CN111670107B - 基于构建材料水分含量水平的三维(3d)物体打印 - Google Patents

基于构建材料水分含量水平的三维(3d)物体打印 Download PDF

Info

Publication number
CN111670107B
CN111670107B CN201880088872.4A CN201880088872A CN111670107B CN 111670107 B CN111670107 B CN 111670107B CN 201880088872 A CN201880088872 A CN 201880088872A CN 111670107 B CN111670107 B CN 111670107B
Authority
CN
China
Prior art keywords
build material
container
humidity
build
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201880088872.4A
Other languages
English (en)
Other versions
CN111670107A (zh
Inventor
J·M·罗曼
L·索斯诺夫斯基
D·索里亚诺
E·G·托洛萨冈萨雷斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hewlett Packard Development Co LP
Original Assignee
Hewlett Packard Development Co LP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hewlett Packard Development Co LP filed Critical Hewlett Packard Development Co LP
Publication of CN111670107A publication Critical patent/CN111670107A/zh
Application granted granted Critical
Publication of CN111670107B publication Critical patent/CN111670107B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/255Enclosures for the building material, e.g. powder containers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/34Process control of powder characteristics, e.g. density, oxidation or flowability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/90Means for process control, e.g. cameras or sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/307Handling of material to be used in additive manufacturing
    • B29C64/314Preparation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/357Recycling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/364Conditioning of environment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • B29C64/393Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • B33Y40/10Pre-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/052Metallic powder characterised by the size or surface area of the particles characterised by a mixture of particles of different sizes or by the particle size distribution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/10Formation of a green body
    • B22F10/14Formation of a green body by jetting of binder onto a bed of metal powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/70Recycling
    • B22F10/73Recycling of powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/50Means for feeding of material, e.g. heads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/50Means for feeding of material, e.g. heads
    • B22F12/52Hoppers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/50Means for feeding of material, e.g. heads
    • B22F12/55Two or more means for feeding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/50Means for feeding of material, e.g. heads
    • B22F12/57Metering means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/50Means for feeding of material, e.g. heads
    • B22F12/58Means for feeding of material, e.g. heads for changing the material composition, e.g. by mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/295Heating elements

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Analytical Chemistry (AREA)

Abstract

一种用于制造三维物体的系统可以包括:逻辑,用于针对至少一个容器检测对应于驻留在至少一个容器中的构建材料的水分含量水平。所述逻辑还可以调节施加到至少一个容器的气体和调节剂的湿度水平和温度,其中湿度水平和温度基于驻留在至少一个容器中的构建材料的水分含量水平和温度。另外,所述逻辑可以响应于检测到驻留在至少一个容器中的构建材料的水分含量水平在预定范围内,初始化用来自至少一个容器的构建材料来制造三维物体。

Description

基于构建材料水分含量水平的三维(3D)物体打印
背景技术
三维(3D)打印可以通过将构建材料(诸如粉末)的连续的层添加到构建平台来产生3D物体,然后在计算机控制下选择性地固化每层的部分以产生3D物体。构建材料可以是粉末或粉末状材料,包括金属、塑料、陶瓷、复合材料和其他粉末。在一些示例中,粉末可以由短纤维形成或可以包括短纤维,该短纤维可以例如已经从材料的长股(strand)或线(thread)切割成短段(length)。形成的物体可以是各种形状和几何形状,并且可以使用诸如3D模型或其他电子数据源的模型来产生。制造可以涉及激光熔化、激光烧结、热烧结、电子束熔化、热熔断(thermal fusion)等等。模型和自动化控制可以促进分层(layered)制造和增材制造。3D打印物体可以是原型、中间零件和组件以及最终用途(end-use)产品。产品应用可以包括航空航天零件、机器零件、医疗设备、汽车零件、时尚产品以及其他应用。
附图说明
在以下详细描述中并且参考以下附图描述某些示例。
图1是根据示例的3D打印机的图。
图2是根据示例的具有新材料容器的3D打印机的示意图,该新材料容器通过新进料器将新构建材料排放到输送系统中。
图3是根据示例的没有加湿系统的3D打印机的框图。
图4是根据示例的具有加湿系统的3D打印机的框图。
图5A、5B和5C描绘了根据示例的用于3D打印机的加湿器控制的框图。
图6是根据示例的用于控制3D打印机内的气体和调节剂的流动的示例部件。
图7是根据示例的包括多个调节源的示例3D打印机。
图8是根据示例的具有湿度源的示例3D打印机。
图9是根据示例的用于3D打印机的示例湿度源。
图10是根据示例的具有安全溢流装置(feature)的3D打印机的示例加湿器部件。
图11A、11B和11C是根据示例的使来自3D打印机中的不同源的空气循环的加湿器部件的示例。
图12是将过量蒸气从储存构建材料的容器输送到容器的外部的位置的示例。
图13是将过量蒸气从存储构建材料的容器输送到容器的外部的位置的示例。
图14是再循环来自容器的过量蒸气的示例。
图15是将过量蒸气从存储构建材料的容器输送到容器的外部的位置的示例。
图16是根据示例的示例过程流程图。
图17是根据示例的示例过程流程图。
图18是根据示例的用于操作3D打印机的示例控制器。
图19是根据示例的附接到3D打印机的非暂时性机器可读介质的框图。
具体实施方式
介绍
三维打印机可以由不同种类的粉末或粉末状构建材料形成3D物体。3D打印机产生3D物体的成本可能与构建材料的成本有关。因此,可能存在对用于利用再循环(recycle)材料作为构建材料的3D打印机的期望。再循环构建材料可以包括例如在3D打印过程期间使用但在3D打印过程期间未被固化的构建材料。一旦3D打印过程已经完成,就可以回收这样的未固化的构建材料,并且可以将其指定为‘再循环构建材料’,并且在其他3D打印过程中重新使用。对于一些应用,由于诸如产品纯度、强度和在某些情况下的光洁度(finish)的原因,在利用新材料时可能是有益的。对于一些应用,可以使用新的和再循环的构建材料的混合物,例如作为低成本和可接受的3D物体属性之间的折衷。例如,在一些示例中,从经济和质量两者的角度来看,使用大约20%新的和大约80%再循环的构建材料可以是可接受的。取决于构建材料属性和可接受的物体质量特性,可以使用新的和再循环的构建材料的其他比例。
构建材料可以是干燥或基本干燥的粉末。在三维打印示例中,构建材料可以具有大约5和大约400微米之间、大约10和大约200微米之间、大约15和大约120微米之间或大约20和大约70微米之间的平均的基于体积的横截面粒径大小。合适的平均的基于体积的粒径范围的其他示例包括大约5至大约70微米,或大约5至大约35微米。如本文中所使用的,基于体积的颗粒大小是具有与粉末颗粒相同体积的球体的大小。平均颗粒大小旨在指示贮存器中的大多数基于体积的颗粒大小具有所提到的大小或大小范围。然而,构建材料可以包括直径在所提到的范围之外的颗粒。例如,可以选择颗粒大小以促进分布具有在大约10和大约500微米之间、或在大约10和大约200微米之间、或在大约15和大约150微米之间的厚度的构建材料层。制造系统的一个示例可以被预设为使用构建材料贮存器来分布大约80微米的粉末材料层,所述构建材料贮存器包括具有大约40和大约60微米之间的平均的基于体积的粒径的构建材料。增材制造装置也可以被配置或控制以形成具有不同层厚度的粉末层。
如本文中所描述的那样,除了其他类型的构建材料之外,构建材料还可以是例如半结晶热塑性材料、金属材料、塑料材料、复合材料、陶瓷材料、玻璃材料、树脂材料或聚合物材料。此外,构建材料可以包括多层结构,其中每个颗粒包括多层。在一些示例中,构建材料颗粒的中心可以是玻璃珠(bead),其具有包括塑料粘合剂以与其他颗粒附聚(agglomerate)以用于形成该结构的外层。可以包括其他材料,诸如纤维,以提供不同的属性,例如强度。
本文中描述的示例的描述
本文中描述的技术可以使得3D打印机能够针对多个容器检测对应于驻留在多个容器中的每个中的构建材料的水分含量水平。3D打印机还可以调节施加到每个容器的气体和调节剂的湿度水平和温度,其中湿度水平和温度基于驻留在每个容器中的构建材料的水分含量水平和温度。如本文中所引用的调节剂可以包括水蒸气或可以增加容器内的湿度的任何其他合适的液体或气体。此外,如果驻留在至少一个容器中的构建材料的水分含量水平在预定范围内,则3D打印机可以初始化用来自多个容器中的至少一个容器的构建材料来制造三维物体。
因此,本文中的技术可以使得3D打印机能够监视和调节被用于制造三维物体的构建材料(诸如粉末)的水分含量水平。通过调节构建材料的水分含量水平,3D打印机可以减少构建材料内的任何电荷或摩擦充电(tribocharging),并防止或至少减少构建材料在构建过程期间形成团块的百分比。在一些示例中,3D打印机可以调节构建材料的水分含量水平,以确保构建材料在包含构建材料的存储容器和构建外壳之间自由流动。
图1是根据示例的3D打印机100的图。3D打印机100可以被用于例如在构建平台上从构建材料产生3D物体。构建材料可以是粉末,并且除了其他之外,可以包括塑料、金属、玻璃或涂覆材料,诸如塑料涂覆的玻璃粉末。
打印机100可以在隔室102上具有用于容纳构建材料的内部材料容器的盖或面板。材料容器可以通过进料器将构建材料排放到内部输送系统中以用于3D打印。打印机100可以具有控制器,以调节进料器的操作,以维持构建材料的期望组成,包括构建材料中的材料的指定比率。内部材料容器可以是经由隔室102的用户入口可移除的。打印机100可以具有壳体和在壳体内部的用于处置构建材料的部件。打印机100具有顶表面104、盖106和门或入口面板108。入口面板108可以在3D打印机100的操作期间被锁定。打印机100可以包括用于附加的内部材料容器的隔室110,所述附加的内部材料容器诸如从打印机100的构建外壳回收未熔断的或过量的构建材料的回收材料容器。
如本文中详细描述的,可以通过水平插入到供应站中的构建材料贮存器从3D打印机添加或移除构建材料。供应站可以包括用于添加新的构建材料的新供应站112,以及用于添加再循环的构建材料的再循环供应站114。如示例中所描述的,再循环供应站114也可以被用于例如从回收材料容器中卸载回收的构建材料。在一个示例中,可以提供单个供应站,该供应站可以既用于添加新的构建材料并且又用于从打印机移除再循环的构建材料。
在一些示例中,3D打印机100可以使用打印液体以用于在选择性熔断过程或其他目的(诸如装饰)中使用。对于采用打印液体的3D打印机100的示例,可以包括打印液体系统116以接收和供应用于3D打印的打印液体。打印液体系统116包括盒接收器组件118,以接收并固定可移除的打印液体盒120。打印液体系统116可以包括具有多个容器或储存器的储存器组件122,用于容纳从插入到盒接收器组件118中的打印液体盒120收集的打印液体。可以从容器或储存器向3D打印过程提供打印液体,例如,向构建外壳和构建平台上方的打印组件或打印杆提供打印液体。
3D打印机100还可以包括与打印机100的计算系统或控制器相关联的用户控制面板或接口124。控制接口124和计算系统或控制器可以提供打印机100的控制功能。3D打印机100中的3D物体的制造可以在计算机控制下。要制造的物体的数据模型和自动化控制可以指导分层制造和增材制造。数据模型可以是例如计算机辅助设计(CAD)模型、类似模型或其他电子资源。如关于图18所描述的,计算机系统或控制器可以具有硬件处理器和存储器。硬件处理器可以是微处理器、CPU、ASIC、打印机控制卡或其他电路。存储器可以包括易失性存储器和非易失性存储器。计算机系统或控制器可以包括存储在存储器中并由处理器执行以指导打印机100的操作并促进本文中讨论的各种技术的固件或代码,例如指令、逻辑等。
图2是根据示例的具有内部新材料容器202的3D打印机200的示意图,该内部新材料容器202通过新进料器204将新构建材料排放到输送系统206中。相同编号的条目如关于图1所描述的那样。打印机200可以包括再循环材料容器208,以通过再循环进料器210将再循环构建材料排放到输送系统206。打印机200可以具有控制器,以调节进料器204、210的操作,以维持用于3D打印的构建材料的组成和排放速率。此外,打印机200可以包括回收材料容器212,以通过回收进料器214将回收材料216排放到输送系统206中。输送系统206可以将构建材料输送到分配容器218,该分配容器218可以供应用于3D打印的构建材料。在图示的示例中,分配容器218被布置在3D打印机200的上部中。此外,尽管在该示意视图中为清楚起见,用于构建材料的输送系统206被描绘在3D打印机200的外部,但是输送系统206在打印机200的壳体的内部。
3D打印机200可以在与构建外壳222相关联的构建平台220上由构建材料形成3D物体。3D打印可以包括选择性层烧结(SLS)、选择性热烧结(SHS)、电子束熔化(EBM)、热熔断和熔断剂、化学粘合剂系统(诸如BinderJet)、金属型3D打印机或其他3D打印以及增材制造(AM)技术,以从构建材料产生3D物体。在一些示例中,合适的熔断剂可以是包括炭黑的油墨型制剂,诸如例如可从HP公司获得的商业上被称为V1Q60Q“HP熔断剂”的熔断剂制剂。在一个示例中,这样的熔断剂可以附加地包括红外光吸收剂。在一个示例中,这样的油墨可以附加地包括近红外光吸收剂。在一个示例中,这样的熔断剂可以附加地包括可见光吸收剂。在一个示例中,这样的油墨可以附加地包括UV光吸收剂。包括可见光增强剂的油墨的示例是基于染料的彩色油墨和基于颜料的彩色油墨,诸如可从HP公司获得的商业上被称为CE039A和CE042A的油墨。根据一个示例,合适的细化剂可以是可从HP公司获得的商业上被称为V1Q61A“HP细化剂”的制剂。根据一个示例,合适的构建材料可以是可从HP公司获得的商业上被称为V1R10A“HP PA12”的PA12构建材料。可以从构建外壳222中回收回收的构建材料224,例如非固化或过量的构建材料。回收的构建材料224可以被处理并返回到回收材料容器212。
此外,打印机200可以包括新供应站112和再循环供应站114,以保持由用户沿着水平或大致水平的轴插入的构建材料贮存器。供应站112和114可以分别将用于3D打印的新的或再循环的构建材料提供给新材料容器和再循环材料容器202和208。此外,输送系统206可以将回收的材料216返回到再循环供应站114。回收的材料216可以通过被添加到插入再循环供应站114中的构建材料贮存器而卸载,或者可以通过再循环供应站114被转移(divert)到再循环材料容器208。
最后,如所指出的那样,包括第一材料和第二材料的构建材料可以是粉末。粉末可以是具有狭窄大小分布的粒状材料,诸如珠,或其他形状的小固体,其可以在气流中流动和输送。如本文中所使用的,作为构建材料的术语“粉末”可以例如指代粉末或粉末状的材料,其可以经由能量源被分层和烧结,或者经由熔断剂被熔断,或在3D打印作业中经由熔断剂和能量源被熔断。在一些示例中,可以使用化学粘合剂(诸如溶剂粘合剂或反应促进剂)将构建材料形成为形状。除了其他类型的构建材料之外,构建材料还可以是例如半结晶热塑性材料、金属材料、塑料材料、复合材料、陶瓷材料、玻璃材料、树脂材料或聚合物材料。
图3是根据示例的没有加湿系统的3D打印机300的框图。相同编号的条目如关于图1和图2所描述的那样。如该图中所示,材料流由沿输送线路或管道放置的标记的箭头示出,其可以被分离地标记。在该示例中,3D打印机300可以具有新材料容器202,该新材料容器202通过进料器204(诸如旋转进料器、螺旋钻(auger)或螺旋进料器)将新材料排放到第一输送系统302中,该第一输送系统302可以是气动输送系统。进料器204可以将新材料滴入到(drop into)输送系统302的管道中。进料器204可以计量或调节材料排放,或者以其他方式促进将期望量的新材料从新材料容器202分配到第一输送系统302中。此外,3D打印机300可以包括再循环材料容器208,该再循环材料容器208通过进料器210将再循环材料排放到第一输送系统302中。
新材料容器202可以具有重量传感器304和填充水平传感器306。同样,再循环材料容器208可以具有重量传感器308和填充水平传感器310。如关于图8所描述的,打印机300的控制器312可以响应于由重量传感器304和308提供的材料排放量或速率的指示来调节进料器204和210的操作。控制器可以调节进料器204和210的操作以维持新材料与再循环材料的期望比率。在本文中描述的示例中,控制器312可以控制从构建材料贮存器分配构建材料,或将构建材料卸载到构建材料贮存器。
3D打印机300可以包括新供应站112,以保持用于沿水平轴将新构建材料添加在圆柱形保持架(cylindrical cage)中的构建材料贮存器。新材料容器302可以从由新供应站112保持的构建材料贮存器接收新构建材料。如本文中所描述的,新供应站112可以包括若干个传感器和致动器,以确定是否存在构建材料贮存器,并控制从构建材料贮存器分配构建材料。传感器可以包括可以被用于确定新供应站112和构建材料贮存器的重量的称重设备314。致动器可以包括电机316,以在第一角度方向上旋转圆柱形保持架以将构建材料分配到新材料容器202。
圆柱形保持架的转数可以被用于控制从构建材料贮存器分配预期量的构建材料。因此,电机316可以是步进电机、伺服电机或可以被用于控制转数和旋转的速度的其他类型的电机。在一些示例中,具有受控速度(诸如使用脉冲宽度调制或脉冲频率调制的电机控制)的电机,可以与对转数进行计数的传感器一起使用。例如,如本文中所描述的基本位置传感器可以被用于对旋转进行计数。
3D打印机300可以包括再循环供应站114,以保持用于再循环材料的构建材料贮存器。如针对新供应站112所描述的,再循环供应站114可以包括若干个传感器和致动器,以确定是否存在构建材料贮存器,并控制将再循环构建材料从构建材料贮存器分配到例如再循环材料容器中。传感器可以包括可以被用于确定再循环供应站114和构建材料贮存器的重量的称重设备318。致动器可以包括电机320,以在第一角度方向上旋转圆柱形保持架以将构建材料分配到再循环材料容器208。再循环供应站114还可以在与第一角度方向相反的第二角度方向上旋转圆柱形保持架,以将回收的或再循环的材料添加到构建材料贮存器。
新供应站112和再循环供应站114还可以包括若干个其他传感器和致动器322以提供功能,如本文中更详细描述的那样。除了其他之外,其他传感器和致动器322还可以包括用于确定构建材料贮存器是否被固定在供应站中的闩锁传感器,以及用于确定构建材料贮存器是否处于基本位置中的位置传感器。如本文中所使用的,基本位置是在插入到供应站112或114中之后构建材料贮存器的初始位置。在基本位置中,支撑结构上的传感器和致动器322可以与圆柱形保持架相互作用。此外,除了其他之外,传感器和致动器322还可以包括致动器,以致动构建材料贮存器上的阀,例如打开或关闭阀,或将读取头推进(advance)到构建材料贮存器上的信息芯片。
如本文中所描述的那样,打印机300可以包括回收材料容器212,该回收材料容器212通过回收进料器214将回收材料216排放到第一输送系统302中。回收材料容器212可以具有重量传感器324和填充水平传感器326。因此,除了来自再循环材料容器208的再循环材料和来自新材料容器202的新材料之外,构建材料328还可以包括来自回收材料容器212的回收材料216。
输送空气可以流经第一输送系统302。诸如过滤歧管(manifold)或开放管道的进气口如可以接收、吸入(pull in)和/或过滤空气(例如环境空气)作为用于第一输送系统302的输送空气。空气也可以被用于下面讨论的第二输送系统。第一输送系统302可以输送构建材料328,例如分别来自容器202和208的新材料和再循环材料的混合物。在一些情况下,构建材料328还可以包括回收材料216。在图示的示例中,第一输送系统302可以将构建材料328输送到与分配容器332相关联的分离器(separator)330。分配容器332可以是进料容器。分离器330可以包括旋风分离器(cyclone)、筛网(screen)、过滤器以及诸如此类。分离器330可以将输送空气334与构建材料328分离。
在已经分离输送空气334之后,构建材料328可以流入到分配容器332中。进料器336可以从分配容器332接收构建材料,并将构建材料排放到构建材料处置系统338以用于3D打印。分配容器332可以具有填充水平传感器340。填充水平传感器340可以测量并指示分配容器332中的构建材料的水平或高度。
第一输送系统302可以经由转移器阀342转移构建材料328。转移的材料344可以通过诸如旋风分离器、过滤器等的分离器348被送到替代容器346。替代容器346可以通过进料器350和转移器阀352将转移的材料344排放到供应站114中的构建材料贮存器,或者排放到再循环材料容器208。如本文中的示例中所描述的那样,转移器阀352可以是用于从构建材料贮存器分配再循环构建材料的阀机构的部分。
例如,当构建材料328主要是再循环材料或回收材料216时,由转移器阀342将构建材料328作为再循环材料344的该转移可能发生。这可以例如通过将材料通过转移器阀352转移到构建材料贮存器而卸载材料来执行。在其他示例中,可以通过转移器阀352将再循环材料344送到再循环材料容器208。如与其他材料容器一样,替代容器346可以具有填充水平传感器354。
与替代容器346相关联的分离器348可以从构建材料328移除输送空气356。在从构建材料328移除输送空气356之后,构建材料328可以从分离器348排放到替代容器346中。在所图示的示例中,来自分离器348的输送空气356可以流向Y形配件358,在Y形配件358中,输送空气356与来自与分配容器332相关联的分离器330的输送空气334组合。Y形配件358可以是具有两个入口和一个出口的管道配件。组合的输送空气360可以由第一输送系统302的动力部件362从Y形配件358中抽出,并且被排放364到环境或到附加的装备以进行进一步处理。在一些示例中,当组合的输送空气360正在被动力部件362抽出时,其可以流经过滤器366。过滤器366可以在输送空气360被排放364之前从输送空气360移除颗粒。
动力部件362针对第一输送系统302中的输送空气施加动力以输送构建材料。动力部件362可以是鼓风机、喷射器(eductor)、排出器(ejector)、真空泵、压缩机或其他动力部件。因为第一输送系统302通常是气动输送系统,所以动力部件通常可以包括鼓风机,诸如离心式鼓风机、风扇、轴流式鼓风机以及诸如此类。
至于3D打印,如提到的那样,分配容器332可以通过进料器336将构建材料328排放到构建材料处置系统338。进料器336和构建材料处置系统338可以例如以层来跨构建平台368提供期望量的构建材料328。构建材料处置系统338可以包括进料装置、定量(dosing)设备、构建材料涂敷器或粉末涂布器以及诸如此类,以将构建材料涂敷到构建外壳370中的构建平台368。打印机300可以在构建平台368上由构建材料328形成3D物体。
在构建平台368上完成或基本完成3D物体之后,真空歧管372可以将过量的构建材料作为回收材料从构建外壳370移除到第二输送系统374中。在一些示例中,不使用第二输送系统374。例如,过量的构建材料可以与3D物体一起被卸载,或者通过独立的真空移除。
如果使用第二输送系统374,则第二输送系统374可以通过旋风分离器或过滤器376输送回收的材料,以将回收的材料与输送空气378分离。输送空气378通过第二输送系统374的动力部件380被排放。可以包括过滤器以从输送空气378移除颗粒。动力部件380可以是鼓风机、风扇、喷射器、排出器、真空泵或其他类型的动力部件。在该示例中,回收的材料可以从旋风分离器或过滤器376排放,并进入滤网(sieve)382,在滤网382中可以移除较大的颗粒,诸如未结合到3D物体中的固化构建材料。滤网382可以具有填充水平传感器384,其监视滤网382中的固体材料的水平或高度。
在分离较大的颗粒之后,回收的构建材料可以进入回收材料容器212。在一些示例中,回收的材料可以绕过(bypass)旋风分离器或过滤器376、滤网382和回收材料容器212,并且流入到第一输送系统302的管道中,如由虚线396所指示的那样。3D打印机300的容器、输送系统和相关联的装备可以包括诸如压力传感器和温度传感器以及诸如此类的仪器。
3D打印机300可以将物体制造为用于航空航天(例如,航空器)、机器零件、医疗设备(例如,植入物)、汽车零件、时尚产品、结构和导电金属、陶瓷等等的原型或产品。在一个示例中,由3D打印机300形成的3D物体是机器零件,其可以是金属或塑料,并且其可以等同于或类似于通过其他制造技术(除了其他之外,例如注射成型或吹塑成型)生产的机器零件。
图4是具有加湿系统的3D打印机的框图。根据示例,3D打印机400可以向存储在构建材料容器中的构建材料提供湿度。相同编号的条目如关于图1、2和3所描述的那样。如该图中所示,材料流由沿输送线路或管道放置的标记的箭头示出,其可以被分离地标记。在该示例中,3D打印机400可以具有新材料容器202,该新材料容器202通过进料器204(诸如旋转进料器、螺旋钻或螺旋进料器)将新材料排放到第一输送系统302中,该第一输送系统302可以是气动输送系统。进料器204可以将新材料滴入到输送系统302的管道中。进料器204可以计量或调节材料排放,或者以其他方式促进将期望量的新材料从新材料容器202分配到第一输送系统302中。此外,3D打印机400可以包括再循环材料容器208,该再循环材料容器208通过进料器210将再循环材料排放到第一输送系统302中。
新材料容器202可以具有重量传感器304。同样,再循环材料容器208可以具有重量传感器308。如关于图8所描述的,打印机400的控制器312可以响应于由重量传感器304和308提供的材料排放量或速率的指示来调节进料器204和210的操作。控制器312可以调节进料器204和210的操作以维持新材料与再循环材料的期望比率。在本文中描述的示例中,控制器312可以控制从构建材料贮存器分配构建材料,或将构建材料卸载到构建材料贮存器。
3D打印机400可以包括新供应站112,以保持用于沿水平轴将新构建材料添加在圆柱形保持架中的构建材料贮存器。新材料容器202可以从由新供应站112保持的构建材料贮存器接收新构建材料。如本文中所描述的,新供应站112可以包括若干个传感器和致动器,以确定是否存在构建材料贮存器,并控制从构建材料贮存器分配构建材料。
3D打印机400可以包括再循环供应站114,以保持用于再循环材料的构建材料贮存器。如针对新供应站112所描述的,再循环供应站114可以包括若干个传感器和致动器,以确定是否存在构建材料贮存器,并控制将再循环构建材料从构建材料贮存器分配到例如再循环材料容器中。再循环供应站114还可以在与第一角度方向相反的第二角度方向上旋转圆柱形保持架,以将回收的或再循环的材料添加到构建材料贮存器。
如本文中所描述的那样,打印机400可以包括回收材料容器212,该回收材料容器212通过回收进料器214将回收材料216排放到第一输送系统302中。回收材料容器212可以具有重量传感器324和填充水平传感器326。因此,除了来自再循环材料容器208的再循环材料和来自新材料容器202的新材料之外,构建材料还可以包括来自回收材料容器212的回收材料216。
输送空气可以流经第一输送系统302。诸如过滤歧管或开放管道的进气口如可以接收、吸入和/或过滤空气(例如环境空气)作为用于第一输送系统302的输送空气。空气也可以被用于下面讨论的第二输送系统。第一输送系统302可以输送构建材料,例如分别来自容器202和208的新材料和再循环材料的混合物。在一些情况下,构建材料还可以包括回收材料216。在图示的示例中,第一输送系统302可以将构建材料328输送到分配容器332。分配容器332可以是进料容器。
进料器336可以从分配容器332接收构建材料,并将构建材料排放到色带盒(ribbon cartridge)或构建材料处置系统338以进行3D打印。分配容器332可以具有填充水平传感器340。填充水平传感器340可以测量并指示分配容器332中的构建材料的水平或高度。
第一输送系统302可以经由转移器阀342转移构建材料328。转移的材料344可以通过诸如旋风分离器、过滤器等的分离器被送到替代容器346。替代容器346可以通过进料器350将转移的材料344排放到供应站114中的构建材料贮存器,或者排放到再循环材料容器208。
例如,当构建材料328主要是再循环材料或回收材料216时,将构建材料328作为再循环材料344的该转移可能发生。这可以例如通过将材料转移到构建材料贮存器而卸载材料来执行。在其他示例中,可以将再循环材料344送到再循环材料容器208。如与其他材料容器一样,替代容器346可以具有填充水平传感器354。
在一些示例中,与替代容器346相关联的分离器(未示出)可以从构建材料328移除输送空气356。在从构建材料328移除输送空气356之后,构建材料328可以从分离器排放到替代容器346中。在所图示的示例中,来自分离器的输送空气356可以流向Y形配件358,在Y形配件358中,输送空气356与来自分配容器332的输送空气334组合。Y形配件358可以是具有两个入口和一个出口的管道配件。组合的输送空气360可以通过过滤器406由分离的加湿输送空气(HTA)加湿器404的动力部件402从Y形配件358中抽出,并且被排放的输送空气408可以被提供到HTA加湿器404中。在排放的输送空气408被提供到HTA加湿器404中之前,过滤器406可以从输送空气360中移除颗粒。HTA加湿器404可以向将构建材料从新容器202、再循环容器208和回收容器212输送到构建外壳370的管道线路提供加湿空气。
动力部件402针对第一输送系统302中的输送空气施加动力以输送构建材料。动力部件402可以是鼓风机、喷射器、排出器、真空泵、压缩机或其他动力部件。因为第一输送系统302通常是气动输送系统,所以动力部件通常可以包括鼓风机,诸如离心式鼓风机、风扇、轴流式鼓风机以及诸如此类。
至于3D打印,如提到的那样,分配容器332可以通过进料器336将构建材料328排放到构建材料处置系统338。进料器336和构建材料处置系统338可以例如以层来跨构建平台368来提供期望量的构建材料328。构建材料处置系统338可以包括进料装置、定量设备、构建材料涂敷器或粉末涂布器以及诸如此类,以将构建材料涂敷到构建外壳370中的构建平台368。打印机400可以在构建平台368上由构建材料328形成3D物体。
在构建平台368上完成或基本完成3D物体之后,真空歧管372可以将过量的构建材料作为回收材料从构建外壳370移除到第二输送系统374中。在一些示例中,不使用第二输送系统374。例如,过量的构建材料可以与3D物体一起被卸载,或者通过独立的真空移除。
在一些示例中,3D打印机400还可以包括可以向加湿器管理系统(HMS)412提供空气的肺(lung)410。HMS 412可以通过管道414和416以及泵418、419和420将调节剂传输到新容器304、再循环容器310和回收容器212。除了其他之外如本文中所引用的,调节剂还可以包括添加到环境空气以产生加湿空气的水蒸气。
在一些示例中,新容器202、再循环容器208和回收容器212可以包括任何合适数量的压力传感器422、424、426、428、430和432。在一些示例中,新容器202、再循环容器208和回收容器212可以包括至少两个压力传感器,其中一个压力传感器位于新容器202、再循环容器208和回收容器212的底部处,并且分离的压力传感器位于新容器202、再循环容器208和回收容器212的顶部附近。在一些示例中,附接到压力传感器422、424、426、428、430和432的逻辑或控制器312可以检测压力差。例如,逻辑或控制器312可以确定在新容器202、再循环容器208或回收容器212的底部与新容器202、再循环容器208或回收容器212的顶部之间存在不同的压力。
在一些示例中,逻辑或控制器312可以将具有至少一种流速的气体施加到三维打印机400的新容器202、再循环容器208或回收容器212,其中至少一种流速小于流化速率(fluidization rate)。该气体可以包括大气,除了其他之外,所述大气包括氮气、氧气、氩气和二氧化碳。在一些示例中,气体可以包括任何合适数量的气体或气体的混合物。在一些示例中,逻辑或控制器312还可以检测驻留在新容器202、再循环容器208或回收容器212内的构建材料的渗透率,其中该渗透率基于由驻留在新容器202、再循环容器208或回收容器212内的压力传感器压力传感器422、424、426、428、430和432检测到的多个压力值来计算。在一些示例中,逻辑或控制器312还可以以第二流速施加具有预定湿度水平的气体,以改变驻留在新容器206、再循环容器208或回收容器212中的构建材料的渗透率。预定湿度水平可以由HMS 412提供,并被施加到由肺410提供的气体。在一些示例中,逻辑或控制器312可以响应于检测到构建材料的渗透率低于预定阈值而初始化用构建材料制造三维物体。在一些示例中,可以经由流化器板(fluidizer plate)434、436和438将由HMS 412提供的调节流体和空气提供给新容器202、再循环容器208和回收容器212。
在一些示例中,HTA 404可以向输送构建材料的管道线路提供气体和调节剂,诸如加湿空气。在一些示例中,HTA 404可以经由入口文丘里管(venturi)440和湿度传感器(HTS)442和转移器阀444将气体和调节剂传输到管道线路。在一些示例中,HTA 404可以向管道线路提供加湿空气,以确保构建材料在新容器202、再循环容器208和回收容器212与构建外壳370之间自由输送。
在一些示例中,构建外壳370可以从肺446接收气体,该肺446还向HTA 404提供气体448。在一些示例中,构建外壳370还可以被耦合到冷却系统450,该冷却系统450可以从构建外壳370中提取排气并将该排气输送到过滤器452和风扇454。
构建外壳370可以被耦合到周边真空装置372,该周边真空装置372可以耦合到任何合适数量的管道线路,该管道线路经由阀歧管V3 458和阀V2 460将空气从构建外壳370传输到吹风箱(blow box)456。在一些示例中,阀歧管V3 458可以具有任何合适数量的可选位置,包括关闭位置。在一些示例中,构建外壳370也可以被耦合到管道线路462,该管道线路通过平台和振动电机466将空气从构建外壳370内输送到构建桶464。构建桶464可以存储来自构建外壳370的过量的构建材料,该过量的构建材料可以经由阀V2 458被输送到吹风箱456。
如果使用第二输送系统374,则第二输送系统374可以通过吹风箱456将回收的材料输送到旋风分离器或过滤器376,以将回收的材料与输送空气378分离。吹风箱456可以将过量的构建材料提供给过滤器376、滤网382和回收的容器212。如果使用第二输送系统374,则第二输送系统374可以通过旋风分离器或过滤器376输送回收的材料,以将回收的材料与输送空气378分离。输送空气378通过文丘里管467和第二输送系统374的动力部件468或470被排放。可以包括过滤器以从输送空气378移除颗粒。动力部件468和470可以是鼓风机、风扇、喷射器、排出器、真空泵或任何其他类型的动力部件。在该示例中,回收的材料可以从旋风分离器或过滤器376排放,并进入滤网382,在滤网382中可以移除较大的颗粒,诸如未结合到3D物体中的固化构建材料。滤网382可以具有填充水平传感器384,其监视滤网382中的固体材料的水平或高度。
在分离较大的颗粒之后,回收的构建材料可以进入回收材料容器212。在该示例中,回收的材料可以从旋风分离器或过滤器376排放并进入滤网382,在滤网382中可以移除较大的颗粒,诸如未结合到3D物体中的固化构建材料。3D打印机400的容器、输送系统和相关联的装备可以包括诸如压力传感器和温度传感器以及诸如此类的仪器。
3D打印机400可以将物体制造为用于航空航天(例如,航空器)、机器零件、医疗设备(例如,植入物)、汽车零件、时尚产品、结构和导电金属、陶瓷等等的原型或产品。在一个示例中,由3D打印机400形成的3D物体是机器零件,其可以是金属或塑料,并且其可以等同于或类似于通过其他制造技术(除了其他之外,例如注射成型或吹塑成型)生产的机器零件。
3D打印机400可以包括更少的或附加的部件。例如,HTA加湿器404还可以包括水箱472,该水箱472将水蒸气提供给转移器阀444。HTA加湿器404还可以包括安全溢流装置474,以将水从水箱472输送到3D打印机400的外部。HTA加湿器404还可以包括出口文丘里管476和湿度传感器(HTS)478,以促进将气体从过滤器406输送到动力部件402。在一些示例中,HTA加湿器404可以向至少一个气动空气输送线路提供第二调节剂,以用于将构建材料从至少一个容器输送到第二容器或构建外壳。HTA加湿器404还可以向诸如斜槽(chute)、容器出口以及诸如此类的在重力下操作的输送线路提供第二调节剂。
图5A、5B和5C描绘了根据示例的用于3D打印机的加湿器控制的框图。在一些示例中,图5A的肺502可以向图5C中图示的构建外壳504、驻留在加湿器管理系统(HMS)508内的加湿器发生器506和图5B中图示的湿度输送空气(HTA)模块510提供任何合适的气体或气体的混合物。
在一些示例中,可以通过加湿器发生器506中的相对湿度和温度传感器512来监视来自肺502的气体。在一些示例中,来自肺502的气体被施加到分别对应于储水器518和520的两个热水器514和516。在一些示例中,储水器518从HMS 508中的加湿器水源(watersupply)522接收水。HMS 508可以包括发光二极管(LED)524,发光二极管(LED)524可以闪烁任何合适的次数以指示热水器514和516是否是活跃的、HMS 508是否是可配置的、或者HMS508是否与加湿器发生器506具有连接。在一些示例中,加湿器水源522还可以包括:水位传感器526,用于指示存储在加湿水源522中的水位;以及PSNC传感器528,用于检测是否插入了水箱。在一些示例中,从加湿水源522提供给储水器518的水流经任何合适类型的泵530。在一些示例中,来自加湿水源522的水也可以被输送到驻留在图5B的HTA模块510中的储水器532。
在一些示例中,储水器518可以被耦合到储水器520以提供水。储水器520可以包括溢流阀534,该溢流阀534通过底盘孔536将水输送到三维打印机500的外部的图5B的外部位置538。在一些示例中,溢流阀534可以包括开关540。在一些示例中,储水器518可以通过加湿器发生器506中的热水器542和相对湿度和温度传感器544以及再循环构建材料容器550中的风扇或鼓风机546(在图5C中图示)和真实湿度和温度传感器548来提供加热的水蒸气。在一些示例中,再循环构建材料容器550可以将来自先前构建的再循环构建材料存储在三维打印机500内。再循环构建材料容器550可以包括:热敏电阻552,用于检测取决于再循环构建材料内的温度的电阻;以及相对湿度和温度传感器554,用于检测再循环构建材料的相对湿度和温度。在一些示例中,当排气556离开再循环构建材料容器550的顶部时,来自再循环构建材料容器550的排气556可以与内部冷却空气558混合。
在一些示例中,图5A的储水器520可以包括水箱传感器560,以监视存储在储水器520中的水位。储水器520还可以包括热敏电阻562,以基于取决于温度的电阻来检测存储在储水器520中的水的电阻。在一些示例中,储水器518还可以包括热敏电阻564,以检测存储在储水器518中的水的电阻。在一些示例中,储水器520可以通过加湿器发生器506中的热水器566和相对湿度和温度传感器568以及非再循环构建材料容器574中的风扇或鼓风机570(在图5C中图示)和真实湿度和温度传感器572来提供加热的水蒸气。在一些示例中,非再循环构建材料容器574可以存储对于三维打印机500而言是新的并且不是来自先前构建的非再循环的构建材料。非再循环构建材料容器574可以包括:热敏电阻576,用于检测取决于非再循环构建材料内的温度的电阻;以及相对湿度和温度传感器578,用于检测非再循环构建材料的相对湿度和温度。在一些示例中,来自非再循环构建材料容器574的排气579可以通过鼓风机580从非再循环构建材料容器574的顶部输送。在一些示例中,非再循环构建材料容器574可以从构建外壳504接收空气。
在一些示例中,HTA模块510可以包括储水器532,该储水器532可以经由水阀581从加湿水源516接收水。在一些示例中,储水器532可以包括任何数量的热水器582、583、水箱传感器584和热敏电阻585,热敏电阻585可以检测取决于存储在储水器532中的水的温度的电阻。在一些示例中,来自储水器532的水可以通过溢流传感器586和底盘孔587溢流到三维打印机500的外部的外部位置538。
在一些示例中,可以将来自图5C的储水器532的水蒸气提供给双向转移器阀588,该双向转移器阀588还从肺502接收气体。双向转移器阀588可以将水蒸气输送通过相对湿度和温度传感器589并且输送到非再循环构建材料容器590的输入位置。双向转移器阀588可以使得来自肺502的非潮湿空气与来自HTA 510加湿器的潮湿空气混合,以增加湿度控制。在一些示例中,气体输出端口591可以通过HTA 510的相对湿度和温度传感器592输送气体。可以将气体提供给外部风扇或鼓风机593,该外部风扇或鼓风机593将气体吹入到储水器532中。
图6是根据示例的用于控制三维打印机内的气体和调节剂的流动的示例部件。部件600可以经由管道602接收受控空气,诸如气体与调节剂,并经由管道604接收环境空气。调节剂可以包括由任何合适的源产生的水蒸气,所述源诸如上面关于图4和图5讨论的湿度管理系统(HMS)或湿度输送空气(HTA)控制器。调节剂可以将气体的湿度水平改变为预定的湿度水平。可以从包括部件600的三维打印机之外的任何合适的源将环境空气提供给管道604。三向阀606可以由控制器(未描绘)调节,以允许具有特定湿度水平的气体和环境空气的任何合适的组合流向随后的三向阀608。在一些示例中,可以基于在存储构建材料的容器内检测到的状况来调节三向阀606。在一些示例中,三向阀608可以将具有特定湿度水平的气体和环境空气的组合提供给区域1 610或区域2 612。在一些示例中,每个区域610或612可以对应于存储构建材料的不同容器、用于在3D打印机内输送构建材料的输送线路以及诸如此类。在一些示例中,三向阀606和608可以由控制器控制以调节进入3D打印机的每个容器的调节流体和气体的量。
图7是根据示例的包括多个调节源的示例3D打印机。在一些示例中,3D打印机700可以包括可以产生调节的空气的任何合适数量的发生器。调节的空气可以包括与诸如水蒸气或加湿空气的调节剂混合的任何合适的气体或气体的组合。在一些示例中,发生器1 702和发生器2 704可以将调节的空气提供给3D打印机700内的任何合适数量的区域。如上面讨论的那样,3D打印机的每个区域可以对应于存储构建材料的分离容器、用于输送构建材料的输送线路、构建外壳以及3D打印机内的任何其他部件。
在图7的示例中,3D打印机700可以包括接收区域1 706、接收区域2 708到接收区域N 710。每个接收区域706、708和710可以接收来自发生器1 702、发生器2、704的调节的空气以及还有不受控制但被测量的环境空气712的混合物。在一些示例中,可以从3D打印机700内的任何合适的源或从3D打印机700的外壳的外部提供环境空气712。来自发生器1 702和发生器2 704的调节空气与环境空气712的混合物可以经由阀714、716和718的集合被提供给每个接收区域706、708和710。阀714、716和718的每个集合可以由3D打印机700内的控制器控制,以基于每个接收区域706、708或710内的状况来提供来自发生器1 702和发生器2704的调节空气和环境空气712的混合物。例如,每个接收区域706、708和710内的相对湿度或温度可以对应于选择来自发生器1 702和发生器2 704的调节空气以及环境空气712的不同混合物的控制器。在一些示例中,还可以由3D打印机的控制器来检测每个接收区域706、708和710内的构建材料的特性,诸如相对湿度、温度和渗透率。每个接收区域706、708和710内的构建材料的特性可能导致调节空气和环境空气712的不同组合被施加到接收区域706、708和710中的每个。因此,在一些示例中,一个或多个湿度发生器702和704用于连接到3D打印机的容器中的一个或多个,以提供调节流体和气体,该调节流体和气体改变每个容器内的构建材料的水分含量水平。
图8是根据示例的具有湿度源的示例3D打印机。在3D打印机800中,湿度源802可以将任何合适的气体和加湿空气的混合物或任何其他合适的调节剂提供给区域1 804和区域2 806。在一些示例中,区域1对应于回收构建材料容器,并且区域2对应于再循环构建材料容器。在一些示例中,3D打印机还可以包括存储808部件,该存储808部件存储提供给区域2806的构建材料。在一些示例中,构建粉末可以在区域1 804和区域2 806或存储808部件之间输送。因此,单个湿度源802可以向区域1 804和区域2 806提供调节的空气,以确保构建材料以有利于3D打印技术的特定特性(诸如温度、相对湿度和渗透率)在3D打印机800内被输送。在一些示例中,存储808部件或容器可以包括以高湿度存储的构建材料。存储808部件的构建材料可以被提供给区域2 806中的至少一个容器,用于存储用于制造三维物体的构建材料。在一些示例中,温度和/或相对湿度传感器810和812可以被包括在湿度源802的出口处以及区域1 804和区域2 806内。另外,可以用水温传感器814来测量湿度源802的水温,并且温度和相对湿度传感器810和812以及水温传感器814的传感器值可以被用作反馈。
根据示例的用于3D打印机的示例湿度源中的图9。湿度源900可以包括储存器或填充箱(fill tank)902、泵904、水填充器(water fill)906和湿度发生器908。在一些示例中,储存器902可以充满水或任何其他合适的液体,所述液体可以由泵904通过水填充器906中的主动阀910泵送到湿度发生器908中。如果湿度发生器908处于比储存器902低的水平处,则主动阀910可以防止虹吸效应。在一些示例中,湿度发生器908可以被耦合到加热器912,该加热器912可以加热从储存器902接收的水或流体。在一些示例中,储水器902可以经由单向管道向连接到至少一个容器的湿度发生器908提供水,其中储水器902包括第一水位传感器,并且湿度发生器908包括第二水位传感器。
在一些示例中,湿度发生器908可以包括安全溢流口914,以将过量的水输送到3D打印机的外部的位置。在一些示例中,湿度发生器908还可以包括空气端口916和918,空气端口916和918使得空气能够穿过湿度发生器908的顶部并流入到3D打印机的其他部件中,所述其他部件诸如用于构建材料的存储容器、输送线路以及诸如此类。
图10是根据示例的具有安全溢流装置的3D打印机的示例加湿器部件。加湿器部件1000可以包括水填充器1002、储水器1004、热水器1006、安全溢流装置1008(也称为水迷宫(water labyrinth))、以及空气输入端口1010和空气输出端口1012。在一些示例中,水填充器1002可以将水从分离的储水器(未描绘)输送到储水器1004,如以上关于图9所讨论的那样。在一些示例中,热水器1006可以加热存储在储水器1006中的水以产生水蒸气。在一些示例中,水蒸气是可以被添加到气体的调节剂,所述调节剂诸如移动通过空气输入端口1010和空气输出端口1012之间的储水器1004的顶部的环境空气。在一些示例中,任何合适的动力部件可以迫使环境空气或任何其他合适的气体从空气输入端口1010到空气输出端口1012。
在一些示例中,由于空气输入端口1010和空气输出端口1012之间的环境空气或气体的流动,储水器1004内的压力可以改变。例如,如果在空气输入端口1010和空气输出端口1012之间没有空气流,则储水器1004中可能存在负压。当存在负压时,储水器1004内的水位可以处于水位1014处。在一些示例中,当空气在空气输入端口1010和空气输出端口1012之间流动时,储水器1004内的压力可以改变为正压,并且水位可以上升到新的水位1016,如由Δh 1018所描绘的那样。安全溢流装置1008可以防止水经由安全溢流装置1008被迫通过开口1016。在一些示例中,安全溢流装置1008可以基于储水器1004内的预定操作压力延伸到储水器1004的水中至一定深度。在一些示例中,安全溢流装置1008还可以防止气体与调节剂通过安全溢流装置逸出到系统中。例如,安全溢流装置1008可以确保水蒸气通过空气输出端口1012离开储水器,而不是通过储水器1004的对应于水溢流的一侧中的开口逸出。
图11A、11B和11C是根据示例的使来自不同源的空气循环的3D打印机中的加湿器部件的示例。在图11A中,加湿器系统1100A可以包括可以被耦合到水位传感器1104的可再填充水箱1102以及通过泵1107和主动阀1108将水从可再填充水箱1102输送到储水器1110的管道1106。在一些示例中,储水器1110可以被耦合到分离的水位传感器1112,该水位传感器1112可以由耦合到加湿器部件的控制器监视,以防止过量的水从可再填充水箱1102被泵送到储水器1110。在一些示例中,储水器1110可以包括溢流装置1114,溢流装置1114将过量的水输送到耦合到泄漏传感器1118的排水盘(drain pan)1116。泄漏传感器1118可以指示何时过量的水被存储在储水器1110中,导致水通过溢流装置1114流入到排水盘1116中。
在一些示例中,储水器1110可以被耦合到可以加热储水器1110中的水以产生水蒸气的热水器1120和1122。风扇1124可以将环境空气或气体吹送通过空气加热器1126、储水器1110的顶部以及通过分离的空气加热器1128或使环境空气或气体循环。风扇1124可以将水蒸气从储水器1110的顶部输送到容器子系统1130中。例如,风扇1124可以迫使水蒸气进入到动力部件1132中,从而经由文丘里管1136将水蒸气提供给新材料容器1134。文丘里管1136可以测量通过管道线路的流量。类似地,风扇1124可以迫使水蒸气进入到动力部件1138中,从而经由文丘里管1142将水蒸气提供给再循环材料容器1140。
在一些示例中,风扇1124可以从肺1144A接收环境空气或气体。肺1144A可以从容纳3D打印机部件的3D打印机外壳的外部的外部位置提供环境空气或任何合适的气体或气体的混合物。
在图11B中,加湿器系统1100B可以包括上面讨论的图11A的加湿器部件1102-1142。加湿器系统1100B的风扇1124可以从3D打印机外壳内的至少一个源提供环境空气或混合物或气体。例如,源A和源B 1146B的组合可以从3D打印机的构建外壳、从用于存储构建材料的容器以及诸如此类提供环境空气或气体的混合物。
在图11C中,加湿器系统1100C可以包括上面讨论的图11A的加湿器部件1102-1142。加湿器系统1100C的风扇1124可以经由壳式热交换器1148C从3D打印机外壳内的至少一个源提供环境空气或混合物或气体。例如,源A和源B 1150C的组合可以从3D打印机的构建外壳、从用于存储构建材料的容器以及诸如此类提供环境空气或气体的混合物。壳式热交换器1148C可以从源A和源B 1150C的组合过滤任何松散的构建材料,诸如粉末,以向风扇1124提供没有松散的构建材料的暖空气。在一些示例中,肺1152C还可以向风扇1124提供环境空气。在一些示例中,壳式热交换器1148C可以从系统中的热源移除松散的构建材料并将热量从热源传递给气体,其中风扇1124将热交换器1148C的第二侧上的第二加热气体或调节流体吹过湿度发生器并吹入到至少一个容器中。
图12、13、14和15是将过量的蒸气从存储构建材料的容器输送到容器的外部的位置的示例。在图12中,3D打印机1200可以包括动力部件1202,诸如鼓风机或风扇,其可以通过文丘里管1204向容器1206提供环境空气、气体或气体的混合物。容器1206可以存储任何合适的构建材料,诸如再循环的构建材料、非再循环的或新的构建材料、回收的材料以及诸如此类。在一些示例中,动力部件1202向容器1206提供包括水蒸气的调节的空气。在一些示例中,过量的水蒸气可能积聚在容器1206的顶部中。管道1208可以将过量的蒸气从容器1206的顶部输送到3D打印机1200的产品壁(product wall)1210以外的位置。因此,管道1208可以将过量的水蒸气输送到3D打印机1200的外部的位置。
在图13中,3D打印机1300可以包括动力部件1302,诸如鼓风机或风扇,其可以通过文丘里管1304向容器1306提供环境空气、气体或气体的混合物。容器1306可以存储任何合适的构建材料,诸如再循环的构建材料、非再循环的或新的构建材料、回收的材料以及诸如此类。在一些示例中,风扇1308可以将排出的水蒸气1310分散在3D打印机1300的产品壁1312内。例如,风扇1308可以提供与排出的水蒸气1310混合的环境空气或气体,以将排出的水蒸气分散在3D打印机1300内。
在图14中,3D打印机1400可以包括动力部件1402,诸如鼓风机或风扇,其可以通过文丘里管1404向容器1406提供环境空气、气体或气体的混合物。容器1406可以存储任何合适的构建材料,诸如再循环的构建材料、非再循环的或新的构建材料、回收的材料以及诸如此类。在一些示例中,管道1408可以将过量的水蒸气输送到三向阀1412,该三向阀1412可以将来自其他源的空气与排出的水蒸气混合,并将混合物提供给风扇1402。在一些示例中,空气的其他源可以包括肺、加湿器系统以及诸如此类。因此,管道1408可以在3D打印机1400内再循环过量的水蒸气,而不允许过量的水蒸气逸出产品壁1414。
在图15中,3D打印机1500可以包括动力部件1502,诸如鼓风机或风扇,其可以通过文丘里管1504向容器1506提供环境空气、气体或气体的混合物。容器1506可以存储任何合适的构建材料,诸如再循环的构建材料、非再循环的或新的构建材料、回收的材料以及诸如此类。在一些示例中,相对湿度传感器1508可以驻留在容器1506的顶部附近。相对湿度传感器1508可以检测离开容器1506的顶部的过量水蒸气1510的量。3D打印机1500中的控制器(未描绘)可以检测来自相对湿度传感器1508的传感器值,并且可以控制阀1512以调节提供给容器1506的调节空气的量。因此,阀1512可以基于从相对湿度传感器1508检测到的传感器值来减少或增加容器1506内的水蒸气1510的量。在一些示例中,控制器可以响应于过量蒸气1510的湿度水平中的变化来调节施加到进入阀1512的气体的调节剂的量。例如,可以增加或减小提供给阀1512的调节空气的湿度水平。在一些示例中,过量的水蒸气在产品壁1514内循环。
图16是根据示例的示例过程流程图。当诸如图18的控制器1800或图4的控制器312之类的控制器可以检测3D打印机中的多个容器时,该方法开始于框1602处。例如,在3D打印机中可以包括任何合适数量的容器,用于存储再循环的构建材料、非再循环的构建材料或回收的构建材料。在一些示例中,3D打印机可以包括用于每种类型的构建材料的多个容器。
在框1604处,控制器可以检测对应于驻留在多个容器中的每个容器中的构建材料的水分含量水平。例如,控制器可以从相对湿度和温度传感器检测指示存储在容器中的构建材料的水分含量水平的传感器值。在一些示例中,每个容器中的构建材料的水分含量水平可以是不同的。
在框1606处,控制器可以检测要添加到施加到每个容器的气体的调节剂的量,该量导致气体和调节剂的预定湿度水平。例如,控制器可以检测要施加到每个容器的气体和调节剂的湿度水平。在一些示例中,湿度水平可以基于容器内的构建材料的类型。调节剂可以是水蒸气或增加容器内湿度的任何其他合适的液体或气体。如上面关于图4和图5所描述的那样,可以通过加湿器发生器将调节剂添加到气体,该加湿器发生器加热水以将水蒸气提供给被施加到容器的气体。在一些示例中,已经从构建外壳再循环的构建材料可以与尚未进入构建外壳的新构建材料存储在分离的容器中。在一些示例中,每种类型的构建材料可以借助气体接收不同水平的湿度。
在框1608处,控制器可以检测加湿器发生器或多个加湿器发生器的组合以向每个容器提供调节剂和气体。如上面关于图7所讨论的那样,每个容器可以被连接到任何合适数量的加湿器发生器。因此,可以将来自每个加湿器发生器的调节剂和气体的混合物施加到每个容器。另外,在一些示例中,还可以向每个容器提供环境空气。来自每个加湿器发生器的环境空气和调节剂以及气体的混合物可以向每个容器提供预定的湿度水平。
在框1610处,控制器可以调节施加到每个容器的气体和调节剂的湿度水平和/或温度,其中该湿度水平和温度基于驻留在每个容器中的构建材料的水分含量水平和温度。在一些示例中,控制器可以独立地控制空气湿度和温度。例如,任何合适数量的阀,诸如图6的三向阀,可以将环境空气和气体与调节剂混合,并将混合物提供给每个容器。在一些示例中,基于容器中构建材料的类型,每个容器可以接收环境空气和气体与调节剂的不同的混合物。在一些示例中,将气体和调节剂以低于流化速率的速率施加到每个容器。如本文中所引用的流化速率可以指示进入容器的气体的速率,该速率导致容器内的构建材料表现为流体。在一些示例中,气体可以从任何合适数量的点进入容器,并且气体可以被引入到构建材料而不移位构建材料。在一些示例中,流化速率指示开始移位容器中的构建材料的气体的速率。
在框1612处,控制器可以监视构建材料的水分含量水平和温度,以确定是否要改变气体和调节剂的湿度水平和温度。例如,相对湿度和温度传感器可以驻留在每个容器的顶部处以指示逸出容器的蒸气的量。如上面关于图15所讨论的那样,阀可以控制进入到容器中的调节剂和气体的流动以将蒸气维持在固定范围内。
在框1614处,控制器可以确定是否要改变气体和调节剂的湿度水平和温度。例如,可以通过任何合适数量的热水器以及诸如此类来调节气体的湿度水平和温度。在一些示例中,如果容器中的构建材料的水分含量水平不在预定范围内,则要改变气体和调节剂的湿度水平和温度。如果要改变气体和调节剂的湿度水平和温度,则过程返回到框1610。如果不改变气体和调节剂的湿度水平和温度,则过程在框1616处继续。
在框1616处,控制器可以检测将构建材料从每个容器运送到构建外壳的输送管道内的湿度水平。例如,HTA系统可以向在容器和构建外壳之间运送构建材料的输送管道提供湿度。如图4中图示的那样,HTA系统可以包括可以将水蒸气提供给输送管道的热水器。
在框1618处,控制器可以确定是否要调节输送管道线路的湿度水平以减少构建材料的摩擦充电。例如,可以增加湿度水平以减少摩擦充电,或如果输送管道中积聚了过量的水分,则降低湿度水平。如果要降低输送管道的湿度水平,则过程在框1620处继续。如果不降低输送管道的湿度水平,则过程在框1622处继续。在框1620处,控制器可以调节HTA以改变提供给输送管道线路的湿度或水蒸气的量,使得构建材料水分含量水平在预定范围内。
在框1622处,响应于检测到驻留在至少一个容器中的构建材料的水分含量水平在预定范围内,控制器可以初始化用来自多个容器中的至少一个的构建材料来制造三维物体。例如,控制器可以确定要在三维打印机的构建外壳中用新构建材料和再循环构建材料的任何组合来制造三维物体。控制器可以确定新构建材料、再循环构建材料和/或回收构建材料的水分含量水平在预定范围内。因此,控制器可以确定可以用新构建材料、再循环构建材料和/或回收构建材料制造三维物体而没有摩擦充电效应。
图17是根据示例的示例过程流程图。当控制器可以针对至少一个容器检测对应于驻留在至少一个容器中的构建材料的水分含量水平时,该方法开始于框1702处。在一些示例中,除了其他物质之外,构建材料可以包括可以被用于制造三维物体的任何合适的粉末。例如,构建材料可以是具有狭窄大小分布的粒状材料,诸如珠,或其他形状的小固体,其可以在气流中流动和输送。如上面讨论的那样,作为构建材料的“粉末”可以例如指代粉末或粉末状的材料,其可以经由能量源被分层和烧结,或者经由熔断剂被熔断,或在3D打印作业中经由熔断剂和能量源被熔断。在一些示例中,可以使用化学粘合剂(诸如溶剂粘合剂或反应促进剂)将构建材料形成为形状。除了其他类型的构建材料之外,构建材料还可以是例如半结晶热塑性材料、金属材料、塑料材料、复合材料、陶瓷材料、玻璃材料、树脂材料或聚合物材料。
在一些示例中,水分含量水平可以指示构建材料的渗透率或流速,其导致气体穿过构建材料。在一些示例中,水分含量水平由驻留在容器的底部处的相对湿度传感器检测。每个容器中的构建材料可以具有不同的水分含量水平。
在框1704处,控制器可以调节施加到容器的气体和调节剂的湿度水平和温度,其中湿度水平和温度基于驻留在容器中的构建材料的水分含量水平和温度。在一些示例中,容器可以包括在容器的底部中的温度传感器,以除了由相对湿度传感器检测的构建材料的相对湿度之外还检测构建材料的温度。在一些示例中,湿度传感器可以测量空气的相对湿度。可以基于构建材料的表征(诸如温度、渗透率以及诸如此类)来推断构建材料的水分含量。在一些示例中,调节剂可以是水蒸气或任何其他合适的液体蒸气,其导致每个容器中的湿度水平的增加或降低。因此,与调节剂组合的气体可以导致改变存储在容器中的构建材料的水分含量水平和温度。
在一些示例中,气体的湿度水平和温度基于增加构建材料的水分含量水平的时间。例如,控制器可以在最小的时间段内将具有特定湿度水平的气体施加到容器,以导致构建材料达到目标水分含量水平。在一些示例中,水分含量水平对应于在一定时间段内进入容器的湿度的量,该量导致构建材料的水分含量达到目标水平。
在框1706处,响应于检测到驻留在至少一个容器中的构建材料的水分含量水平在预定范围内,控制器可以初始化用来自容器的构建材料来制造三维物体。在一些示例中,控制器可以响应于检测到容器内积聚的过量的蒸汽而将气体和调节剂的湿度水平调节到较低的湿度水平。例如,控制器可以减少与气体一起进入容器的水分的量,以防止过量的蒸气积聚在容器的顶部内。因此,控制器可以在三维物体的制造期间改变施加到容器的气体的湿度水平,以确保构建材料具有在预定范围内的水分含量水平。
图18是根据示例的用于操作3维打印机的示例控制器。控制器1800可以是3D打印机的主控制器的部分。
控制器1800可以包括处理器1802,其可以是微处理器、多核处理器、多线程处理器、超低电压处理器、嵌入式处理器或其他类型的处理器。处理器1802可以是集成微控制器,其中处理器1802和其他部件被形成在单个集成电路板或单个集成电路(诸如片上系统(SoC))上。作为示例,处理器1802可以包括来自加利福尼亚州圣克拉拉的Intel®公司的处理器,诸如QuarkTM、AtomTM、i3、i5、i7或MCU级处理器。可以被使用的其他处理器可以从加利福尼亚州森尼韦尔的Advanced Micro Devices公司(AMD)获得,基于MIPS的设计从加利福尼亚州森尼韦尔的MIPS技术公司获得,基于ARM的设计从ARM控股有限公司或其客户或他们的许可方或采用方获得许可。处理器可以包括诸如来自Apple®公司的A5-A10处理器、来自Qualcomm®技术公司的SnapdragonTM处理器或来自Texas Instruments公司的OMAPTM处理器之类的单元。
处理器1802可以通过总线1806与系统存储器1804通信。可以使用任何数量的存储器设备来提供给定量的系统存储器。存储器可以被大小设置(size)为在大约2 GB和大约64GB之间,或者更大。系统存储器1804可以使用非易失性存储器设备来实现,以防止功率损耗,诸如静态RAM(SRAM),或者具有例如来自电池、超级电容器或混合系统的备用功率的存储器模块。
诸如数据、应用、操作系统等等的信息的持久存储可以由通过总线1806耦合到处理器1802的大容量存储设备1808来执行。大容量存储设备1808可以使用固态驱动器(SSD)来实现。可以被用于大容量存储设备1808的其他设备包括诸如SD卡、microSD卡、xD图片卡以及诸如此类的闪存卡以及USB闪存驱动器。在一些示例中,控制器1800可以具有可访问的接口,诸如USB连接、SD卡插槽或微SD插槽,用于具有构建计划、指令以及诸如此类的存储器设备的所有插入。
在一些示例中,大容量存储设备1808可以使用硬盘驱动器(HDD)或微HDD来实现。在针对大容量存储设备1808的示例中可以使用任何数量的其他技术,除了其他之外,诸如电阻变化存储器、相变存储器、全息存储器或化学存储器。
该部件可以通过总线1806通信。总线1806可以包括任何数量的技术,诸如工业标准架构(ISA)、扩展的ISA(EISA)、外围部件互连(PCI)、外围部件互连扩展(PCIx)、PCIexpress(PCIe)或任何数量的其他技术。总线1808可以包括例如在基于SoC的系统中使用的专有总线技术。除了其他之外,可以包括其他总线系统,诸如I2C接口、I3C接口、SPI接口、点对点接口和电源总线。可以包括网络接口控制器(NIC)1810,以提供与云1812或网络(诸如局域网(LAN)、广域网(WAN)或因特网)的通信。
总线1806可以将处理器1802耦合到被用于连接到3D打印机中的其他设备的接口1814和1816。例如,传感器接口1814可以被用于耦合到闩锁传感器1816以检测构建材料贮存器是否被闩锁在供应站中,并且耦合到位置传感器1818以检测构建材料贮存器是否在供应站中的基本位置中。在示例中可能存在的其他传感器包括重量传感器1820,以确定各种贮存器或容器的重量,除了其他之外,所述贮存器或容器诸如供应站、新材料容器、再循环材料容器或回收材料容器。水位传感器1822可以被耦合到传感器接口1814,以监视各种容器中的构建材料的水平,除了其他之外,所述容器诸如新材料容器、再循环材料容器或回收材料容器。
可以包括致动器接口1816以控制3D打印机中的各种致动器。致动器可以包括:闩锁电机1824,用于从供应站释放构建材料贮存器;以及读取器电机1826,用于朝向和远离构建材料贮存器上的信息芯片移动读取头。驱动电机1828可以被用于旋转保持构建材料贮存器的圆柱形保持架。驱动电机1828可以是步进电机、服务器电机或其他种类的电机,其具有由供应的功率信号控制的旋转,从而允许通过致动来控制总旋转中的每分钟转数。在一些示例中,传感器可以被用于确定转数,例如,位置传感器1818可以被用于对新供应站或再循环供应站中的圆柱形保持架的转数计数。致动接口1816还可以耦合到门锁1830,门锁1830可以被用于将门锁定,以防止当构建材料贮存器正在被移动时访问构建材料贮存器。
串行外围接口(SPI)1832可以被耦合到读取头1834,以用于与信息芯片对接。其他类型的接口也可以被用于读取信息芯片,诸如双线I2C串行总线。在一些示例中,可以通过RFI系统访问信息芯片。
尽管未示出,但是各种其他输入/输出(I/O)设备可以存在于控制器1800内或连接到控制器1800。例如,可以包括显示面板以示出信息,诸如构建信息、动作提示、不正确的材料的警告、或关于门、构建材料贮存器的状态的消息以及诸如此类。可以包括可听警报以向用户警告状况。可以包括输入设备,诸如触摸屏或小键盘,以接受输入,诸如关于新构建的指令以及诸如此类。
大容量存储设备1808可以包括用于控制供应站的模块,如本文中所描述的那样。尽管在大容量存储设备1808中被示出为代码块,但是可以理解的是,模块中的任何模块可以完全或部分地在硬连线电路中实现,例如,内置在专用集成电路(ASIC)中。所述模块通常可以被用于实现关于图16和图17描述的功能。
在一些示例中,水分含量模块1836可以实现用于针对多个容器检测对应于驻留在多个容器中的每个中的构建材料的水分含量水平的通用功能。在一些示例中,湿度模块1838可以调节施加到每个容器的气体和调节剂的湿度水平和温度,其中湿度水平和温度基于驻留在每个容器中的构建材料的水分含量水平和温度。
可以存在其他功能,包括例如构建模块1842。构建模块1842可以指导用于形成3D物体的构建程序。例如,构建模块1842可以响应于检测到驻留在至少一个容器中的构建材料的水分含量水平在预定范围内而初始化用来自多个容器中的至少一个容器的构建材料来制造三维物体。
图19是根据示例的附接到3维打印机的非暂时性机器可读介质的框图。相同编号的条目如关于先前的图所描述的那样。非暂时性机器可读介质1900可以实现图18的控制器1800的功能。例如,三维打印机的控制系统中的处理器1902可以访问非暂时性机器可读介质1900,如由箭头1904所指示的那样。
非暂时性机器可读介质1900可以包括代码1906,以指导处理器1902实现水分含量程序1906,诸如针对多个容器检测对应于驻留在多个容器中的每个容器中的构建材料的水分含量水平。非暂时性机器可读介质1900还可以包括用于湿度程序1908的参数,其可以包括调节施加到每个容器的气体和调节剂的湿度水平和温度,其中湿度水平和温度基于驻留在每个容器中的构建材料的水分含量水平和温度。
非暂时性机器可读介质1900还可以包括用于构建程序1910的参数,其可以包括响应于检测到驻留在至少一个容器中的构建材料的水分含量水平在预定范围内,初始化用来自多个容器中的至少一个容器的构建材料来制造三维物体。
其他参数和程序也可以被存储在非暂时性机器可读介质1900上。例如,非暂时性机器可读介质1900可以包括构建材料贮存器中的构建材料的材料类型。
虽然本技术可能容易受各种修改和替代形式的影响,但是已经通过示例的方式示出了以上讨论的示例。要理解,本技术不旨在限于本文中所公开的特定示例。实际上,本技术包括落在本技术的范围内的所有替代、修改和等同物。

Claims (15)

1.一种用于制造三维物体的系统,包括:
逻辑,用于:
针对至少一个容器,检测对应于驻留在至少一个容器中的构建材料的水分含量水平;
调节施加到至少一个容器的气体和调节剂的湿度水平和/或温度,其中湿度水平和温度基于驻留在至少一个容器中的构建材料的水分含量水平和温度;以及
响应于检测到驻留在至少一个容器中的构建材料的水分含量水平在预定范围内,初始化用来自至少一个容器的构建材料来制造三维物体。
2.根据权利要求1所述的系统,其中,所述逻辑用于控制阀以调节进入至少一个容器的调节剂和气体的量。
3.根据权利要求1所述的系统,进一步包括一个或多个湿度发生器,用于连接到至少一个容器,以提供调节剂和气体。
4.根据权利要求1所述的系统,其中,存储容器包括以高湿度存储的构建材料,并且其中以高湿度存储的构建材料被提供给包括用于制造三维物体的构建材料的至少一个容器。
5.根据权利要求1所述的系统,进一步包括储水器,用于向经由单向管道连接到至少一个容器的湿度发生器提供水,其中储水器包括第一水位传感器,并且湿度发生器包括第二水位传感器。
6.根据权利要求1所述的系统,进一步包括风扇,用于使来自系统内的至少一个位置的排气循环,其中,风扇将调节剂和排气吹过湿度发生器并且吹入到至少一个容器中。
7.根据权利要求1所述的系统,进一步包括热交换器的第一侧,以从系统中的热源移除松散的构建材料并将热量从热源传递到气体,并且其中,风扇将第二加热气体或调节剂从热交换器的第二侧吹过湿度发生器并吹入到至少一个容器中。
8.根据权利要求1所述的系统,进一步包括至少一个容器的顶部附近的管道,以将过量的蒸气从至少一个容器输送到系统的外部的位置。
9.根据权利要求1所述的系统,进一步包括驻留在至少一个容器的顶部附近的风扇,以扩散离开至少一个容器的顶部的过量蒸气。
10.根据权利要求1所述的系统,进一步包括至少一个容器的顶部附近的管道,以通过风扇使过量的蒸气再循环到至少一个容器的底部。
11.根据权利要求1所述的系统,进一步包括驻留在至少一个容器的顶部附近的湿度传感器,以检测过量蒸气的湿度水平,并且所述逻辑用于响应于过量蒸汽的湿度水平中的变化来调节施加到气体的调节剂的量。
12.根据权利要求1所述的系统,进一步包括湿度发生器,以向至少一个容器提供调节剂和气体,湿度发生器包括安全溢流装置,以防止气体与调节剂通过安全溢流装置逸出到系统中。
13.根据权利要求1所述的系统,进一步包括加湿器,以向用于将构建材料从至少一个容器输送到第二容器或构建外壳的至少一条气动空气输送线路或在重力下操作的输送线路提供第二调节剂。
14.一种用于制造三维物体的方法,包括:
针对至少一个容器,检测对应于驻留在至少一个容器中的构建材料的水分含量水平;
调节施加到至少一个容器的气体和调节剂的湿度水平和/或温度,其中湿度水平和温度基于驻留在至少一个容器中的构建材料的水分含量水平和温度,其中一个或多个湿度发生器连接到至少一个容器以提供调节剂和气体;以及
响应于检测到驻留在至少一个容器中的构建材料的水分含量水平在预定范围内,初始化用来自至少一个容器的构建材料来制造三维物体。
15.一种用于制造三维物体的三维打印机,包括:
加湿器管理系统,用于调节施加到至少一个容器的气体和调节剂的湿度水平和/或温度,其中湿度水平和温度将基于至少一个容器的构建材料的水分含量水平和温度;以及
控制器,用于针对至少一个容器检测至少一个容器的构建材料的水分含量水平;并且初始化用来自至少一个容器的构建材料制造三维物体。
CN201880088872.4A 2018-04-06 2018-04-06 基于构建材料水分含量水平的三维(3d)物体打印 Active CN111670107B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2018/026523 WO2019194823A1 (en) 2018-04-06 2018-04-06 Three-dimensional (3d) object printing based on a build material moisture content level

Publications (2)

Publication Number Publication Date
CN111670107A CN111670107A (zh) 2020-09-15
CN111670107B true CN111670107B (zh) 2022-06-07

Family

ID=68101198

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201880088872.4A Active CN111670107B (zh) 2018-04-06 2018-04-06 基于构建材料水分含量水平的三维(3d)物体打印

Country Status (4)

Country Link
US (1) US11305491B2 (zh)
EP (1) EP3713742A4 (zh)
CN (1) CN111670107B (zh)
WO (1) WO2019194823A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113102777B (zh) * 2021-03-29 2022-12-06 西北工业大学 一种提高下送粉金属增材制造粉末利用率的装置及方法
DE102022102449A1 (de) * 2022-02-02 2023-08-03 Dmg Mori Additive Gmbh Vorrichtung und Verfahren zur Herstellung von Bauteilen unter Berücksichtigung von inline-ermittelten Fließeigenschaften eines Pulvers

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE20122639U1 (de) * 2001-02-07 2006-11-16 Eos Gmbh Electro Optical Systems Vorrichtung zum Herstellen eines dreidimensionalen Objekts
CN101842222A (zh) * 2008-05-21 2010-09-22 Eos有限公司电镀光纤系统 由粉末材料分层制造三维物体的方法和装置
CN102015531A (zh) * 2008-05-16 2011-04-13 电气化学工业株式会社 无定形二氧化硅质粉末、其制造方法以及用途
CN206273591U (zh) * 2016-07-11 2017-06-23 鹏码实业(上海)有限公司 一种可调整工作仓温度的3d打印机
EP3281729A1 (en) * 2016-08-12 2018-02-14 SLM Solutions Group AG Powder delivery device and powder delivery method for providing raw material powder to a powder application device of a powder bed fusion apparatus

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6007318A (en) 1996-12-20 1999-12-28 Z Corporation Method and apparatus for prototyping a three-dimensional object
EP1594679B1 (de) 2003-02-18 2010-04-14 Daimler AG Beschichtete pulverpartikel für die herstellung von dreidimensionalen körpern mittels schichtaufbauender verfahren
DE10306887A1 (de) * 2003-02-18 2004-08-26 Daimlerchrysler Ag Verfahren zur Beschichtung von Partikeln für generative rapid prototyping Prozesse
US7239246B2 (en) * 2004-01-29 2007-07-03 Touridan Corporation System and method for detecting water leakage
US9723866B2 (en) 2004-08-11 2017-08-08 Cornell University System and method for solid freeform fabrication of edible food
DE102011105688A1 (de) 2011-06-22 2012-12-27 Hüttenes-Albertus Chemische Werke GmbH Verfahren zum schichtweisen Aufbau von Modellen
AU2013313053B2 (en) * 2012-09-05 2015-04-30 Aprecia Pharmaceuticals LLC Three-dimensional printing system and equipment assembly
US9738095B2 (en) 2013-01-11 2017-08-22 Ceraloc Innovation Ab Digital printing with transparent blank ink
GB201315036D0 (en) * 2013-08-22 2013-10-02 Renishaw Plc Apparatus and method for building objects by selective solidification of powder material
DE102014004692A1 (de) 2014-03-31 2015-10-15 Voxeljet Ag Verfahren und Vorrichtung für den 3D-Druck mit klimatisierter Verfahrensführung
KR101795994B1 (ko) 2014-06-20 2017-12-01 벨로3디, 인크. 3차원 프린팅 장치, 시스템 및 방법
DE102014018579A1 (de) 2014-12-17 2016-06-23 Voxeljet Ag Verfahren zum Herstellen dreidimensionaler Formteile und Einstellen des Feuchtegehaltes im Baumaterial
US10792908B2 (en) 2015-12-31 2020-10-06 Evolve Additive Solutions, Inc. Systems and methods for electrophotography-based additive manufacturing of parts

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE20122639U1 (de) * 2001-02-07 2006-11-16 Eos Gmbh Electro Optical Systems Vorrichtung zum Herstellen eines dreidimensionalen Objekts
CN102015531A (zh) * 2008-05-16 2011-04-13 电气化学工业株式会社 无定形二氧化硅质粉末、其制造方法以及用途
CN101842222A (zh) * 2008-05-21 2010-09-22 Eos有限公司电镀光纤系统 由粉末材料分层制造三维物体的方法和装置
CN206273591U (zh) * 2016-07-11 2017-06-23 鹏码实业(上海)有限公司 一种可调整工作仓温度的3d打印机
EP3281729A1 (en) * 2016-08-12 2018-02-14 SLM Solutions Group AG Powder delivery device and powder delivery method for providing raw material powder to a powder application device of a powder bed fusion apparatus

Also Published As

Publication number Publication date
EP3713742A1 (en) 2020-09-30
CN111670107A (zh) 2020-09-15
US20210069987A1 (en) 2021-03-11
WO2019194823A1 (en) 2019-10-10
US11305491B2 (en) 2022-04-19
EP3713742A4 (en) 2021-06-23

Similar Documents

Publication Publication Date Title
EP3615309B1 (en) Three-dimensional printer with feeders
CN111670107B (zh) 基于构建材料水分含量水平的三维(3d)物体打印
CN111491779A (zh) 清空构建设备中的器皿
US11318682B2 (en) Three-dimensional (3D) object printing based on build material permeability
US20200223210A1 (en) A latch mechanism for securing a build material container
JP6935010B2 (ja) 3次元プリンター用造形材料容器
US11673331B2 (en) Supply station for dispensing build material
US20210291448A1 (en) Valve mechanism for coupling to a build material container
US20210276261A1 (en) Operating a supply station in a three-dimensional (3d) printer
US11541602B2 (en) Controlling moisture content of build material in a three-dimensional (3D) printer
US11904548B2 (en) Varying the composition of build materials used for a three dimensional part
US11465342B2 (en) Three-dimensional printer
US20210023785A1 (en) Controlling moisture content of build material in a threedimensional (3d) printer
WO2019070273A1 (en) READING MECHANISM FOR INTERFACING WITH AN INFORMATION CHIP
WO2019070279A1 (en) ELASTIC JOINT IN A VALVE MECHANISM IN A POWER STATION

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant