CN111660641A - 一种具有多层泡孔结构的聚合物电磁屏蔽复合材料及其制备方法 - Google Patents

一种具有多层泡孔结构的聚合物电磁屏蔽复合材料及其制备方法 Download PDF

Info

Publication number
CN111660641A
CN111660641A CN202010587262.8A CN202010587262A CN111660641A CN 111660641 A CN111660641 A CN 111660641A CN 202010587262 A CN202010587262 A CN 202010587262A CN 111660641 A CN111660641 A CN 111660641A
Authority
CN
China
Prior art keywords
composite material
polymer
fiber
electromagnetic shielding
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010587262.8A
Other languages
English (en)
Other versions
CN111660641B (zh
Inventor
廖霞
杨建明
周荣涛
王圭
唐婉玉
李光宪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan University
Original Assignee
Sichuan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan University filed Critical Sichuan University
Priority to CN202010587262.8A priority Critical patent/CN111660641B/zh
Publication of CN111660641A publication Critical patent/CN111660641A/zh
Application granted granted Critical
Publication of CN111660641B publication Critical patent/CN111660641B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/18Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
    • B32B5/20Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material foamed in situ
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/06Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the heating method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/10Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the pressing technique, e.g. using action of vacuum or fluid pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/32Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed at least two layers being foamed and next to each other
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/122Hydrogen, oxygen, CO2, nitrogen or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/10Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/12Adsorbed ingredients, e.g. ingredients on carriers
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/83Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with metals; with metal-generating compounds, e.g. metal carbonyls; Reduction of metal compounds on textiles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B2038/0052Other operations not otherwise provided for
    • B32B2038/0084Foaming
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/22All layers being foamed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2266/00Composition of foam
    • B32B2266/02Organic
    • B32B2266/0207Materials belonging to B32B25/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2266/00Composition of foam
    • B32B2266/02Organic
    • B32B2266/0214Materials belonging to B32B27/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2266/00Composition of foam
    • B32B2266/02Organic
    • B32B2266/0214Materials belonging to B32B27/00
    • B32B2266/025Polyolefin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2266/00Composition of foam
    • B32B2266/02Organic
    • B32B2266/0214Materials belonging to B32B27/00
    • B32B2266/0264Polyester
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2266/00Composition of foam
    • B32B2266/02Organic
    • B32B2266/0214Materials belonging to B32B27/00
    • B32B2266/0271Epoxy resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2266/00Composition of foam
    • B32B2266/02Organic
    • B32B2266/0214Materials belonging to B32B27/00
    • B32B2266/0278Polyurethane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/202Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/212Electromagnetic interference shielding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/72Density
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/06CO2, N2 or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2383/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2383/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0806Silver
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0856Iron
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0887Tungsten
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/40Fibres of carbon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Textile Engineering (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

本发明公开了一种具有多层泡孔结构的聚合物电磁屏蔽复合材料及其制备方法;制备时先在纤维的表面负载导电金属,制得高导电纤维;然后将高导电纤维与聚合物混合得到高导电复合材料层,分别将不同含量的碳系填料与聚合物混合得到碳系填料填充的复合材料层;最后将两种复合材料层结合并对其进行发泡处理得到具有多层泡孔结构电磁屏蔽复合材料。采用本发明中的方法可有效提高电磁屏蔽复合泡沫的电磁屏蔽效能,增强复合泡沫吸收电磁波的性能,所制备的多孔材料兼具优异的电磁屏蔽效能与吸收电磁波性能,有效解决了电磁屏蔽复合材料屏蔽效能低、二次电磁波污染严重的问题。

Description

一种具有多层泡孔结构的聚合物电磁屏蔽复合材料及其制备 方法
技术领域
本发明属于电磁屏蔽复合材料领域,具体涉及一种具有多层泡孔结构的聚合物电磁屏蔽复合材料及其制备方法。
背景技术
随着电子信息技术的飞速发展,各种电子元器件及通讯设备得到了极大地普及和应用。这些电子设备的广泛使用在给予人们极大便利的同时产生了大量电磁波污染,不仅严重干扰了手机、电脑、医院仪器等的正常运行,还对人体健康产生了威胁。为此,多种电磁屏蔽复合材料被开发出来,但是这些电磁屏蔽复合材料普遍存在屏蔽效能低下、反射电磁波比例高的缺点。与此同时,新兴的5G通讯行业、大功率电子设备以及航空航天等领域不仅对于信号的抗干扰能力要求很高,还需要更轻质的电磁屏蔽复合材料以节省其在使用过程中的能源消耗,未来兼具高屏蔽效能和高吸收能力的轻质电磁屏蔽材料必然被大量需要。
对于传统的电磁屏蔽复合材料而言,屏蔽效能决定于材料的电导率和导电网络的完善程度,而这两者又取决于填料的导电性能和添加量。为了获得良好的导电性能,需要添加较多的导电填料(如金属纤维、碳纳米管、石墨烯、炭黑等)。然而,这些填料在聚合物基体中的大量添加会引起复合材料与空气之间的巨大阻抗不匹配,造成大量的电磁波反射,引起严重的二次电磁波污染。利用多层结构设计并结合高压气体发泡技术制备轻质、具有多层泡孔结构的电磁屏蔽复合材料是目前解决电磁波反射比例高的一种新方法。
除此之外,采用化学镀的方法在纤维表面负载导电金属粒子可以制得具有优异电导率的导电纤维,有利于增强金属粒子在聚合物基体中的搭接效率,提高聚合物复合材料的电磁屏蔽效能。目前还未有利用高压气体发泡与多层复合相结合的技术制备具有多层泡孔结构的电磁屏蔽复合材料。
发明内容
针对上述现有技术,本发明提供一种具有多层泡孔结构的聚合物电磁屏蔽复合材料及其制备方法,该多孔复合材料具有良好的电磁屏蔽效能以及吸收电磁波性能。
为了达到上述目的,本发明所采用的技术方案是:提供一种制备具有多层泡孔结构的聚合物电磁屏蔽复合材料的方法,其特征在于,包括以下步骤:
S1:在纤维表面负载导电金属,得导电纤维;
S2:制备导电纤维-聚合物复合材料;
S3:制备不同种类的碳系填料-聚合物复合材料,每种碳系填料-聚合物复合材料中的碳系填料含量不同;
S4:将S3所得的多种碳系填料-聚合物复合材料逐层叠加到S2所得导电纤维-聚合物复合材料上,得多层复合材料;
S5:将S4所得多层复合材料置于反应装置中,通入发泡气体,于0~300℃、0.2~50MPa的条件下饱和5min~24h,然后以0.1~30MPa/s的速率泄压至常压并降温至室温,得到多孔电磁屏蔽复合材料。
在上述技术方案的基础上,本发明中的制备方法还可以做如下改进。
进一步,导电纤维表面负载的导电金属为银、铜、镍、铝、铁或钨,其经过以下步骤制得:
SS1:依次对纤维进行粗化、敏化处理;
SS2:将敏化后的纤维按1g:10~80mL的料液比加入到含有银、铜、镍、铝、铁或钨的化学镀液中,然后加入还原剂溶液,搅拌反应10min~5h,再洗涤、干燥,得导电纤维。
进一步,导电纤维的粗化方法为:将纤维按照1g:10~100mL的料液比加入到稀硫酸中,搅拌反应10min~5h,然后洗涤、抽滤完成粗化。
进一步,纤维为玻璃纤维、石英玻璃纤维、陶瓷纤维、碳纤维、石棉纤维或玄武岩纤维。
进一步,导电纤维-聚合物复合材料经过以下步骤制得:将聚合物溶于溶剂中配成聚合物溶液,然后将导电纤维加入聚合物溶液中,超声搅拌5min~1h,得导电纤维-聚合物复合材料;聚合物与导电纤维的质量比为1:1~10:1。
进一步,碳系填料-聚合物复合材料经过以下步骤制得:将聚合物溶于溶剂中配成聚合物溶液,然后将碳系填料加入到聚合物溶液中,超声搅拌5min~1h,得碳系填料-聚合物复合材料;聚合物与碳系填料的质量比为9.7:0.3~9.9:0.1。
进一步,碳系填料为碳纤维、碳纳米管、石墨烯、碳纳米纤维、纳米石墨片、石墨、炭黑或富勒烯。
进一步,聚合物为聚乙烯、聚丙烯、聚碳酸酯、聚苯乙烯、聚氯乙烯、聚四氟乙烯、聚酰胺、醋酸乙烯共聚物、聚对苯二甲酸乙二酯、聚甲基丙烯酸甲酯、聚碳酸酯、聚氨酯、聚乳酸、聚羟基乙酸、聚己内酯、聚乙烯醇、环氧树脂、脲醛树脂、呋喃树脂、三聚氰胺甲醛树脂、有机硅树脂、聚芳酯、丙烯酸酯、酚醛树脂、聚醚醚酮、聚砜、聚苯硫醚、聚酰亚胺、丁苯橡胶、顺丁橡胶、异戊橡胶、丁基橡胶、乙丙橡胶、氟橡胶、硅橡胶、热塑性聚苯乙烯弹性体、热塑性聚烯烃弹性体、热塑性共聚酯弹性体、热塑性聚酰胺弹性体或热塑性聚氨酯弹性体。
进一步,溶剂为乙醇、甲醇、异丙醇、乙二醇、乙醚、丙酮、己烷、环己烷、戊烷、庚烷、辛烷、苯胺、丁酮、氯仿、二甲胺、四氯化碳、正庚醇、四氢呋喃、苯、甲苯、二甲苯、乙苯、乙酸丁酯、三氯甲烷、甲酸、二甲亚砜、氯苯、二氯苯、二氯甲烷、三氯乙烯或N-甲基吡咯烷酮。
进一步,发泡气体为空气、氮气、二氧化碳、氦气、氩气、石油醚、甲烷、乙烷、丙烷、丁烷、戊烷、己烷、庚烷、正戊烷、正己烷、正庚烷、二氯甲烷或三氯氟甲烷。
本发明利用多层复合与高压气体发泡相结合的方法制备得到一种具有多层泡孔结构的聚合物电磁屏蔽复合材料,该方法有效增加了复合材料的电磁屏蔽效能,提高了材料对电磁波的吸收效率,所制备复合材料具有优异的电磁屏蔽效能和吸收电磁波性能,吸收电磁波比例可以达到66%,电磁屏蔽效能可以达到76dB,远超商业应用电磁屏蔽材料的需求。
本发明的有益效果是:
1、本发明通过化学镀的方法得到了高导电的镀金属纤维,将导电纤维与聚合物复合后有效增强了金属粒子的导电通路,提高了复合材料的电导率。
2、本发明所制备的具有多层泡孔结构的聚合物电磁屏蔽复合材料具有优异的电磁屏蔽效能及吸收电磁波系数,同时,泡孔的引入可以进一步降低材料的密度,提升电磁屏蔽复合材料的应用领域。
3、本发明所使用的高压气体发泡法具有操作简单、成本低廉的优点。
附图说明
图1为实施例2所制备金属银负载玻璃纤维的扫描电镜图;
图2为实施例2制备的具有多层泡孔结构的聚合物电磁屏蔽复合材料断面的扫描电镜图;
图3为实施例4所制备的具有多层泡孔结构的聚合物电磁屏蔽复合材料的电磁屏蔽效能和吸收电磁波系数。
具体实施方式
下面结合实施例对本发明的具体实施方式做详细的说明。
实施例1
一种具有多层泡孔结构聚合物电磁屏蔽复合材料,其经过以下步骤制得:
(1)高导电纤维的制备
将1g碳纤维加入到10mL的稀硫酸中,磁力搅拌5h,过滤后用蒸馏水洗涤并抽滤,再把碳纤维置于氯化亚锡水溶液中并进行磁力搅拌,将产物加入到10mL化学镀钨液(钨酸钠10g/L,次磷酸钠10g/L)中,逐滴加入柠檬酸钠,在机械搅拌下反应10min,最后洗涤、抽滤并干燥得到金属钨负载碳纤维。
(2)金属钨负载碳纤维-聚乙烯复合材料层的制备
将10g聚乙烯加入到二甲苯中,磁力搅拌使聚丙烯充分溶解,然后向其中加入1g金属钨负载碳纤维,超声条件下搅拌5min,将混合物倒入模具中,之后将混合物放入通风橱中直至溶剂挥发完全,得金属钨负载碳纤维-聚乙烯复合材料。
(3)炭黑-聚乙烯复合材料层的制备
分别将9.9g、9.8g、9.7g的聚乙烯充分溶解于二甲苯溶剂中,然后分别加入0.1g、0.2g和0.3g的炭黑,超声搅拌使炭黑均匀分散,将混合液倒入模具中,并置于通风橱中使溶剂完全挥发,得三种炭黑-聚乙烯复合材料。
(4)高压气体发泡
将步骤(3)所得的三种炭黑填料-聚合物复合材料按炭黑含量逐渐递增的方式逐层叠加到步骤(2)所得金属钨负载碳纤维-聚乙烯复合材料上,得多层复合材料。将所得多层复合材料裁剪成规则形状并置于高压反应釜中,升温并通入空气,在120℃、压力为5MPa条件下饱和30min,然后以1MPa/s的卸压速率降至常压,取出发泡样品并在烘箱中定型,最终得到具有多层泡孔结构的聚乙烯电磁屏蔽复合材料。
实施例2
一种具有多层泡孔结构聚合物电磁屏蔽复合材料,其经过以下步骤制得:
(1)高导电纤维的制备
将1g玻璃纤维加入到20mL的稀硫酸中,磁力搅拌10min,过滤后用蒸馏水洗涤并抽滤,再把玻璃纤维置于氯化亚锡水溶液中并进行磁力搅拌,将产物加入到20mL化学镀银液(硝酸银5g/L,氨水10g/L)中,逐滴加入柠檬酸钠,在机械搅拌下反应30min,最后洗涤、抽滤并干燥得到金属银负载玻璃纤维。
(2)金属银负载玻璃纤维-硅橡胶复合材料层的制备
将10g聚乙烯加入到二甲苯中,磁力搅拌使聚丙烯充分溶解,然后向其中加入2g金属银负载玻璃纤维,超声条件下搅拌10min,将混合物倒入模具中,之后将混合物放入通风橱中直至溶剂挥发完全,得金属银负载玻璃纤维-硅橡胶复合材料。
(3)碳纳米管-硅橡胶复合材料层的制备
分别将9.9g、9.8g、9.7g的硅橡胶充分溶解于环己烷溶剂中,然后分别加入0.1g、0.2g和0.3g的碳纳米管,超声搅拌使碳纳米管均匀分散,将混合液倒入模具中,并置于通风橱中使溶剂完全挥发,得三种碳纳米管-硅橡胶复合材料。
(4)高压气体发泡
将步骤(3)所得的三种碳纳米管-硅橡胶复合材料按碳纳米管含量逐渐递增的方式逐层叠加到步骤(2)所得金属银负载玻璃纤维-硅橡胶复合材料上,得到多层复合材料。将所得多层复合材料裁剪成规则形状并置于高压反应釜中,升温并通入甲烷,在0℃、压力为50MPa条件下饱和5min,然后以30MPa/s的卸压速率降至常压,取出发泡样品并在烘箱中定型,最终得到具有多层泡孔结构的硅橡胶电磁屏蔽复合材料。
实施例3
一种具有多层泡孔结构聚合物电磁屏蔽复合材料,其经过以下步骤制得:
(1)高导电纤维的制备
将1g玄武岩纤维加入到40mL的稀硫酸中,磁力搅拌30min,过滤后用蒸馏水洗涤并抽滤,再把玄武岩纤维置于氯化亚锡水溶液中并进行磁力搅拌,将产物加入到40mL化学镀铁液(硫酸铁10g/L,龙胆二糖5g/L)中,逐滴加入柠檬酸钠,在机械搅拌下反应1h,最后洗涤、抽滤并干燥得到金属铁负载玄武岩纤维。
(2)金属铁负载玄武岩纤维-聚乳酸复合材料层的制备
将10g聚乳酸加入到氯仿中,磁力搅拌使聚乳酸充分溶解,然后向其中加入4g金属铁负载玄武岩纤维,超声条件下搅拌30min,将混合物倒入模具中,之后将混合物放入通风橱中直至溶剂挥发完全,得金属铁负载玄武岩纤维-聚乳酸复合材料。
(3)碳纳米纤维-聚乳酸复合材料层的制备
分别将9.9g、9.8g、9.7g的聚乳酸充分溶解于氯仿溶剂中,然后分别加入0.1g、0.2g和0.3g的碳纳米纤维,超声搅拌使碳纳米纤维均匀分散,将混合液倒入模具中,并置于通风橱中使溶剂完全挥发,得三种碳纳米纤维-聚乳酸复合材料。
(4)高压气体发泡
将步骤(3)所得的三种碳纳米纤维-聚乳酸复合材料按碳纳米纤维含量逐渐递增的方式逐层叠加到步骤(2)所得金属铁负载玄武岩纤维-聚乳酸复合材料上,得到多层复合材料。将所得多层复合材料裁剪成规则形状并置于高压反应釜中,升温并通入氮气,在150℃、压力为10MPa条件下饱和2h,然后以5MPa/s的卸压速率降至常压,取出发泡样品并在烘箱中定型,最终得到具有多层泡孔结构的聚乳酸电磁屏蔽复合材料。
实施例4
一种具有多层泡孔结构聚合物电磁屏蔽复合材料,其经过以下步骤制得:
(1)高导电纤维的制备
将1g石英玻璃纤维加入到60mL的稀硫酸中,磁力搅拌2h,过滤后用蒸馏水洗涤并抽滤,再把石英玻璃纤维置于氯化亚锡水溶液中并进行磁力搅拌,将产物加入到50mL化学镀铝液(氯化铝5g/L,次亚磷酸钠20g/L)中,逐滴加入柠檬酸钠,在机械搅拌下反应1h,最后洗涤、抽滤并干燥得到金属铝负载石英玻璃纤维。
(2)金属铝负载石英玻璃纤维-环氧树脂复合材料层的制备
将10g环氧树脂加入到丙酮中,磁力搅拌使环氧树脂充分溶解,然后向其中加入5g金属铝负载石英玻璃纤维,超声条件下搅拌40min,将混合物倒入模具中,之后将混合物放入通风橱中直至溶剂挥发完全,得金属铝负载石英玻璃纤维-环氧树脂复合材料。
(3)石墨-环氧树脂复合材料层的制备
分别将9.9g、9.8g、9.7g的环氧树脂充分溶解于丙酮溶剂中,然后分别加入0.1g、0.2g和0.3g的石墨,超声搅拌使石墨均匀分散,将混合液倒入模具中,并置于通风橱中使溶剂完全挥发,得三种石墨-环氧树脂复合材料。
(4)高压气体发泡
将步骤(3)所得的三种石墨-环氧树脂复合材料按石墨含量逐渐递增的方式逐层叠加到步骤(2)所得金属铝负载石英玻璃纤维-环氧树脂复合材料上,得到多层复合材料。将所得多层复合材料裁剪成规则形状并置于高压反应釜中,升温并通入二氧化碳,在50℃、压力为0.2MPa条件下饱和24h,然后以0.1MPa/s的卸压速率降至常压,取出发泡样品并在烘箱中定型,最终得到具有多层泡孔结构的环氧树脂电磁屏蔽复合材料。
实施例5
一种具有多层泡孔结构聚合物电磁屏蔽复合材料,其经过以下步骤制得:
(1)高导电纤维的制备
将1g石棉纤维加入到70mL的稀硫酸中,磁力搅拌3h,过滤后用蒸馏水洗涤并抽滤,再把石棉纤维置于氯化亚锡水溶液中并进行磁力搅拌,将产物加入到60mL化学镀镍液(硫酸镍40g/L,焦磷酸钠10g/L,次磷酸钠5g/L,硫脲5g/L,氨水适量)中,逐滴加入柠檬酸钠,在机械搅拌下反应2h,最后洗涤、抽滤并干燥得到金属镍负载石棉纤维。
(2)金属镍负载石棉纤维-聚酰亚胺复合材料层的制备
将10g聚酰亚胺加入到N-甲基吡咯烷酮中,磁力搅拌使聚酰亚胺充分溶解,然后向其中加入8g金属镍负载石棉纤维,超声条件下搅拌50min,将混合物倒入模具中,之后将混合物放入通风橱中直至溶剂挥发完全,得金属镍负载石棉纤维-聚酰亚胺复合材料。
(3)石墨烯-聚酰亚胺复合材料层的制备
分别将9.9g、9.8g、9.7g的聚酰亚胺充分溶解于N-甲基吡咯烷酮溶剂中,然后分别加入0.1g、0.2g和0.3g的石墨烯,超声搅拌使石墨烯均匀分散,将混合液倒入模具中,并置于通风橱中使溶剂完全挥发,得三种石墨烯-聚酰亚胺复合材料。
(4)高压气体发泡
将步骤(3)所得的三种石墨烯-聚酰亚胺复合材料按石墨烯含量逐渐递增的方式逐层叠加到步骤(2)所得金属镍负载石棉纤维-聚酰亚胺复合材料上,得到多层复合材料。将所得多层复合材料裁剪成规则形状并置于高压反应釜中,升温并通入正己烷,在300℃、压力为20MPa条件下饱和10h,然后以10MPa/s的卸压速率降至常压,取出发泡样品并在烘箱中定型,最终得到具有多层泡孔结构的聚酰亚胺电磁屏蔽复合材料。
实施例6
一种具有多层泡孔结构聚合物电磁屏蔽复合材料,其经过以下步骤制得:
(1)高导电纤维的制备
将1g陶瓷纤维加入到100mL的稀硫酸中,磁力搅拌5h,过滤后用蒸馏水洗涤并抽滤,再把陶瓷纤维置于氯化亚锡水溶液中,磁力搅拌1h,将产物加入到80mL化学镀铜液(氯化铜100g/L,乙二胺四乙酸二钠10g/L,硼酸1g/L)中,逐滴加入柠檬酸钠,在机械搅拌下反应5h,最后洗涤、抽滤并干燥得到金属铜负载陶瓷纤维。
(2)金属铜负载陶瓷纤维-热塑性聚氨酯弹性体复合材料层的制备
将10g热塑性聚氨酯弹性体加入到四氢呋喃中,磁力搅拌使热塑性聚氨酯弹性体充分溶解,然后向其中加入10g金属铜负载陶瓷纤维,超声条件下搅拌1h,将混合物倒入模具中,之后将混合物放入通风橱中直至溶剂挥发完全,得金属铜负载陶瓷纤维-热塑性聚氨酯弹性体复合材料。
(3)富勒烯-热塑性聚氨酯弹性体复合材料层的制备
分别将9.9g、9.8g、9.7g的热塑性聚氨酯弹性体充分溶解于四氢呋喃溶剂中,然后分别加入0.1g、0.2g和0.3g的富勒烯,超声搅拌使足球烯均匀分散,将混合液倒入模具中,并置于通风橱中使溶剂完全挥发,得三种富勒烯-热塑性聚氨酯弹性体复合材料。
(4)高压气体发泡
将步骤(3)所得的三种富勒烯-热塑性聚氨酯弹性体复合材料按富勒烯含量逐渐递增的方式逐层叠加到步骤(2)所得金属铜负载陶瓷纤维-热塑性聚氨酯弹性体复合材料上,得到多层复合材料。将所得多层复合材料裁剪成规则形状并置于高压反应釜中,升温并通入石油醚,在140℃、压力为15MPa条件下饱和4h,然后以10MPa/s的卸压速率降至常压,取出发泡样品并在烘箱中定型,最终得到具有多层泡孔结构的热塑性聚氨酯弹性体电磁屏蔽复合材料。
结果分析
以实施例2为例,采用扫描电镜对金属银负载玻璃纤维以及具有多层泡孔的聚合物电磁屏蔽复合材料的断面进行表征,结果分别如图1和2所示,从图1中可以观察到所制备的高导电纤维的表面沉积了一层致密的金属银粒子,这有利于提高金属粒子的选择性分布,提升纤维的导电性能。在图2中可以看出复合材料中的泡孔尺寸由下而上逐渐增大,这是由于不同含量碳系填料填充聚合物后导致复合材料发泡行为的改变而形成的,这种多层泡孔结构有利于降低复合材料与空气间的阻抗不匹配,增强材料的吸收电磁波系数。
将实施例4所制备具有多层泡孔结构的电磁屏蔽复合材料裁剪成规则形状,利用电磁屏蔽测试仪测量复合材料的电磁屏蔽性能,图3是复合材料的电磁屏蔽效能以及吸收电磁波系数。由于金属在纤维表面的有效负载,使得纤维具有杰出的导电性能,从而赋予复合材料优异的平均电磁屏蔽效能(76dB)。多层结构的设计以及泡孔的引入有效增强了复合材料吸收电磁波性能,其平均吸收电磁波系数可达0.66,表明复合材料可以吸收66%的电磁波,吸收电磁波的比例超过了一半。
虽然结合实施例对本发明的具体实施方式进行了详细地描述,但不应理解为对本专利的保护范围的限定。在权利要求书所描述的范围内,本领域技术人员不经创造性劳动即可作出的各种修改和变形仍属本专利的保护范围。

Claims (10)

1.一种制备具有多层泡孔结构的聚合物电磁屏蔽复合材料的方法,其特征在于,包括以下步骤:
S1:在纤维表面负载导电金属,得导电纤维;
S2:制备导电纤维-聚合物复合材料;
S3:制备不同种类的碳系填料-聚合物复合材料,每种碳系填料-聚合物复合材料中的碳系填料含量不同;
S4:将S3所得的多种碳系填料-聚合物复合材料逐层叠加到S2所得导电纤维-聚合物复合材料上,得多层复合材料;
S5:将S4所得多层复合材料置于反应装置中,通入发泡气体,于0~300℃、0.2~50MPa的条件下饱和5min~24h,然后以0.1~30MPa/s的速率泄压至常压并降温至室温,得到多孔电磁屏蔽复合材料。
2.根据权利要求1所述的制备具有多层泡孔结构的聚合物电磁屏蔽复合材料的方法,其特征在于,所述导电纤维表面负载的导电金属为银、铜、镍、铝、铁或钨,其经过以下步骤制得:
SS1:依次对纤维进行粗化、敏化处理;
SS2:将敏化后的纤维按1g:10~80mL的料液比加入到含有银、铜、镍、铝、铁或钨的化学镀液中,然后加入还原剂溶液,搅拌反应10min~5h,再洗涤、干燥,得导电纤维。
3.根据权利要求1或2所述的制备具有多层泡孔结构的聚合物电磁屏蔽复合材料的方法,其特征在于:所述纤维为玻璃纤维、石英玻璃纤维、陶瓷纤维、碳纤维、石棉纤维或玄武岩纤维。
4.根据权利要求1所述的制备具有多层泡孔结构的聚合物电磁屏蔽复合材料的方法,其特征在于,所述导电纤维-聚合物复合材料经过以下步骤制得:将聚合物溶于溶剂中配成聚合物溶液,然后将导电纤维加入聚合物溶液中,超声搅拌5min~1h,得导电纤维-聚合物复合材料;所述聚合物与导电纤维的质量比为1:1~10:1。
5.根据权利要求1所述的制备具有多层泡孔结构的聚合物电磁屏蔽复合材料的方法,其特征在于,所述碳系填料-聚合物复合材料经过以下步骤制得:将聚合物溶于溶剂中配成聚合物溶液,然后将碳系填料加入聚合物溶液中,超声搅拌5min~1h,得碳系填料-聚合物复合材料;所述聚合物与碳系填料的质量比为9.7:0.3~9.9:0.1。
6.根据权利要求1所述的制备具有多层泡孔结构的聚合物电磁屏蔽复合材料的方法,其特征在于:所述碳系填料为碳纤维、碳纳米管、石墨烯、碳纳米纤维、纳米石墨片、石墨、炭黑或富勒烯。
7.根据根据权利要求4或5所述的制备具有多层泡孔结构的聚合物电磁屏蔽复合材料的方法,其特征在于:所述聚合物为聚乙烯、聚丙烯、聚碳酸酯、聚苯乙烯、聚氯乙烯、聚四氟乙烯、聚酰胺、醋酸乙烯共聚物、聚对苯二甲酸乙二酯、聚甲基丙烯酸甲酯、聚碳酸酯、聚氨酯、聚乳酸、聚羟基乙酸、聚己内酯、聚乙烯醇、环氧树脂、脲醛树脂、呋喃树脂、三聚氰胺甲醛树脂、有机硅树脂、聚芳酯、丙烯酸酯、酚醛树脂、聚醚醚酮、聚砜、聚苯硫醚、聚酰亚胺、丁苯橡胶、顺丁橡胶、异戊橡胶、丁基橡胶、乙丙橡胶、氟橡胶、硅橡胶、热塑性聚苯乙烯弹性体、热塑性聚烯烃弹性体、热塑性共聚酯弹性体、热塑性聚酰胺弹性体或热塑性聚氨酯弹性体。
8.根据权利要求4或5所述的制备具有多层泡孔结构的聚合物电磁屏蔽复合材料的方法,其特征在于:所述溶剂为乙醇、甲醇、异丙醇、乙二醇、乙醚、丙酮、己烷、环己烷、戊烷、庚烷、辛烷、苯胺、丁酮、氯仿、二甲胺、四氯化碳、正庚醇、四氢呋喃、苯、甲苯、二甲苯、乙苯、乙酸丁酯、三氯甲烷、甲酸、二甲亚砜、氯苯、二氯苯、二氯甲烷、三氯乙烯或N-甲基吡咯烷酮。
9.根据权利要求1所述的制备具有多层泡孔结构的聚合物电磁屏蔽复合材料的方法,其特征在于:所述发泡气体为空气、氮气、二氧化碳、氦气、氩气、石油醚、甲烷、乙烷、丙烷、丁烷、戊烷、己烷、庚烷、正戊烷、正己烷、正庚烷、二氯甲烷或三氯氟甲烷。
10.采用权利要求1~9任一项所述的制备方法制得的具有多层泡孔结构的聚合物电磁屏蔽复合材料。
CN202010587262.8A 2020-06-24 2020-06-24 一种具有多层泡孔结构的聚合物电磁屏蔽复合材料及其制备方法 Active CN111660641B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010587262.8A CN111660641B (zh) 2020-06-24 2020-06-24 一种具有多层泡孔结构的聚合物电磁屏蔽复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010587262.8A CN111660641B (zh) 2020-06-24 2020-06-24 一种具有多层泡孔结构的聚合物电磁屏蔽复合材料及其制备方法

Publications (2)

Publication Number Publication Date
CN111660641A true CN111660641A (zh) 2020-09-15
CN111660641B CN111660641B (zh) 2021-11-09

Family

ID=72389813

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010587262.8A Active CN111660641B (zh) 2020-06-24 2020-06-24 一种具有多层泡孔结构的聚合物电磁屏蔽复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN111660641B (zh)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112126197A (zh) * 2020-09-30 2020-12-25 贵州凯科特材料有限公司 一种交替多层环氧树脂基导电复合微孔发泡材料的制备方法
CN112250464A (zh) * 2020-10-26 2021-01-22 西安工程大学 一种用于电磁屏蔽的泡沫炭复合材料及其制备方法
CN113133297A (zh) * 2021-04-20 2021-07-16 合肥工业大学 一种超交联聚苯乙烯基复合炭气凝胶电磁屏蔽材料及其制备方法
CN113527836A (zh) * 2021-07-28 2021-10-22 国网河南省电力公司西峡县供电公司 一种电磁屏蔽复合材料及其制备方法
CN113754911A (zh) * 2021-09-29 2021-12-07 山东科技大学 一种环保电磁屏蔽建筑材料及其制备方法
CN113789665A (zh) * 2021-09-28 2021-12-14 成都海蓉特种纺织品有限公司 一种具有电磁屏蔽功能的织物及其制备方法
CN113853106A (zh) * 2021-10-26 2021-12-28 浙江工业大学 一种高吸收电磁屏蔽泡沫及其制备方法
CN114213698A (zh) * 2021-12-31 2022-03-22 安徽工业大学 一种具有取向填料结构的电磁屏蔽复合泡沫及其制备方法
CN114381841A (zh) * 2021-12-30 2022-04-22 天津工业大学 一种频率选择、电磁屏蔽、隔热、轻质、抗冲击一体化三维织物复合材料及其制备方法
CN114411411A (zh) * 2021-12-24 2022-04-29 湖北华强科技股份有限公司 一种喷涂电磁吸波防护织物的制备方法
CN114437396A (zh) * 2021-12-31 2022-05-06 安徽工业大学 一种夹层结构电磁屏蔽复合泡沫及其制备方法
CN114561080A (zh) * 2020-11-27 2022-05-31 天津工业大学 一种结构功能一体化的电磁屏蔽材料及其制备方法
CN115353740A (zh) * 2022-08-24 2022-11-18 上海市同仁医院 一种具有电磁屏蔽功能的聚硅氧烷材料及其制备方法
CN115500067A (zh) * 2022-09-02 2022-12-20 苏州申赛新材料有限公司 一种低反射磁-电双功能梯度结构电磁屏蔽复合材料
CN114561080B (zh) * 2020-11-27 2024-06-11 天津工业大学 一种结构功能一体化的电磁屏蔽材料及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180003659A (ko) * 2016-06-30 2018-01-10 (주)대한솔루션 자동차용 대시 인슐레이션 패드
CN109591391A (zh) * 2018-11-08 2019-04-09 中北大学 一种低反射高屏蔽梯度结构泡沫材料
CN111138706A (zh) * 2020-01-08 2020-05-12 四川大学 一种具有梯度填料结构的聚合物电磁屏蔽复合泡沫及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180003659A (ko) * 2016-06-30 2018-01-10 (주)대한솔루션 자동차용 대시 인슐레이션 패드
CN109591391A (zh) * 2018-11-08 2019-04-09 中北大学 一种低反射高屏蔽梯度结构泡沫材料
CN111138706A (zh) * 2020-01-08 2020-05-12 四川大学 一种具有梯度填料结构的聚合物电磁屏蔽复合泡沫及其制备方法

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112126197A (zh) * 2020-09-30 2020-12-25 贵州凯科特材料有限公司 一种交替多层环氧树脂基导电复合微孔发泡材料的制备方法
CN112250464A (zh) * 2020-10-26 2021-01-22 西安工程大学 一种用于电磁屏蔽的泡沫炭复合材料及其制备方法
CN112250464B (zh) * 2020-10-26 2022-07-15 西安工程大学 一种用于电磁屏蔽的泡沫炭复合材料及其制备方法
CN114561080B (zh) * 2020-11-27 2024-06-11 天津工业大学 一种结构功能一体化的电磁屏蔽材料及其制备方法
CN114561080A (zh) * 2020-11-27 2022-05-31 天津工业大学 一种结构功能一体化的电磁屏蔽材料及其制备方法
CN113133297A (zh) * 2021-04-20 2021-07-16 合肥工业大学 一种超交联聚苯乙烯基复合炭气凝胶电磁屏蔽材料及其制备方法
CN113527836A (zh) * 2021-07-28 2021-10-22 国网河南省电力公司西峡县供电公司 一种电磁屏蔽复合材料及其制备方法
CN113789665A (zh) * 2021-09-28 2021-12-14 成都海蓉特种纺织品有限公司 一种具有电磁屏蔽功能的织物及其制备方法
CN113754911A (zh) * 2021-09-29 2021-12-07 山东科技大学 一种环保电磁屏蔽建筑材料及其制备方法
CN113754911B (zh) * 2021-09-29 2023-11-03 山东科技大学 一种环保电磁屏蔽建筑材料及其制备方法
CN113853106A (zh) * 2021-10-26 2021-12-28 浙江工业大学 一种高吸收电磁屏蔽泡沫及其制备方法
CN113853106B (zh) * 2021-10-26 2024-03-26 浙江工业大学 一种电磁屏蔽泡沫的制备方法
CN114411411A (zh) * 2021-12-24 2022-04-29 湖北华强科技股份有限公司 一种喷涂电磁吸波防护织物的制备方法
CN114381841A (zh) * 2021-12-30 2022-04-22 天津工业大学 一种频率选择、电磁屏蔽、隔热、轻质、抗冲击一体化三维织物复合材料及其制备方法
CN114437396A (zh) * 2021-12-31 2022-05-06 安徽工业大学 一种夹层结构电磁屏蔽复合泡沫及其制备方法
CN114213698A (zh) * 2021-12-31 2022-03-22 安徽工业大学 一种具有取向填料结构的电磁屏蔽复合泡沫及其制备方法
CN115353740B (zh) * 2022-08-24 2023-09-12 上海市同仁医院 一种具有电磁屏蔽功能的聚硅氧烷材料及其制备方法
CN115353740A (zh) * 2022-08-24 2022-11-18 上海市同仁医院 一种具有电磁屏蔽功能的聚硅氧烷材料及其制备方法
CN115500067B (zh) * 2022-09-02 2023-08-29 苏州申赛新材料有限公司 一种低反射磁-电双功能梯度结构电磁屏蔽复合材料
CN115500067A (zh) * 2022-09-02 2022-12-20 苏州申赛新材料有限公司 一种低反射磁-电双功能梯度结构电磁屏蔽复合材料

Also Published As

Publication number Publication date
CN111660641B (zh) 2021-11-09

Similar Documents

Publication Publication Date Title
CN111660641B (zh) 一种具有多层泡孔结构的聚合物电磁屏蔽复合材料及其制备方法
Yang et al. Heterogeneous silicon rubber composite foam with gradient porous structure for highly absorbed ultra-efficient electromagnetic interference shielding
CN111138706B (zh) 一种具有梯度填料结构的聚合物电磁屏蔽复合泡沫及其制备方法
Ma et al. Ultralightweight silver nanowires hybrid polyimide composite foams for high-performance electromagnetic interference shielding
Fu et al. Construction of three-dimensional interconnected graphene nanosheet network in thermoplastic polyurethane with highly efficient electromagnetic interference shielding
Guo et al. Poly (vinyl alcohol)/MXene biomimetic aerogels with tunable mechanical properties and electromagnetic interference shielding performance controlled by pore structure
CN114437396A (zh) 一种夹层结构电磁屏蔽复合泡沫及其制备方法
CN105566857B (zh) 一种轻质环氧树脂复合材料及其制备方法
KR101101172B1 (ko) 탄소나노튜브 정제 방법 및 이를 이용하여 제조된 탄소나노튜브를 포함하는 전자파 흡수체
Wei et al. Lightweight and highly compressible expandable polymer microsphere/silver nanowire composites for wideband electromagnetic interference shielding
Su et al. Structure evolution and microwave absorption properties of nickel nanoparticles incorporated carbon spheres
Ge et al. Large cyclic deformability of microcellular TPU/MWCNT composite film with conductive stability, and electromagnetic interference shielding and self-cleaning performance
Ge et al. Lightweight and flexible poly (ether-block-amide)/multiwalled carbon nanotube composites with porous structure and segregated conductive networks for electromagnetic shielding applications
Liu et al. Collagen fiber/Fe3O4/polypyrrole nanocomposites for absorption-type electromagnetic interference shielding and radar stealth
Liu et al. Diverse structural design strategies of MXene-based macrostructure for high-performance electromagnetic interference shielding
Song et al. Lightweight and flexible silicone rubber foam with dopamine grafted multi-walled carbon nanotubes and silver nanoparticles using supercritical foaming technology: Its preparation and electromagnetic interference shielding performance
Chang et al. Progressive conductivity modular assembled fiber reinforced polymer composites for absorption dominated ultraefficient electromagnetic interference shielding
Tao et al. Cellulose nanofiber/MXene/mesoporous carbon hollow spheres composite films with porous structure for deceased reflected electromagnetic interference shielding
Liu et al. Studies on electromagnetic interference shielding effect mechanisms of leaf-like three-dimensional carbon nanotubes/graphene aerogel film and the composites with polydimethylsiloxane
CN111171482B (zh) 碳纤维毡/银纳米线/聚偏氟乙烯复合材料的制备方法
Singh et al. Porous materials for EMI shielding
Zhou et al. Ultralight, compressible and superhydrophobic hybrid foam with highly efficient electromagnetic interference shielding in damping and high humidity environment
Tang et al. Lightweight and tough multilayered composite based on poly (aryl ether nitrile)/carbon fiber cloth for electromagnetic interference shielding
Huang et al. Lightweight and textured Ni@ Cu-encapsulated carbon tube with outstanding electromagnetic interference shielding performance
Guo et al. Biomass-based electromagnetic wave absorption materials with unique structures: a critical review

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant