CN111665204A - 基于光敏电阻光电特性的水体氮磷元素含量分析 - Google Patents

基于光敏电阻光电特性的水体氮磷元素含量分析 Download PDF

Info

Publication number
CN111665204A
CN111665204A CN201910176759.8A CN201910176759A CN111665204A CN 111665204 A CN111665204 A CN 111665204A CN 201910176759 A CN201910176759 A CN 201910176759A CN 111665204 A CN111665204 A CN 111665204A
Authority
CN
China
Prior art keywords
nitrogen
phosphorus
phosphorus element
photoresistor
water body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910176759.8A
Other languages
English (en)
Inventor
张金旭
邹强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN201910176759.8A priority Critical patent/CN111665204A/zh
Publication of CN111665204A publication Critical patent/CN111665204A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/125Composition of the body, e.g. the composition of its sensitive layer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/39Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using tunable lasers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/39Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using tunable lasers
    • G01N2021/396Type of laser source

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Electrochemistry (AREA)
  • Optics & Photonics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本发明涉及水体分析领域技术领域,尤其涉及一种基于光敏电阻光电特性的水体氮磷元素含量分析,包括以下步骤:步骤一:水质取样及试纸制作;步骤二:激光照射;步骤三:电信号转变为光信号;步骤四:氮磷元素含量。本方法可以根据光照度的变化电阻随之发生精确的变化,并通过电流放大器进行放大,根据检测电压的变化值与元素含量的关系,精确测出氮磷元素的含量。

Description

基于光敏电阻光电特性的水体氮磷元素含量分析
技术领域
本发明涉及水体分析领域技术领域,尤其涉及一种基于光敏电阻光电特性的水体氮磷元素含量分析。
背景技术
近些年,网购平台越发普及,越来越多的用户倾向于在网上购物平台上购置服饰,但因其虚拟属性所导致的信息不对称使得许多用户购买的服饰尺码不合适,造成退货纠纷频繁,给商家及用户都带来了不好的用户体验。
发明内容
本发明的目的在于克服上述技术的不足,而提供一种基于光敏电阻光电特性的水体氮磷元素含量分析。
本发明为实现上述目的,采用以下技术方案:
一种基于光敏电阻光电特性的水体氮磷元素含量分析,其特征在于:包括以下步骤:步骤一:水质取样及试纸制作;随机均匀的取样100ml的被检测水体,水体富含N、P元素,利用化学法,分别蒸馏出仅含氮磷的化合物,分别制成氮磷检测试纸;
步骤二:激光照射:用氦氖激光器发射激光,垂直入射到光敏电阻,此时光敏电阻因光照度不同其电阻发生变化,光信号变化转变为电信号,再经过电流放大器将电流信号A放大为电压信号,记录此时电压信号U;之后,用氦氖激光器照射含氮试纸,再次记录变化的电压信号U;
步骤三:电信号转变为光信号:根据CdS的特性曲线和公式表达式,由电流值求得光照度值E,并记录数据E1、E2、E1’、E2’。
步骤四:氮磷元素含量:根据不同含量的不同物质对于光的吸收不同,造成光照度的变化,结合氮磷元素光谱含量特性曲线等,结合MATLAB仿真,求解出100ml取样水体中的氮磷元素值,并计算为单位mg/L,若H≤0.02mg/L,则初步诊断为氮元素未超标,重复上述操作3次,若3次都为同一结果,则可以诊断为此水体中氮素未超标;反之,该水体氮元素超标,应该对其进行及时治理;对于磷元素也同样如此,若M≤0.02mg/L,则初步诊断为磷元素未超标。
本发明的有益效果是:(1)精确性,CdS光敏电阻具有极高的灵敏度,可以根据光照度的变化电阻随之发生精确的变化,并通过电流放大器进行放大,根据检测电压的变化值与元素含量的关系,精确测出氮磷元素的含量。
(2)便利性,采用基于光敏电阻光电特性的水体氮磷元素含量分析,设备便捷,体积较小和随时监控。
(3)安全性,因供电电压不超过人体的安全电压,因此使用较为安全。
附图说明
图1是氦氖激光器结构示意图;
图2是硫化镉光敏电阻结构图;
图3是梳状结构的硫化镉光敏电阻结构示意图;
图4是光敏电阻的接线图;
图5是CdS特性曲线图;
图6是加试纸之前的测量电路图;
图7是加试纸之后的测量电路图;
图8是氮元素分析流程图;
图9是磷元素分析流程图。
具体实施方式
下面结合附图及较佳实施例详细说明本发明的具体实施方式。如图1-图9所示,一种基于光敏电阻光电特性的水体氮磷元素含量分析,
选用以下元件:
氦氖激光器:选择半内腔式的氦氖激光器,制作简单,调整较易,由放电管(管内径1.2~1.3mm)、共振腔(由反射率100%的凹面反射镜和反射率99%的平面镜构成)和激光电源(直流电压220V供电),如图1。
光敏电阻:光敏电阻指当电阻受到光照强度的变化时,其产生光导效应,阻值发生变化。光敏电阻没有极性,无光照时,光敏电阻值暗电阻很大,电路中电流暗电流很小。当光敏电阻受到一定波长范围的光照时,它的阻值亮电阻急剧减小,电路中电流迅速增大。此选用金属封装的硫化镉光敏电阻,结构图2如下。在玻璃底板上均匀地涂上一层薄薄的半导体物质,称为光导层。半导体的两端装有金属电极,金属电极与引出线端相连接,光敏电阻就通过引出线端接入电路。为了防止周围介质的影响,在半导体光敏层上覆盖了一层漆膜,漆膜的成分应使它在光敏层最敏感的波长范围内透射率最大。此发明选用梳状结构的硫化镉光敏电阻,如图3所示。图4为光敏电阻的接线图。
保护电阻:应选择和硫化镉同一量级,因此取保护电阻大小10KΩ
电源:选择直流电源,为保证安全,供电电压取小于人体安全电压30V
测量电路:由氦氖激光器、光敏电阻、保护电阻、电源电压、放大电路组成。包含氦氖激光器发射激光照射到光敏电阻,使电路电流发生变化,为方便计算,利用电流放大器将电流信号放大为电压信号;之后,用氦氖激光器照射处理后的水体氮磷形成的试纸,再使照射光入射到光敏电阻,产生电压变化。
电流放大器:利用放大结构,取放大系数为,将上图电路中的微弱的电流信号(mA量级)进行输出放大为电压信号,提高灵敏度,更精确的检测出激光经过氮元素和磷元素产生的光照度的变化,根据氮元素和磷元素的吸收光谱(物质吸收对光照强度的变化),从而分析出氮磷含量。
该分析方法包括以下步骤:步骤一:水质取样及试纸制作;随机均匀的取样100ml的被检测水体,水体富含N、P元素,利用化学法,分别蒸馏出仅含氮磷的化合物,分别制成氮磷检测试纸;
步骤二:激光照射:用氦氖激光器发射激光,垂直入射到光敏电阻,此时光敏电阻因光照度不同其电阻发生变化,光信号变化转变为电信号,再经过电流放大器将电流信号A放大为电压信号,记录此时电压信号U;之后,用氦氖激光器照射含氮试纸,再次记录变化的电压信号U;
步骤三:电信号转变为光信号:根据CdS的特性曲线和公式表达式,由电流值求得光照度值E,并记录数据E1、E2、E1’、E2’。
步骤四:氮磷元素含量:根据不同含量的不同物质对于光的吸收不同,造成光照度的变化,结合氮磷元素光谱含量特性曲线等,结合MATLAB仿真,求解出100ml取样水体中的氮磷元素值,并计算为单位mg/L,若H≤0.02mg/L,则初步诊断为氮元素未超标,重复上述操作3次,若3次都为同一结果,则可以诊断为此水体中氮素未超标;反之,该水体氮元素超标,应该对其进行及时治理;对于磷元素也同样如此,若M≤0.02mg/L,则初步诊断为磷元素未超标。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (1)

1.一种基于光敏电阻光电特性的水体氮磷元素含量分析,其特征在于:包括以下步骤:步骤一:水质取样及试纸制作;随机均匀的取样100ml的被检测水体,水体富含N、P元素,利用化学法,分别蒸馏出仅含氮磷的化合物,分别制成氮磷检测试纸;
步骤二:激光照射:用氦氖激光器发射激光,垂直入射到光敏电阻,此时光敏电阻因光照度不同其电阻发生变化,光信号变化转变为电信号,再经过电流放大器将电流信号A放大为电压信号,记录此时电压信号U;之后,用氦氖激光器照射含氮试纸,再次记录变化的电压信号U;
步骤三:电信号转变为光信号:根据CdS的特性曲线和公式表达式,由电流值求得光照度值E,并记录数据E1、E2、E1’、E2’。
步骤四:氮磷元素含量:根据不同含量的不同物质对于光的吸收不同,造成光照度的变化,结合氮磷元素光谱含量特性曲线等,结合MATLAB仿真,求解出100ml取样水体中的氮磷元素值,并计算为单位mg/L,若H≤0.02mg/L,则初步诊断为氮元素未超标,重复上述操作3次,若3次都为同一结果,则可以诊断为此水体中氮素未超标;反之,该水体氮元素超标,应该对其进行及时治理;对于磷元素也同样如此,若M≤0.02mg/L,则初步诊断为磷元素未超标。
CN201910176759.8A 2019-03-08 2019-03-08 基于光敏电阻光电特性的水体氮磷元素含量分析 Pending CN111665204A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910176759.8A CN111665204A (zh) 2019-03-08 2019-03-08 基于光敏电阻光电特性的水体氮磷元素含量分析

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910176759.8A CN111665204A (zh) 2019-03-08 2019-03-08 基于光敏电阻光电特性的水体氮磷元素含量分析

Publications (1)

Publication Number Publication Date
CN111665204A true CN111665204A (zh) 2020-09-15

Family

ID=72381461

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910176759.8A Pending CN111665204A (zh) 2019-03-08 2019-03-08 基于光敏电阻光电特性的水体氮磷元素含量分析

Country Status (1)

Country Link
CN (1) CN111665204A (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1439793A (fr) * 1965-07-15 1966-05-20 Dispositif permettant les mesures colorimétriques sur échantillons liquides ou solides
CH557535A (de) * 1972-06-30 1974-12-31 Svenska Utvecklings Ab Verfahren und geraet zum nachweis von in einem gas schwebenden partikeln.
DE2538852A1 (de) * 1974-09-03 1976-04-01 Asahi Optical Co Ltd Belichtungsmesserschaltung
US4373818A (en) * 1978-01-25 1983-02-15 Kabushiki Kaisha Kyoto Daiichi Kagaku Method and device for analysis with color identification test paper
JPH0534291A (ja) * 1991-07-29 1993-02-09 Nippon Steel Corp 金属試料中の微量の燐および硫黄の分析方法およびその装置
SU1818958A1 (ru) * 1989-06-25 1998-11-10 Институт Спектроскопии Ан Ссср Способ лазерного атомно-флуоресцентного анализа
TW200912283A (en) * 2007-09-14 2009-03-16 Univ Nat Pingtung Sci & Tech Method and device for measuring chemical reaction rate by use of photo resistor
RU2384837C1 (ru) * 2008-11-20 2010-03-20 Евгений Валерьевич Степанов Способ одновременного определения концентрации молекул со и co2 и устройство для одновременного определения концентрации молекул со и co2
CN102393393A (zh) * 2011-09-04 2012-03-28 昆明泊银科技有限公司 食品中重金属含量的检测装置及检测方法
CN102539351A (zh) * 2010-12-24 2012-07-04 北京有色金属研究总院 一种原子吸收的测量方法
CN105987883A (zh) * 2015-02-06 2016-10-05 上海安杰环保科技有限公司 一种水体中硫化物含量测定方法及系统

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1439793A (fr) * 1965-07-15 1966-05-20 Dispositif permettant les mesures colorimétriques sur échantillons liquides ou solides
CH557535A (de) * 1972-06-30 1974-12-31 Svenska Utvecklings Ab Verfahren und geraet zum nachweis von in einem gas schwebenden partikeln.
DE2538852A1 (de) * 1974-09-03 1976-04-01 Asahi Optical Co Ltd Belichtungsmesserschaltung
US4373818A (en) * 1978-01-25 1983-02-15 Kabushiki Kaisha Kyoto Daiichi Kagaku Method and device for analysis with color identification test paper
SU1818958A1 (ru) * 1989-06-25 1998-11-10 Институт Спектроскопии Ан Ссср Способ лазерного атомно-флуоресцентного анализа
JPH0534291A (ja) * 1991-07-29 1993-02-09 Nippon Steel Corp 金属試料中の微量の燐および硫黄の分析方法およびその装置
TW200912283A (en) * 2007-09-14 2009-03-16 Univ Nat Pingtung Sci & Tech Method and device for measuring chemical reaction rate by use of photo resistor
RU2384837C1 (ru) * 2008-11-20 2010-03-20 Евгений Валерьевич Степанов Способ одновременного определения концентрации молекул со и co2 и устройство для одновременного определения концентрации молекул со и co2
CN102539351A (zh) * 2010-12-24 2012-07-04 北京有色金属研究总院 一种原子吸收的测量方法
CN102393393A (zh) * 2011-09-04 2012-03-28 昆明泊银科技有限公司 食品中重金属含量的检测装置及检测方法
CN105987883A (zh) * 2015-02-06 2016-10-05 上海安杰环保科技有限公司 一种水体中硫化物含量测定方法及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
陈小敏: "《大学物理实验教程》", 长沙:湖南大学出版社, pages: 130 - 131 *

Similar Documents

Publication Publication Date Title
Washenfelder et al. Broadband measurements of aerosol extinction in the ultraviolet spectral region
JP5575355B2 (ja) 紫外線防御効果の評価装置
CN200972457Y (zh) 一种紫外线透过率测试仪
JPS6475903A (en) Method for measuring refractive index and film thickness
CN104568927A (zh) 一种电化学发光装置及方法
Zheng et al. On‐chip measurement of photoluminescence with high sensitivity monolithic spectrometer
CN104713642B (zh) 一种真空紫外激光绝对能量测量装置
CN101949825B (zh) 光开放环境下的叶片水分近红外无损检测装置及方法
CN111665204A (zh) 基于光敏电阻光电特性的水体氮磷元素含量分析
CN105527483A (zh) 一种电光独立调制的瞬态光电压测试系统
CN102445325A (zh) 一种测量自动变光焊接滤光镜遮光号的装置及方法
JPH02147923A (ja) 光検出回路
Lozier [17] Rapid kinetic optical absorption spectroscopy of bacteriorhodopsin photocycles
CN207472755U (zh) 一种双级增强型光声光谱检测器装置
CN105841931A (zh) 一种光谱响应测试系统及测试方法
CN203443667U (zh) 一种新型的激光功率计
CN105527252A (zh) 一种光学元件反射率测量仪
CN105628197A (zh) 一种照度计
CN106990051A (zh) 金属材料表层电子信息无损检测装置和检测方法
CN107817219A (zh) 一种双级增强型光声光谱检测器装置及其检测方法
CN205748879U (zh) 一种光谱响应测试系统
JPS6473239A (en) Gas concentration measurement for laser type gas sensor
CN109470655A (zh) 基于光散射的高反射率水果表面蜡含量的测量系统及方法
CN103822887B (zh) 一种激光检测亚硝酸根浓度的检测方法
CN203720075U (zh) 一种ph值检测仪

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20200915

RJ01 Rejection of invention patent application after publication