CN111667112A - Fishery resource abundance gray prediction model optimization method and application thereof - Google Patents
Fishery resource abundance gray prediction model optimization method and application thereof Download PDFInfo
- Publication number
- CN111667112A CN111667112A CN202010497152.2A CN202010497152A CN111667112A CN 111667112 A CN111667112 A CN 111667112A CN 202010497152 A CN202010497152 A CN 202010497152A CN 111667112 A CN111667112 A CN 111667112A
- Authority
- CN
- China
- Prior art keywords
- model
- october
- surface temperature
- prediction model
- resource abundance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 44
- 238000005457 optimization Methods 0.000 title claims abstract description 19
- 238000004458 analytical method Methods 0.000 claims abstract description 7
- 229930002875 chlorophyll Natural products 0.000 claims description 72
- 235000019804 chlorophyll Nutrition 0.000 claims description 72
- ATNHDLDRLWWWCB-AENOIHSZSA-M chlorophyll a Chemical compound C1([C@@H](C(=O)OC)C(=O)C2=C3C)=C2N2C3=CC(C(CC)=C3C)=[N+]4C3=CC3=C(C=C)C(C)=C5N3[Mg-2]42[N+]2=C1[C@@H](CCC(=O)OC\C=C(/C)CCC[C@H](C)CCC[C@H](C)CCCC(C)C)[C@H](C)C2=C5 ATNHDLDRLWWWCB-AENOIHSZSA-M 0.000 claims description 72
- 230000010355 oscillation Effects 0.000 claims description 27
- 241000251468 Actinopterygii Species 0.000 claims description 13
- 241000238366 Cephalopoda Species 0.000 claims description 10
- 238000013480 data collection Methods 0.000 claims description 6
- 230000015654 memory Effects 0.000 claims description 6
- 238000010219 correlation analysis Methods 0.000 claims description 3
- 230000035939 shock Effects 0.000 claims 9
- 230000007547 defect Effects 0.000 abstract description 5
- 238000004519 manufacturing process Methods 0.000 description 9
- 238000010586 diagram Methods 0.000 description 5
- 230000007613 environmental effect Effects 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 238000012795 verification Methods 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000012417 linear regression Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000010200 validation analysis Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/04—Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/02—Agriculture; Fishing; Forestry; Mining
Landscapes
- Engineering & Computer Science (AREA)
- Business, Economics & Management (AREA)
- Human Resources & Organizations (AREA)
- Economics (AREA)
- Strategic Management (AREA)
- Physics & Mathematics (AREA)
- Tourism & Hospitality (AREA)
- Theoretical Computer Science (AREA)
- Marketing (AREA)
- General Physics & Mathematics (AREA)
- General Business, Economics & Management (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Husbandry (AREA)
- Quality & Reliability (AREA)
- Operations Research (AREA)
- Entrepreneurship & Innovation (AREA)
- Game Theory and Decision Science (AREA)
- Agronomy & Crop Science (AREA)
- Development Economics (AREA)
- Marine Sciences & Fisheries (AREA)
- Mining & Mineral Resources (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Primary Health Care (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
- Farming Of Fish And Shellfish (AREA)
Abstract
本发明公开了一种渔业资源丰度灰色预测模型优化方法及其应用,步骤为:优选CPUE序列作为建立资源丰度灰色预测模型的标准序列;针对标准序列利用灰色关联分析的方法,算得资源丰度的影响因子的灰色关联度并选取灰色关联度大的影响因子作为资源丰度灰色预测模型的因子;利用离散GM模型,采用选取的因子建立资源丰度灰色预测模型,建立的资源丰度灰色预测模型包括GM(0,N)模型和GM(1,N)模型;对各预测模型进行有效性分析,选取相对误差最小的模型为最优预测模型。本发明的预测方法,优选CPUE序列克服了目前灰色系统模型预测稳定性较差的缺陷;建立了不同阶数的GM模型,并从中优选得到最优预测模型,提高了预测精度。
The invention discloses an optimization method for a grey prediction model of fishery resource abundance and an application thereof. The steps are: selecting a CPUE sequence as a standard sequence for establishing a grey prediction model of resource abundance; using a grey relational analysis method for the standard sequence to calculate resource abundance The gray correlation degree of the influencing factors of high degree of gray correlation is selected as the factor of the gray prediction model of resource abundance; using the discrete GM model, the selected factors are used to establish the gray prediction model of resource abundance, and the established resource abundance gray prediction model The prediction models include GM(0,N) model and GM(1,N) model; the validity of each prediction model is analyzed, and the model with the smallest relative error is selected as the optimal prediction model. In the prediction method of the present invention, the CPUE sequence is optimized to overcome the defect of poor prediction stability of the current gray system model; GM models of different orders are established, and the optimal prediction model is obtained from them, thereby improving the prediction accuracy.
Description
技术领域technical field
本发明属于远洋渔汛预测技术领域,涉及一种渔业资源丰度灰色预测模型优化方法及其应用,特别涉及一种基于环境因子的渔业资源丰度灰色预测模型优化方法及其应用。The invention belongs to the technical field of pelagic fishing flood forecasting, and relates to an optimization method for a grey prediction model of fishery resource abundance and its application, in particular to an optimization method for a grey prediction model of fishery resource abundance based on environmental factors and its application.
背景技术Background technique
中上层鱼类是重要的经济种类,其资源丰度变化与气候和海洋环境等因子关系极为密切。资源丰度预测是渔情预报中的主要预报内容之一,科学预测资源量和评估资源丰度有利于渔业资源的可持续利用和科学管理。建立渔情预报模型,尤其是年间资源丰度的预测,通常会遇到样本量过少,以及涉及预报的环境因子过多的问题,这两个问题是建立资源丰度预测模型的难点所在。Pelagic fish is an important economic species, and its resource abundance changes are closely related to factors such as climate and marine environment. Resource abundance prediction is one of the main forecast contents in fishery forecasting. Scientific prediction of resource quantity and assessment of resource abundance are beneficial to the sustainable utilization and scientific management of fishery resources. The establishment of a fishery forecast model, especially the prediction of resource abundance between years, usually encounters the problems of too few samples and too many environmental factors involved in the forecast. These two problems are the difficulties in establishing a resource abundance prediction model.
灰色系统理论是一门不确定系统理论的学科,相对于其他研究方法(多元线性回归、多元非线性回归和栖息地指数),其优点在于允许样本数量较少且服从任意分布。目前,此方法虽然已在一些经济种类的资源丰度预测方面得到了应用,但是依然存在预测精度不高、稳定性较差等问题。Compared with other research methods (multiple linear regression, multiple nonlinear regression and habitat index), grey system theory is a subject of uncertain system theory, which has the advantage of allowing a small number of samples and obeying arbitrary distributions. At present, although this method has been applied in the prediction of resource abundance of some economic species, there are still problems such as low prediction accuracy and poor stability.
因此,开发一种预测精度高且稳定性高的基于灰色系统理论的资源丰度预测方法极具现实意义。Therefore, it is of great practical significance to develop a resource abundance prediction method based on grey system theory with high prediction accuracy and high stability.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于克服现有技术预测精度不高且稳定性较差的缺陷,提供一种预测精度高且稳定性高的基于灰色系统理论的资源丰度预测方法。The purpose of the present invention is to overcome the defects of low prediction accuracy and poor stability in the prior art, and to provide a resource abundance prediction method based on grey system theory with high prediction accuracy and high stability.
为实现上述目的,本发明提供如下技术方案:To achieve the above object, the present invention provides the following technical solutions:
一种渔业资源丰度灰色预测模型优化方法,应用于电子设备,步骤如下:An optimization method for a grey prediction model of fishery resource abundance, which is applied to electronic equipment, and the steps are as follows:
(1)针对时间段A内海域B鱼类C的CPUE序列,截取其中的任意时间段的CPUE序列,对应每个截取的CPUE序列均建立一GM(1,1)模型,共建立m个GM(1,1)模型,分别计算每个GM(1,1)模型的相对误差,选取相对误差最小的GM(1,1)模型对应的CPUE序列作为建立资源丰度灰色预测模型的标准序列;(1) For the CPUE sequence of fish C in sea area B in time period A, intercept the CPUE sequence of any time period, and establish a GM(1,1) model corresponding to each intercepted CPUE sequence, and establish m GMs in total (1,1) model, calculate the relative error of each GM(1,1) model separately, and select the CPUE sequence corresponding to the GM(1,1) model with the smallest relative error as the standard sequence for establishing the grey prediction model of resource abundance;
(2)针对步骤(1)选取的标准序列,利用灰色关联分析的方法,计算得到资源丰度的影响因子的灰色关联度大小;(2) According to the standard sequence selected in step (1), the gray correlation degree of the influencing factor of resource abundance is calculated by using the method of grey correlation analysis;
(3)选取灰色关联度大的影响因子作为资源丰度灰色预测模型的因子;(3) Select the influencing factor with large grey correlation degree as the factor of resource abundance grey prediction model;
(4)利用离散GM模型,采用步骤(3)选取的因子建立资源丰度灰色预测模型,建立的资源丰度灰色预测模型包括GM(0,N)模型和GM(1,N)模型,GM(0,N)模型和GM(1,N)模型均为线性动态模型,其中GM(1,N)模型为一阶导数计算模型,相比于GM(0,N)模型计算更为复杂,同时构建不同阶的GM预测模型能够为后期优选提供更多的模型,进而从中选取最优模型以提高模型的预测精度;(4) Use the discrete GM model and use the factors selected in step (3) to establish a resource abundance gray prediction model. The established resource abundance gray prediction model includes the GM(0,N) model and the GM(1,N) model. GM The (0,N) model and the GM(1,N) model are both linear dynamic models. The GM(1,N) model is a first-order derivative calculation model, which is more complicated than the GM(0,N) model. Simultaneously constructing GM prediction models of different orders can provide more models for later optimization, and then select the optimal model from them to improve the prediction accuracy of the model;
(5)对步骤(4)得到的预测模型进行有效性分析,有效性分析包括相对误差分析,相对误差是通过比较利用预测模型计算出的CPUE值与真实的CPUE值获得的,选取相对误差最小的模型为最优预测模型。(5) Carry out validity analysis on the prediction model obtained in step (4). The validity analysis includes relative error analysis. The relative error is obtained by comparing the CPUE value calculated by using the prediction model and the real CPUE value, and the smallest relative error is selected. The model is the optimal prediction model.
本发明的渔业资源丰度灰色预测模型优化方法,在进行处理前(建立资源丰度灰色预测模型前)首先对CPUE序列进行优选,截取任意时间段的CPUE序列并建立GM(1,1)模型,选取相对误差最小的GM(1,1)模型对应的CPUE序列作为后续建立资源丰度灰色预测模型的标准序列,一定程度上克服了目前灰色系统模型预测稳定性较差的缺陷,而后在建立资源丰度灰色预测模型时,建立了包含不同影响因子的0阶与1阶的GM预测模型,从不同阶数的多个预测模型中优选其中相对误差最小的模型作为最优预测模型,这能够大大提高了预测模型的精度,为更科学、更有效地渔业生产提供依据。本发明的方法可用于预测海洋中中上层鱼类,其适用性好,能够对海洋渔业生产起到良好的指导作用,能够显著提高捕捞效率,降低捕捞成本,极具应用前景,同时,本发明得到的最优预测模型并不是一成不变的,可根据实时获取的最新数据重新获取最优预测模型,本发明的方法适应性好,应用前景好。In the method for optimizing the grey prediction model of fishery resource abundance of the present invention, before processing (before establishing the grey prediction model of resource abundance), the CPUE sequence is firstly optimized, the CPUE sequence of any time period is intercepted and a GM(1,1) model is established , select the CPUE sequence corresponding to the GM(1,1) model with the smallest relative error as the standard sequence for the subsequent establishment of the gray prediction model of resource abundance, which overcomes the defect of poor prediction stability of the current gray system model to a certain extent. In the grey prediction model of resource abundance, the 0-order and 1-order GM prediction models containing different influencing factors are established, and the model with the smallest relative error is selected as the optimal prediction model from multiple prediction models of different orders. It greatly improves the accuracy of the prediction model and provides a basis for more scientific and efficient fishery production. The method of the invention can be used to predict the middle and pelagic fish in the ocean, has good applicability, can play a good guiding role in marine fishery production, can significantly improve fishing efficiency, reduce fishing cost, and has great application prospects. The obtained optimal prediction model is not static, and the optimal prediction model can be re-obtained according to the latest data obtained in real time. The method of the invention has good adaptability and good application prospect.
作为优选的技术方案:As the preferred technical solution:
如上所述的一种渔业资源丰度灰色预测模型优化方法,所述时间段A为1998~2016年;所述海域B的坐标范围为35°~45°N、140°~179°E;所述鱼类C为北太平洋柔鱼。本发明的保护范围并不仅限于此,仅以该时间段、该海域中的该鱼类为例,本发明的预测方法可以适用于对任意时间段、任意海域内的中上层鱼类的资源丰度预测。In the above-mentioned optimization method for grey prediction model of fishery resource abundance, the time period A is from 1998 to 2016; the coordinate range of the sea area B is 35°~45°N, 140°~179°E; Said fish C is the North Pacific squid. The scope of protection of the present invention is not limited to this, only taking the fish in this time period and in this sea area as an example, the prediction method of the present invention can be applied to the resource abundance of pelagic fish in any time period and in any sea area. Degree prediction.
如上所述的一种渔业资源丰度灰色预测模型优化方法,所述建立资源丰度灰色预测模型的标准序列为1998~2005年,坐标范围为35°~45°N、140°~179°E北太平洋柔鱼的CPUE序列。此处选取的建立资源丰度灰色预测模型的标准序列是基于前述的数据而来的,本领域技术人员可根据实际数据选取合适的CPUE序列作为标准序列。A method for optimizing the grey prediction model of fishery resource abundance as described above, the standard sequence for establishing the grey prediction model of resource abundance is 1998-2005, and the coordinate ranges are 35°~45°N, 140°~179°E CPUE sequences of North Pacific squid. The standard sequence selected here for establishing the grey prediction model of resource abundance is based on the aforementioned data, and those skilled in the art can select the appropriate CPUE sequence as the standard sequence according to the actual data.
如上所述的一种渔业资源丰度灰色预测模型优化方法,步骤(1)得到的多个GM(1,1)模型的相对误差相同且均为最小值,则选取这些模型的方差最小的模型的对应的CPUE序列作为建立资源丰度灰色预测模型的标准序列。In the above-mentioned optimization method for the grey prediction model of fishery resource abundance, the relative errors of the multiple GM(1,1) models obtained in step (1) are the same and are all the minimum values, then the model with the smallest variance of these models is selected The corresponding CPUE sequence is used as the standard sequence for establishing the grey prediction model of resource abundance.
如上所述的一种渔业资源丰度灰色预测模型优化方法,所述资源丰度的影响因子包括太平洋年代际震荡指数(PDO)、产卵场的海表温度(SGSST)、育肥场的海表温度(FGSST)、产卵场的叶绿素浓度(SGC)以及育肥场的叶绿素浓度(FGC)。本发明的保护范围并不仅限于此,此处给定的资源丰度的影响因子仅与北太平洋柔鱼对应,对于其他鱼类,本领域技术人员可根据实际情况合理选取其资源丰度的影响因子。A method for optimizing a fishery resource abundance grey prediction model as described above, the influencing factors of the resource abundance include the Pacific Interdecadal Oscillation Index (PDO), the sea surface temperature of spawning grounds (SGSST), and the sea surface of fattening farms. Temperature (FGSST), chlorophyll concentration in spawning grounds (SGC), and chlorophyll concentration in feedlots (FGC). The scope of protection of the present invention is not limited to this, the impact factor of resource abundance given here only corresponds to the North Pacific squid, and for other fish, those skilled in the art can reasonably select the impact of resource abundance according to the actual situation factor.
如上所述的一种渔业资源丰度灰色预测模型优化方法,所述步骤(2)具体为:以步骤(1)选取的标准序列为母序列,以对应各影响因子为子序列,分别计算各个子序列与母序列的灰色绝对关联度。A method for optimizing a grey prediction model of fishery resource abundance as described above, the step (2) is specifically: taking the standard sequence selected in step (1) as the parent sequence, and taking the corresponding influence factors as the subsequences, respectively calculating the The gray absolute correlation between the subsequence and the parent sequence.
如上所述的一种渔业资源丰度灰色预测模型优化方法,所述资源丰度灰色预测模型的因子分别为10月份育肥场的海表温度(FGSST)、10月份太平洋年代际震荡指数(PDO)、2月份产卵场的海表温度(SGSST)、3月份产卵场的叶绿素浓度(SGC)和8月份育肥场的叶绿素浓度(FGC)。此处及下文提到的预测模型仅仅是以部分数据示范本发明的预测方法的运作逻辑而已,本发明的保护范围并不仅限于此,本领域技术人员可根据实际需要选取合适的数据对资源丰度进行预测,其选取的资源丰度灰色预测模型的因子并不仅限于此5个,当然预测模型的数量也将随着选取的资源丰度灰色预测模型的因子的数量变化而变化。A method for optimizing a grey prediction model of fishery resource abundance as described above, the factors of the grey prediction model for resource abundance are respectively the sea surface temperature (FGSST) of the fattening farm in October and the Pacific Interdecadal Oscillation Index (PDO) in October. , sea surface temperature (SGSST) of spawning grounds in February, chlorophyll concentration (SGC) of spawning grounds in March and chlorophyll concentration (FGC) of feedlots in August. The prediction model mentioned here and below is only to demonstrate the operation logic of the prediction method of the present invention with partial data, and the protection scope of the present invention is not limited to this. The selected factors of the gray prediction model of resource abundance are not limited to these five factors. Of course, the number of prediction models will also change with the number of factors of the selected gray prediction model of resource abundance.
如上所述的一种渔业资源丰度灰色预测模型优化方法,所述建立的资源丰度灰色预测模型包括以下模型:A kind of fishery resource abundance gray prediction model optimization method as above, the described resource abundance gray prediction model established includes the following models:
模型I,包括10月份育肥场的海表温度(FGSST)、10月份太平洋年代际震荡指数(PDO)、2月份产卵场的海表温度(SGSST)、3月份产卵场的叶绿素浓度(SGC)和8月份育肥场的叶绿素浓度(FGC)五个因子的GM(0,6)模型;Model I, including feedlot sea surface temperature (FGSST) in October, Pacific Decadal Oscillation Index (PDO) in October, spawning ground sea temperature in February (SGSST), and spawning ground chlorophyll concentration in March (SGC) ) and the GM(0,6) model of five factors of feedlot chlorophyll concentration (FGC) in August;
模型II,包括10月份育肥场的海表温度(FGSST)、10月份太平洋年代际震荡指数(PDO)、3月份产卵场的叶绿素浓度(SGC)和8月份育肥场的叶绿素浓度(FGC)四个因子的GM(0,5)模型;Model II, including feedlot sea surface temperature (FGSST) in October, Pacific Decadal Oscillation Index (PDO) in October, spawning ground chlorophyll concentration (SGC) in March, and feedlot chlorophyll concentration (FGC) in August four GM(0,5) model of the factors;
模型III,包括10月份太平洋年代际震荡指数(PDO)、2月份产卵场的海表温度(SGSST)、3月份产卵场的叶绿素浓度(SGC)和8月份育肥场的叶绿素浓度(FGC)四个因子的GM(0,5)模型;Model III, including the Pacific Decadal Oscillation Index (PDO) in October, spawning ground sea surface temperature (SGSST) in February, spawning ground chlorophyll concentration (SGC) in March, and feedlot chlorophyll concentration (FGC) in August Four-factor GM(0,5) model;
模型IV,包括10月份育肥场的海表温度(FGSST)、10月份太平洋年代际震荡指数(PDO)、2月份产卵场的海表温度(SGSST)和8月份育肥场的叶绿素浓度(FGC)四个因子的GM(0,5)模型;Model IV, including feedlot sea surface temperature (FGSST) in October, Pacific Decadal Oscillation Index (PDO) in October, spawning ground sea temperature in February (SGSST), and feedlot chlorophyll concentration (FGC) in August Four-factor GM(0,5) model;
模型V,包括10月份育肥场的海表温度(FGSST)、10月份太平洋年代际震荡指数(PDO)、2月份产卵场的海表温度(SGSST)和3月份产卵场的叶绿素浓度(SGC)四个因子的GM(0,5)模型;Model V, including feedlot sea surface temperature (FGSST) in October, Pacific Decadal Oscillation Index (PDO) in October, spawning ground sea temperature in February (SGSST), and spawning ground chlorophyll concentration in March (SGC) ) GM(0,5) model with four factors;
模型VI,包括10月份育肥场的海表温度(FGSST)、2月份产卵场的海表温度(SGSST)、3月份产卵场的叶绿素浓度(SGC)和8月份育肥场的叶绿素浓度(FGC)四个因子的GM(0,5)模型;Model VI, including feedlot sea surface temperature in October (FGSST), spawning ground sea temperature in February (SGSST), spawning ground chlorophyll concentration in March (SGC) and feedlot chlorophyll concentration in August (FGC) ) GM(0,5) model with four factors;
模型VII,包括10月份育肥场的海表温度(FGSST)、10月份太平洋年代际震荡指数(PDO)、2月份产卵场的海表温度(SGSST)、3月份产卵场的叶绿素浓度(SGC)和8月份育肥场的叶绿素浓度(FGC)五个因子的GM(1,6)模型;Model VII, including feedlot sea surface temperature (FGSST) in October, Pacific Decadal Oscillation Index (PDO) in October, spawning ground sea temperature in February (SGSST), and spawning ground chlorophyll concentration in March (SGC) ) and the GM(1,6) model of five factors of feedlot chlorophyll concentration (FGC) in August;
模型VIII,包括10月份育肥场的海表温度(FGSST)、10月份太平洋年代际震荡指数(PDO)、3月份产卵场的叶绿素浓度(SGC)和8月份育肥场的叶绿素浓度(FGC)四个因子的GM(1,5)模型;Model VIII, including feedlot sea surface temperature (FGSST) in October, Pacific Decadal Oscillation Index (PDO) in October, spawning ground chlorophyll concentration (SGC) in March, and feedlot chlorophyll concentration in August (FGC) IV GM(1,5) model of the factors;
模型IX,包括10月份太平洋年代际震荡指数(PDO)、2月份产卵场的海表温度(SGSST)、3月份产卵场的叶绿素浓度(SGC)和8月份育肥场的叶绿素浓度(FGC)四个因子的GM(1,5)模型;Model IX, including October Pacific Decadal Oscillation Index (PDO), spawning ground sea surface temperature (SGSST) in February, spawning ground chlorophyll concentration (SGC) in March, and feedlot chlorophyll concentration (FGC) in August Four-factor GM(1,5) model;
模型X,包括10月份育肥场的海表温度(FGSST)、10月份太平洋年代际震荡指数(PDO)、2月份产卵场的海表温度(SGSST)和8月份育肥场的叶绿素浓度(FGC)四个因子的GM(1,5)模型;Model X, including feedlot sea surface temperature (FGSST) in October, Pacific Decadal Oscillation Index (PDO) in October, spawning ground sea temperature in February (SGSST), and feedlot chlorophyll concentration (FGC) in August Four-factor GM(1,5) model;
模型XI,包括10月份育肥场的海表温度(FGSST)、10月份太平洋年代际震荡指数(PDO)、2月份产卵场的海表温度(SGSST)和3月份产卵场的叶绿素浓度(SGC)四个因子的GM(1,5)模型;Model XI, including feedlot sea surface temperature (FGSST) in October, Pacific Decadal Oscillation Index (PDO) in October, spawning ground sea temperature in February (SGSST), and spawning ground chlorophyll concentration in March (SGC) ) GM(1,5) model with four factors;
模型XII,包括10月份育肥场的海表温度(FGSST)、2月份产卵场的海表温度(SGSST)、3月份产卵场的叶绿素浓度(SGC)和8月份育肥场的叶绿素浓度(FGC)四个因子的GM(1,5)模型。Model XII, including feedlot sea surface temperature in October (FGSST), spawning ground sea temperature in February (SGSST), spawning ground chlorophyll concentration in March (SGC) and feedlot chlorophyll concentration in August (FGC) ) four-factor GM(1,5) model.
如上所述的一种渔业资源丰度灰色预测模型优化方法,模型IV为最优预测模型。在符合本领域常识的基础上,上述各优选条件,可任意组合,即得本发明各较佳实例。In the above-mentioned optimization method for grey prediction model of fishery resource abundance, model IV is the optimal prediction model. On the basis of conforming to common knowledge in the art, the above preferred conditions can be combined arbitrarily to obtain preferred examples of the present invention.
本发明还提供一种电子设备,包括一个或多个处理器、一个或多个存储器、一个或多个程序及数据搜集装置;The present invention also provides an electronic device, comprising one or more processors, one or more memories, one or more programs and a data collection device;
所述数据搜集装置用于获取时间段A内海域B鱼类C的CPUE序列,所述一个或多个程序被存储在所述存储器中,当所述一个或多个程序被所述处理器执行时,使得所述电子设备执行如上所述的一种渔业资源丰度灰色预测模型优化方法。The data collection device is used to obtain the CPUE sequence of the fishes C in the sea area B within the time period A, and the one or more programs are stored in the memory, and when the one or more programs are executed by the processor At the time, the electronic device is made to execute the above-mentioned method for optimizing the grey prediction model of fishery resource abundance.
有益效果:Beneficial effects:
(1)本发明的渔业资源丰度灰色预测模型优化方法,在进行处理前(建立资源丰度灰色预测模型前)首先对CPUE序列进行优选,截取任意时间段的CPUE序列并建立GM(1,1)模型,选取相对误差最小的GM(1,1)模型对应的CPUE序列作为后续建立资源丰度灰色预测模型的标准序列,一定程度上克服了目前灰色系统模型预测稳定性较差的缺陷;(1) In the method for optimizing the grey prediction model of fishery resource abundance of the present invention, before processing (before establishing the grey prediction model of resource abundance), the CPUE sequence is first optimized, the CPUE sequence of any time period is intercepted and the GM (1, 1) Model, the CPUE sequence corresponding to the GM(1,1) model with the smallest relative error is selected as the standard sequence for the subsequent establishment of the gray prediction model of resource abundance, which overcomes the defect of poor prediction stability of the current gray system model to a certain extent;
(2)本发明的渔业资源丰度灰色预测模型优化方法,在建立资源丰度灰色预测模型时,同时建立了包含不同影响因子的0阶与1阶的GM预测模型,从不同阶数的多个预测模型中优选其中相对误差最小的模型作为最优预测模型,这能够大大提高了预测模型的精度,为更科学、更有效地渔业生产提供依据;(2) In the method for optimizing the gray prediction model of fishery resource abundance of the present invention, when establishing the gray prediction model of resource abundance, 0-order and 1-order GM prediction models containing different influencing factors are simultaneously established. Among the prediction models, the model with the smallest relative error is selected as the optimal prediction model, which can greatly improve the accuracy of the prediction model and provide a basis for more scientific and effective fishery production;
(3)本发明的电子设备,结构简单,成本低廉,能够快速实现了对海洋渔业资源丰度的预测。(3) The electronic device of the present invention has simple structure and low cost, and can quickly realize the prediction of the abundance of marine fishery resources.
附图说明Description of drawings
图1为本发明的渔业资源丰度灰色预测模型优化方法的流程示意图;Fig. 1 is the schematic flow sheet of the grey prediction model optimization method of fishery resource abundance of the present invention;
图2为步骤(1)中的多个GM(1,1)模型的相对误差图;Fig. 2 is the relative error diagram of multiple GM(1,1) models in step (1);
图3为步骤(6)中各预测模型平均相对误差对比图;Fig. 3 is the average relative error comparison diagram of each prediction model in step (6);
图4为最优预测模型预测值拟合图;Figure 4 is a fitting diagram of the predicted value of the optimal prediction model;
图5为本发明的电子设备的结构示意图。FIG. 5 is a schematic structural diagram of an electronic device of the present invention.
具体实施方式Detailed ways
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。In order to make the purposes, technical solutions and advantages of the embodiments of the present invention clearer, the technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments These are some embodiments of the present invention, but not all embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative work fall within the protection scope of the present invention.
实施例1Example 1
一种渔业资源丰度灰色预测模型优化方法,如图1所示,具体如下:An optimization method for grey prediction model of fishery resource abundance, as shown in Figure 1, is as follows:
(1)针对1998~2016年,坐标范围为35°~45°N、140°~179°E内北太平洋柔鱼的CPUE(每年的单位捕捞努力量)序列(其中CPUE是根据包括日期、经度、纬度、日产量(单位为吨)和捕捞努力量(单位为船数)在内的1998~2016年,坐标范围为35°~45°N、140°~179°E内北太平洋柔鱼的渔业生产统计数据计算得到的),截取其中的任意时间段的CPUE序列,对应每个截取的CPUE序列均建立一GM(1,1)模型,共建立m个GM(1,1)模型,分别计算每个GM(1,1)模型的相对误差,选取相对误差最小的GM(1,1)模型对应的CPUE序列作为建立资源丰度灰色预测模型的标准序列,如多个GM(1,1)模型的相对误差相同且均为最小值,则选取这些模型的方差最小的模型的对应的CPUE序列作为建立资源丰度灰色预测模型的标准序列,选定的多个GM(1,1)模型的相对误差图如图2所示,因此最终选取1998~2005年,坐标范围为35°~45°N、140°~179°E北太平洋柔鱼的CPUE序列(平均相对误差最小,为6.28%)作为建立资源丰度灰色预测模型的标准序列;(1) CPUE (unit fishing effort per year) sequence of North Pacific squid in the coordinate range of 35°~45°N and 140°~179°E from 1998 to 2016 , latitude, daily production (in tons) and fishing effort (in number of boats) from 1998 to 2016, the coordinates range from 35° to 45°N and 140° to 179°E for the North Pacific squid. fishery production statistics), intercept the CPUE sequence of any time period, and establish a GM(1,1) model corresponding to each intercepted CPUE sequence. A total of m GM(1,1) models are established, respectively. Calculate the relative error of each GM(1,1) model, and select the CPUE sequence corresponding to the GM(1,1) model with the smallest relative error as the standard sequence for establishing the gray prediction model of resource abundance, such as multiple GM(1,1) ) models have the same relative error and are all the minimum values, then select the corresponding CPUE sequence of the model with the smallest variance of these models as the standard sequence for establishing the grey prediction model of resource abundance. Selected multiple GM(1,1) models The relative error map of , is shown in Figure 2. Therefore, the CPUE sequence of the North Pacific squid from 1998 to 2005 with the coordinates ranging from 35° to 45°N and 140° to 179°E was selected (the average relative error was the smallest, 6.28%). ) as the standard sequence for establishing the grey prediction model of resource abundance;
(2)针对步骤(1)选取的标准序列,利用灰色关联分析的方法,计算得到资源丰度的影响因子的灰色关联度大小,具体为以步骤(1)选取的标准序列为母序列,以对应各影响因子为子序列,分别计算各个子序列与母序列的灰色绝对关联度(所得的各影响因子子序列与CPUE母序列的灰色关联系数如表1所示),其中,资源丰度的影响因子包括太平洋年代际震荡指数(PDO)、产卵场的海表温度(SGSST)、育肥场的海表温度(FGSST)、产卵场的叶绿素浓度(SGC)以及育肥场的叶绿素浓度(FGC);(2) For the standard sequence selected in step (1), use the method of gray correlation analysis to calculate the gray correlation degree of the influencing factor of resource abundance. Specifically, the standard sequence selected in step (1) is used as the parent sequence, and the Corresponding to each impact factor as a sub-sequence, the gray absolute correlation degree of each sub-sequence and the parent sequence is calculated respectively (the gray correlation coefficient of each impact factor sub-sequence and the CPUE parent sequence is shown in Table 1). Influencing factors include Pacific Decadal Oscillation Index (PDO), spawning ground sea surface temperature (SGSST), feedlot sea surface temperature (FGSST), spawning ground chlorophyll concentration (SGC) and feedlot chlorophyll concentration (FGC) );
表1各影响因子子序列与CPUE母序列的灰色关联系数Table 1 The grey correlation coefficient of each impact factor subsequence and CPUE parent sequence
(3)由表1可知,灰色关联度大的影响因子为10月份育肥场的海表温度(FGSST)、10月份太平洋年代际震荡指数(PDO)、2月份产卵场的海表温度(SGSST)、3月份产卵场的叶绿素浓度(SGC)和8月份育肥场的叶绿素浓度(FGC),故选定以上影响因子作为资源丰度灰色预测模型的因子;(3) It can be seen from Table 1 that the influencing factors with large gray correlation are the sea surface temperature (FGSST) of the fattening field in October, the Pacific Interdecadal Oscillation Index (PDO) in October, and the sea surface temperature of the spawning ground in February (SGSST). ), the chlorophyll concentration (SGC) of the spawning grounds in March and the chlorophyll concentration (FGC) of the fattening farms in August, so the above influencing factors were selected as the factors of the grey prediction model of resource abundance;
(4)利用离散GM模型,采用步骤(3)选取的因子建立资源丰度灰色预测模型,建立的资源丰度灰色预测模型包括GM(0,N)模型和GM(1,N)模型,具体包括以下模型:(4) Using the discrete GM model and using the factors selected in step (3) to establish a resource abundance gray prediction model, the established resource abundance gray prediction model includes a GM(0,N) model and a GM(1,N) model. Includes the following models:
模型I,包括10月份育肥场的海表温度(FGSST)、10月份太平洋年代际震荡指数(PDO)、2月份产卵场的海表温度(SGSST)、3月份产卵场的叶绿素浓度(SGC)和8月份育肥场的叶绿素浓度(FGC)五个因子的GM(0,6)模型;Model I, including feedlot sea surface temperature (FGSST) in October, Pacific Decadal Oscillation Index (PDO) in October, spawning ground sea temperature in February (SGSST), and spawning ground chlorophyll concentration in March (SGC) ) and the GM(0,6) model of five factors of feedlot chlorophyll concentration (FGC) in August;
模型II,包括10月份育肥场的海表温度(FGSST)、10月份太平洋年代际震荡指数(PDO)、3月份产卵场的叶绿素浓度(SGC)和8月份育肥场的叶绿素浓度(FGC)四个因子的GM(0,5)模型;Model II, including feedlot sea surface temperature (FGSST) in October, Pacific Decadal Oscillation Index (PDO) in October, spawning ground chlorophyll concentration (SGC) in March, and feedlot chlorophyll concentration (FGC) in August four GM(0,5) model of the factors;
模型III,包括10月份太平洋年代际震荡指数(PDO)、2月份产卵场的海表温度(SGSST)、3月份产卵场的叶绿素浓度(SGC)和8月份育肥场的叶绿素浓度(FGC)四个因子的GM(0,5)模型;Model III, including the Pacific Decadal Oscillation Index (PDO) in October, spawning ground sea surface temperature (SGSST) in February, spawning ground chlorophyll concentration (SGC) in March, and feedlot chlorophyll concentration (FGC) in August Four-factor GM(0,5) model;
模型IV,包括10月份育肥场的海表温度(FGSST)、10月份太平洋年代际震荡指数(PDO)、2月份产卵场的海表温度(SGSST)和8月份育肥场的叶绿素浓度(FGC)四个因子的GM(0,5)模型;Model IV, including feedlot sea surface temperature (FGSST) in October, Pacific Decadal Oscillation Index (PDO) in October, spawning ground sea temperature in February (SGSST), and feedlot chlorophyll concentration (FGC) in August Four-factor GM(0,5) model;
模型V,包括10月份育肥场的海表温度(FGSST)、10月份太平洋年代际震荡指数(PDO)、2月份产卵场的海表温度(SGSST)和3月份产卵场的叶绿素浓度(SGC)四个因子的GM(0,5)模型;Model V, including feedlot sea surface temperature (FGSST) in October, Pacific Decadal Oscillation Index (PDO) in October, spawning ground sea temperature in February (SGSST), and spawning ground chlorophyll concentration in March (SGC) ) GM(0,5) model with four factors;
模型VI,包括10月份育肥场的海表温度(FGSST)、2月份产卵场的海表温度(SGSST)、3月份产卵场的叶绿素浓度(SGC)和8月份育肥场的叶绿素浓度(FGC)四个因子的GM(0,5)模型;Model VI, including feedlot sea surface temperature in October (FGSST), spawning ground sea temperature in February (SGSST), spawning ground chlorophyll concentration in March (SGC) and feedlot chlorophyll concentration in August (FGC) ) GM(0,5) model with four factors;
模型VII,包括10月份育肥场的海表温度(FGSST)、10月份太平洋年代际震荡指数(PDO)、2月份产卵场的海表温度(SGSST)、3月份产卵场的叶绿素浓度(SGC)和8月份育肥场的叶绿素浓度(FGC)五个因子的GM(1,6)模型;Model VII, including feedlot sea surface temperature (FGSST) in October, Pacific Decadal Oscillation Index (PDO) in October, spawning ground sea temperature in February (SGSST), and spawning ground chlorophyll concentration in March (SGC) ) and the GM(1,6) model of five factors of feedlot chlorophyll concentration (FGC) in August;
模型VIII,包括10月份育肥场的海表温度(FGSST)、10月份太平洋年代际震荡指数(PDO)、3月份产卵场的叶绿素浓度(SGC)和8月份育肥场的叶绿素浓度(FGC)四个因子的GM(1,5)模型;Model VIII, including feedlot sea surface temperature (FGSST) in October, Pacific Decadal Oscillation Index (PDO) in October, spawning ground chlorophyll concentration (SGC) in March, and feedlot chlorophyll concentration in August (FGC) IV GM(1,5) model of the factors;
模型IX,包括10月份太平洋年代际震荡指数(PDO)、2月份产卵场的海表温度(SGSST)、3月份产卵场的叶绿素浓度(SGC)和8月份育肥场的叶绿素浓度(FGC)四个因子的GM(1,5)模型;Model IX, including October Pacific Decadal Oscillation Index (PDO), spawning ground sea surface temperature (SGSST) in February, spawning ground chlorophyll concentration (SGC) in March, and feedlot chlorophyll concentration (FGC) in August Four-factor GM(1,5) model;
模型X,包括10月份育肥场的海表温度(FGSST)、10月份太平洋年代际震荡指数(PDO)、2月份产卵场的海表温度(SGSST)和8月份育肥场的叶绿素浓度(FGC)四个因子的GM(1,5)模型;Model X, including feedlot sea surface temperature (FGSST) in October, Pacific Decadal Oscillation Index (PDO) in October, spawning ground sea temperature in February (SGSST), and feedlot chlorophyll concentration (FGC) in August Four-factor GM(1,5) model;
模型XI,包括10月份育肥场的海表温度(FGSST)、10月份太平洋年代际震荡指数(PDO)、2月份产卵场的海表温度(SGSST)和3月份产卵场的叶绿素浓度(SGC)四个因子的GM(1,5)模型;Model XI, including feedlot sea surface temperature (FGSST) in October, Pacific Decadal Oscillation Index (PDO) in October, spawning ground sea temperature in February (SGSST), and spawning ground chlorophyll concentration in March (SGC) ) GM(1,5) model with four factors;
模型XII,包括10月份育肥场的海表温度(FGSST)、2月份产卵场的海表温度(SGSST)、3月份产卵场的叶绿素浓度(SGC)和8月份育肥场的叶绿素浓度(FGC)四个因子的GM(1,5)模型;Model XII, including feedlot sea surface temperature in October (FGSST), spawning ground sea temperature in February (SGSST), spawning ground chlorophyll concentration in March (SGC) and feedlot chlorophyll concentration in August (FGC) ) GM(1,5) model with four factors;
(5)对步骤(4)得到的各预测模型进行有效性分析,利用2006年渔业生产数据进行验证,其验证结果如表2和表3所示,各预测模型平均相对误差对比图如图3所示,图3中的左侧的模型1~6分别与步骤(4)的模型I~VI一一对应,右侧的模型1~6分别与步骤(4)的模型VII~XII一一对应;(5) Analyze the validity of each prediction model obtained in step (4), and use the fishery production data in 2006 for verification. The verification results are shown in Tables 2 and 3. The average relative error of each prediction model is compared in Figure 3. As shown, the models 1 to 6 on the left in FIG. 3 are in one-to-one correspondence with the models I to VI of step (4), respectively, and the models 1 to 6 on the right are in one-to-one correspondence with models VII to XII of step (4). ;
表2北太平洋柔鱼资源丰度GM(0,N)预测模型的相对误差Table 2 Relative error of GM(0,N) prediction model for North Pacific softfish resource abundance
表3北太平洋柔鱼资源丰度GM(1,N)预测模型的相对误差Table 3 The relative errors of the GM(1,N) prediction model for the abundance of squid in the North Pacific
表2和表3中的“误差”为相对误差平均值,“验证”为使用模型预测得到的2006年渔业生产数据与2006年渔业生产实际数据的误差率,表中的单位为%;"Error" in Table 2 and Table 3 is the average relative error, "Validation" is the error rate between the 2006 fishery production data predicted by the model and the actual fishery production data in 2006, and the unit in the table is %;
由图2可以看出,加入环境因子的GM(0,N)和GM(1,N)预测模型几乎都比(除模型XII外)GM(1,1)模型的拟合精度高且0阶的灰色预测模型全部比1阶的拟合精度高。It can be seen from Figure 2 that the GM(0,N) and GM(1,N) prediction models with environmental factors are almost all more accurate than (except for model XII) the GM(1,1) model and have a 0th order. The gray prediction models of all are more accurate than the first-order fitting.
由表2和表3可知,各GM(0,N)模型中模型平均拟合误差从大到小依次为:模型I>模型III>模型II>模型V>模型IV>模型VI;各GM(1,N)模型中模型平均拟合误差从小到大依次为:模型X>模型VII>模型VIII>模型IX>模型XI>模型XII;从验证结果看,模型IV和模型X远高于其他模型,相对误差为1.18%(最低)和1.20%,所以选择模型IV作为北太平洋柔鱼资源丰度的最优预测模型。It can be seen from Table 2 and Table 3 that the average fitting errors of the models in each GM(0,N) model are in descending order: Model I > Model III > Model II > Model V > Model IV > Model VI; 1,N) The average fitting error of the models in the model is from small to large: model X > model VII > model VIII > model IX > model XI > model XII; from the verification results, model IV and model X are much higher than other models , the relative errors were 1.18% (the lowest) and 1.20%, so Model IV was selected as the optimal prediction model for the abundance of North Pacific squid.
选用模型IV进行预测,其预测拟合图如图4所示,由图可知,CPUE的变化趋势基本上一致,并且模型预测的拟合值变化幅度较小,从预测模型的参数来看,-a值为-1.71(表4)满足中长期预报模型的条件(-a<0.3)。Model IV is used for prediction, and its prediction fitting diagram is shown in Figure 4. It can be seen from the figure that the variation trend of CPUE is basically the same, and the variation range of the fitting value predicted by the model is small. From the perspective of the parameters of the prediction model, - The value of a is -1.71 (Table 4), which satisfies the condition of the medium and long-term forecast model (-a<0.3).
表4模型IV的因子的参数值Table 4 Parameter values for the factors of Model IV
经验证,本发明的预测方法,在进行处理前(建立资源丰度灰色预测模型前)首先对CPUE序列进行优选,截取任意时间段的CPUE序列并建立GM(1,1)模型,选取相对误差最小的GM(1,1)模型对应的CPUE序列作为后续建立资源丰度灰色预测模型的标准序列,克服了目前灰色系统模型预测稳定性较差的缺陷;在建立资源丰度灰色预测模型时,同时建立了包含不同影响因子的0阶与1阶的GM预测模型,从不同阶数的多个预测模型中优选其中相对误差最小的模型作为最优预测模型,这能够大大提高了预测模型的精度,为更科学、更有效地渔业生产提供依据,极具应用前景。It has been verified that the prediction method of the present invention first optimizes the CPUE sequence before processing (before establishing the resource abundance gray prediction model), intercepts the CPUE sequence of any time period and establishes a GM(1,1) model, and selects the relative error. The CPUE sequence corresponding to the smallest GM(1,1) model is used as the standard sequence for the subsequent establishment of the gray prediction model of resource abundance, which overcomes the defect of poor prediction stability of the current gray system model. When establishing the gray prediction model of resource abundance, At the same time, the 0th-order and 1st-order GM prediction models containing different influencing factors are established, and the model with the smallest relative error is selected as the optimal prediction model from multiple prediction models of different orders, which can greatly improve the accuracy of the prediction model. , which provides a basis for more scientific and efficient fishery production, and has great application prospects.
实施例2Example 2
一种电子设备,如图5所示,包括一个或多个处理器、一个或多个存储器、一个或多个程序及数据搜集装置;An electronic device, as shown in Figure 5, includes one or more processors, one or more memories, one or more programs and a data collection device;
数据搜集装置用于获取时间段A内海域B鱼类C的CPUE序列(即实施例1中的1998~2016年,坐标范围为35°~45°N、140°~179°E内北太平洋柔鱼的CPUE序列),一个或多个程序被存储在存储器中,当一个或多个程序被处理器执行时,使得电子设备执行如实施例1所述的渔业资源丰度灰色预测模型优化方法。The data collection device is used to obtain the CPUE sequence of fish C in sea area B in time period A (that is, from 1998 to 2016 in Example 1, the coordinates range from 35° to 45°N and 140° to 179°E in the North Pacific Ocean. The CPUE sequence of fish), one or more programs are stored in the memory, and when the one or more programs are executed by the processor, make the electronic device execute the gray prediction model optimization method of fishery resource abundance as described in Embodiment 1.
虽然以上描述了本发明的具体实施方式,但是本领域的技术人员应该理解,这些仅是举例说明,在不违背本发明的原理和实质的前提下,可以对这些实施方式做出多种变更或修改。Although the specific embodiments of the present invention have been described above, those skilled in the art should understand that these are only examples, and various changes may be made to these embodiments without departing from the principle and essence of the present invention. Revise.
Claims (10)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010497152.2A CN111667112B (en) | 2020-06-04 | 2020-06-04 | Fishery resource abundance gray prediction model optimization method and application thereof |
NL2027468A NL2027468B1 (en) | 2020-06-04 | 2021-02-01 | Method for optimizing a resource abundance grey prediction model in fishery and application thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010497152.2A CN111667112B (en) | 2020-06-04 | 2020-06-04 | Fishery resource abundance gray prediction model optimization method and application thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111667112A true CN111667112A (en) | 2020-09-15 |
CN111667112B CN111667112B (en) | 2023-12-26 |
Family
ID=72385881
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010497152.2A Active CN111667112B (en) | 2020-06-04 | 2020-06-04 | Fishery resource abundance gray prediction model optimization method and application thereof |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN111667112B (en) |
NL (1) | NL2027468B1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112308287A (en) * | 2020-09-24 | 2021-02-02 | 上海海洋大学 | Prediction method and application of marine fish peak flood season based on grey system theory |
CN119338078A (en) * | 2024-12-19 | 2025-01-21 | 烟台大学 | Fishery resources dynamic trend prediction system and method based on time series analysis |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103050230A (en) * | 2012-12-13 | 2013-04-17 | 广东电网公司电力科学研究院 | Method for increasing breakdown voltage of transformer oil |
CN104794550A (en) * | 2015-05-13 | 2015-07-22 | 山东科技大学 | WT-KPCA-SVR coupling model based gas emission quantity prediction method |
CN104850916A (en) * | 2015-05-31 | 2015-08-19 | 上海电机学院 | Improved-gray-Markov-model-based power equipment fault prediction method |
CN106203686A (en) * | 2016-06-30 | 2016-12-07 | 上海海洋大学 | The raw colony in northwest Pacific squid Winter-Spring based on gray system abundance Forecasting Methodology |
CN109523071A (en) * | 2018-11-02 | 2019-03-26 | 上海海洋大学 | Saury resource abundance medium- and long-term forecasting method based on Pacific Ocean Oscillation Index |
-
2020
- 2020-06-04 CN CN202010497152.2A patent/CN111667112B/en active Active
-
2021
- 2021-02-01 NL NL2027468A patent/NL2027468B1/en not_active IP Right Cessation
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103050230A (en) * | 2012-12-13 | 2013-04-17 | 广东电网公司电力科学研究院 | Method for increasing breakdown voltage of transformer oil |
CN104794550A (en) * | 2015-05-13 | 2015-07-22 | 山东科技大学 | WT-KPCA-SVR coupling model based gas emission quantity prediction method |
CN104850916A (en) * | 2015-05-31 | 2015-08-19 | 上海电机学院 | Improved-gray-Markov-model-based power equipment fault prediction method |
CN106203686A (en) * | 2016-06-30 | 2016-12-07 | 上海海洋大学 | The raw colony in northwest Pacific squid Winter-Spring based on gray system abundance Forecasting Methodology |
WO2018001338A1 (en) * | 2016-06-30 | 2018-01-04 | 上海海洋大学 | Grey system-based pelagic squid resource richness forecasting method |
CN109523071A (en) * | 2018-11-02 | 2019-03-26 | 上海海洋大学 | Saury resource abundance medium- and long-term forecasting method based on Pacific Ocean Oscillation Index |
Non-Patent Citations (3)
Title |
---|
LAN, KW 等: "Effects of climate variability and climate change on the fishing conditions for grey mullet (Mugil cephalus L.) in the Taiwan Strait", vol. 126, no. 1, XP035394744, DOI: 10.1007/s10584-014-1208-y * |
王言丰: "基于灰色系统西南大西洋阿根廷滑柔鱼 资源丰度预测模型的构建", 海 洋 学 报, vol. 41, no. 4 * |
解明阳;陈新军;汪金涛;: "基于灰色系统的太平洋褶柔鱼冬春生群资源丰度变化研究", 海洋渔业, no. 06 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112308287A (en) * | 2020-09-24 | 2021-02-02 | 上海海洋大学 | Prediction method and application of marine fish peak flood season based on grey system theory |
JP2022053452A (en) * | 2020-09-24 | 2022-04-05 | 上海海洋大学 | Sea-fish peak fishing season prediction method based on gray system theory and its application |
JP7202709B2 (en) | 2020-09-24 | 2023-01-12 | 上海海洋大学 | Prediction method of peak season for saltwater fish based on gray system theory and its application |
CN112308287B (en) * | 2020-09-24 | 2024-05-31 | 上海海洋大学 | Marine fish flood season prediction method based on grey system theory and application thereof |
CN119338078A (en) * | 2024-12-19 | 2025-01-21 | 烟台大学 | Fishery resources dynamic trend prediction system and method based on time series analysis |
Also Published As
Publication number | Publication date |
---|---|
CN111667112B (en) | 2023-12-26 |
NL2027468B1 (en) | 2021-07-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Lin et al. | The influence of new quality productive forces on high-quality agricultural development in China: Mechanisms and empirical testing | |
JP2019511783A (en) | Prediction method of abundance of ocean squid resources based on gray system | |
CN115358644B (en) | A method and device for estimating county forest carbon sinks based on machine learning | |
CN111667112B (en) | Fishery resource abundance gray prediction model optimization method and application thereof | |
CN110363349A (en) | An ASCS-based LSTM neural network hydrological prediction method and system | |
CN111639808A (en) | Multi-wind-farm output scene generation method and system considering time-space correlation | |
Walsh et al. | Trade‐offs for data‐limited fisheries when using harvest strategies based on catch‐only models | |
CN115953061B (en) | Water resource shortage degree estimation method, device and computer readable storage medium | |
CN116470491A (en) | Photovoltaic power probability prediction method and system based on copula function | |
CN113159102A (en) | Multi-time-scale photovoltaic power prediction method and system | |
WO2020088615A1 (en) | Todarodes pacificus resource abundance prediction method and application based on pacific decadal oscillation | |
CN106204313B (en) | Method for predicting space distribution of brachyurus hubner resources | |
Chen et al. | The impact of natural mortality variations on the performance of management procedures for Spanish mackerel (Scomberomorus niphonius) in the Yellow Sea, China | |
Adams et al. | Butterfish 2014 stock assessment | |
CN117493860B (en) | Marine shellfish culture ecological capacity assessment method and system | |
CN119397179A (en) | A comprehensive evaluation method, device and storage medium for climate model prediction data | |
CN112308287B (en) | Marine fish flood season prediction method based on grey system theory and application thereof | |
CN109344875B (en) | Method and device for generating time series of daily wind power output based on cluster analysis | |
AU2021101329A4 (en) | Prediction method of marine fish boom season based on grey system theory and its application | |
Liu et al. | Forecasting China’s per capita living energy consumption by employing a novel DGM (1, 1, tα) model with fractional order accumulation | |
CN108564308B (en) | Method and device for evaluating total radiation change characteristics of photovoltaic power station | |
Kong et al. | Technological progress bias and its impact on resource efficiency in China’s mariculture industry | |
CN118052373B (en) | Ocean resource environment bearing capacity assessment method | |
CN118550922B (en) | A method and system for collecting and storing energy big data of an integrated energy system | |
CN119623784B (en) | Combined scheduling method and device for runoff prediction and hydro-power-hydrogen system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |