2TPy@EuDPA-LB膜的石英片插入装有3 mL纯净水的比色皿中,逐步加入不同体积的5 mmol/L 的K2Cr2O7或者KMnO4的水溶液,观察LB膜表面的荧光强度并测量荧光发射光谱的变化情况。通过荧光发射光谱强度的变化,可以看出,随着Cr2O7 2-/MnO4 -浓度的增加,荧光LB膜的荧光强度逐渐减弱,表明其对Cr2O7 2-/MnO4 -具有良好的响应性。以Cr2O7 2-为例,其荧光线性变化范围为0-10 μM,荧光猝灭常数Ksv为2.55×105 M-1,检测限低至0.078 μM。

Claims (9)

1.一种发光铕配合物纳米材料的LB膜的制备方法,其特征在于,以纳米二氧化硅、苄溴化三联吡啶、氯化铕和2,6-吡啶二甲酸为原料,具体步骤为:
(一)利用自组装方法,通过亲水化的纳米二氧化硅与苄溴化三联吡啶(TPyBenBr)之间的反应,形成三吡啶(单层膜修饰的纳米杂化材料,记为nanoSiO2TPy;
(二)利用LB膜技术,将气液界面形成的nanoSiO2TPy@EuDPA纳米复合材料的单层膜转移到固体基片的表面,形成nanoSiO2TPy@EuDPA纳米复合材料的LB膜。
2.根据权利要求1所述的制备方法,其特征在于,步骤(一)的操作流程为:
首先,将表面已经亲水化的纳米SiO2分散在甲醇-DMF混合溶剂中,加入3-氨基丙基三甲氧基硅烷,甲醇与DMF体积比为1:(0.8-1.2),3-氨基丙基三甲氧基硅烷的量为纳米二氧化硅质量的5-10%;在60-80 ℃的水浴或油浴反应器中搅拌反应20-48小时; 冷却至室温,3500-4500 rpm离心分离,并用甲醇充分洗涤,除去未反应的3-氨基丙基三甲氧基硅烷,得到氨基化的纳米SiO2
然后,氨基化纳米SiO2与苄溴化三联吡啶分散在甲醇-DMF混合溶剂中,苄溴化三联吡啶的量为氨基化纳米二氧化硅质量的5-10%,甲醇与DMF体积比为1:(0.8-1.2);于60-80 ℃的水浴或油浴反应器中搅拌反应8-12小时;冷却至室温,3500-4500 rpm离心分离,并用DMF和甲醇充分洗涤,除去未反应的有机物,生成三联吡啶配体单层膜修饰的纳米SiO2,即nanoSiO2TPy。
3. 根据权利要求2所述的制备方法,其特征在于,纳米二氧化硅分散在甲醇-DMF混合溶剂中,纳米二氧化硅的浓度为10-50 mg/mL;最终nanoSiO2NH2的浓度为10-50 mg/mL。
4.根据权利要求2所述的制备方法,其特征在于,步骤(二)的操作流程为:
将上述纳米配体nanoSiO2TPy分散在甲醇-甲苯混合溶液中,浓度为1-5 mg/mL,甲醇与甲苯的体积比为1:(0.8-1.2);取上述分散液100-500 μL铺展在1-5 mmol/L的EuCl3-DPA亚相表面;等待20-30分钟,待有机溶剂挥发后,在10-30 mN/m的表面压下,通过垂直提拉的方法将nanoSiO2TPy@EuDPA单层膜转移至基片表面,即得nanoSiO2TPy@EuDPA的LB膜。
5.根据权利要求1、2或3所述的制备方法,其特征在于,所述基片为玻璃、云母或者石英。
6.一种由权利要求1-5之一所述的制备方法得到的发光铕配合物纳米材料的LB膜。
7.如权利要求6所述的发光铕配合物纳米材料的LB膜在有毒离子可视监测中的应用。
8.根据权利要求7所述的应用,其特征在于,所述有毒离子为水溶液中的毒性金属离子重铬酸根和高锰酸根。
9. 根据权利要求7所述的应用,其特征在于,所述LB膜的层数为1-5层,毒性离子的浓度范围为0-5 mmol/L;涉及的干扰离子有F-, Cl-, Br-, I-, SO4 2-, NO3 -, CO3 2-, NO2 -,OAc-
CN202010409220.5A 2020-05-15 2020-05-15 发光铕配合物纳米材料的lb膜及其制备方法和应用 Active CN111676012B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010409220.5A CN111676012B (zh) 2020-05-15 2020-05-15 发光铕配合物纳米材料的lb膜及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010409220.5A CN111676012B (zh) 2020-05-15 2020-05-15 发光铕配合物纳米材料的lb膜及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN111676012A true CN111676012A (zh) 2020-09-18
CN111676012B CN111676012B (zh) 2022-10-11

Family

ID=72452066

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010409220.5A Active CN111676012B (zh) 2020-05-15 2020-05-15 发光铕配合物纳米材料的lb膜及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN111676012B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116328746A (zh) * 2023-04-10 2023-06-27 新特能源股份有限公司 三联吡啶-硅胶复合材料及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101735216A (zh) * 2009-11-26 2010-06-16 上海大学 铕配合物二氧化硅荧光纳米粒子及其制备方法
CN107619661A (zh) * 2017-09-18 2018-01-23 复旦大学 界面自组装稀土配合物超分子荧光/手性纳米复合材料及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101735216A (zh) * 2009-11-26 2010-06-16 上海大学 铕配合物二氧化硅荧光纳米粒子及其制备方法
CN107619661A (zh) * 2017-09-18 2018-01-23 复旦大学 界面自组装稀土配合物超分子荧光/手性纳米复合材料及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
FERNANDO AUGUSTO DE SOUZA FURTADO等: "《Molecular Information on the Potential of Europium Complexes for Local Recognition of a Nucleoside-Based Drug by Using Nanostructured Interfaces Assembled as Langmuir-Blodgett Films》", 《LANGMUIR》 *
SI WU等: "《Effects of synergetic ligands on structure and fluorescence properties of Langmuir and Langmuir-Blodgett films containing Eu(TTA)3nL》", 《JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY, A: CHEMISTRY》 *
张莉等: "《一种新型的铕络合物/TiO2发光薄膜》", 《物理化学学报》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116328746A (zh) * 2023-04-10 2023-06-27 新特能源股份有限公司 三联吡啶-硅胶复合材料及其制备方法

Also Published As

Publication number Publication date
CN111676012B (zh) 2022-10-11

Similar Documents

Publication Publication Date Title
Lin et al. Metal ions doped carbon quantum dots: Synthesis, physicochemical properties, and their applications
Sharma et al. Photoluminescent C-dots: An overview on the recent development in the synthesis, physiochemical properties and potential applications
Ahmed et al. Highly fluorescent carbon dots as nanoprobes for sensitive and selective determination of 4-nitrophenol in surface waters
Chen et al. Metal-free colorimetric detection of pyrophosphate ions by inhibitive nanozymatic carbon dots
Liu et al. A facile microwave-hydrothermal approach towards highly photoluminescent carbon dots from goose feathers
Ren et al. Preparation of molecularly imprinted polymer coated quantum dots to detect nicosulfuron in water samples
Chatterjee et al. Design of multifunctional fluorescent hybrid materials based on SiO2 materials and core–shell Fe3O4@ SiO2 nanoparticles for metal ion sensing
US10502686B2 (en) Sensor and method for detecting mercury
Wang et al. Carbon dots functionalized by organosilane with double-sided anchoring for nanomolar Hg2+ detection
Yang et al. Nitrogen and sulfur codoped graphene quantum dots as a new fluorescent probe for Au 3+ ions in aqueous media
Shukla et al. A new class of PANI–Ag core–shell nanorods with sensing dimensions
CN107619661B (zh) 界面自组装稀土配合物超分子荧光/手性纳米复合材料及其制备方法
Chatterjee et al. Safranin O-functionalized cuboid mesoporous silica material for fluorescent sensing and adsorption of permanganate
Li et al. Green preparation of carbon dots with different surface states simultaneously at room temperature and their sensing applications
Ghosh et al. A functionalized UiO-66 MOF acting as a luminescent chemosensor for selective and sensitive turn-on detection of superoxide and acetylacetone
Vashisht et al. Solvothermal assisted phosphate functionalized graphitic carbon nitride quantum dots for optical sensing of Fe ions and its thermodynamic aspects
Cheng et al. Structurally ordered catalyst-amplified chemiluminescence signals
Xu et al. Red-emissive carbon dots from spinach: Characterization and application in visual detection of time
Yang et al. N, S co-doped carbon dots with high quantum yield: tunable fluorescence in liquid/solid and extensible applications
Lellouche et al. N-Substituted carbazole heterocycles and derivatives as multipurpose chemical species: at the interface of chemical engineering, polymer and materials science
Yang et al. Self-assembly of lanthanide-based metallogel nanoplates into microcubic blocks as self-calibrating luminescent methanol sensors
CN108088828B (zh) 一种双柱芳烃汞离子荧光传感器及其制备和应用
Yu et al. Establishment of a new analytical platform for glucose detection based on a terbium containing silica hybrid nanosensor
Yang et al. A design for detecting phosphate ions in aqueous solution by luminescent Tb-coordination polymer
CN111676012B (zh) 发光铕配合物纳米材料的lb膜及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant