CN111656042A - Shaft brake disc and shaft brake disc/hub connection - Google Patents

Shaft brake disc and shaft brake disc/hub connection Download PDF

Info

Publication number
CN111656042A
CN111656042A CN201980010533.9A CN201980010533A CN111656042A CN 111656042 A CN111656042 A CN 111656042A CN 201980010533 A CN201980010533 A CN 201980010533A CN 111656042 A CN111656042 A CN 111656042A
Authority
CN
China
Prior art keywords
friction
brake disc
friction ring
shaft brake
ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201980010533.9A
Other languages
Chinese (zh)
Other versions
CN111656042B (en
Inventor
M·施密特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Knorr Bremse Systeme fuer Schienenfahrzeuge GmbH
Original Assignee
Knorr Bremse Systeme fuer Schienenfahrzeuge GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Knorr Bremse Systeme fuer Schienenfahrzeuge GmbH filed Critical Knorr Bremse Systeme fuer Schienenfahrzeuge GmbH
Publication of CN111656042A publication Critical patent/CN111656042A/en
Application granted granted Critical
Publication of CN111656042B publication Critical patent/CN111656042B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D65/00Parts or details
    • F16D65/02Braking members; Mounting thereof
    • F16D65/12Discs; Drums for disc brakes
    • F16D65/128Discs; Drums for disc brakes characterised by means for cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D65/00Parts or details
    • F16D65/02Braking members; Mounting thereof
    • F16D2065/13Parts or details of discs or drums
    • F16D2065/1304Structure
    • F16D2065/132Structure layered
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D65/00Parts or details
    • F16D65/02Braking members; Mounting thereof
    • F16D2065/13Parts or details of discs or drums
    • F16D2065/1304Structure
    • F16D2065/1328Structure internal cavities, e.g. cooling channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D65/00Parts or details
    • F16D65/78Features relating to cooling
    • F16D65/84Features relating to cooling for disc brakes
    • F16D65/847Features relating to cooling for disc brakes with open cooling system, e.g. cooled by air

Abstract

The invention relates to a shaft brake disk (1) for a rail vehicle, comprising a first friction ring (2) and a second friction ring arranged parallel to and at a distance from the first friction ring, and a device for fastening the brake disk (1) to a connecting plate (7) extending radially outward from a wheel hub (6), wherein the two friction rings (2, 4) are designed as separate components. The invention also relates to a shaft brake disc/hub connection.

Description

Shaft brake disc and shaft brake disc/hub connection
Technical Field
The present invention relates to a shaft brake disc (or shaft-mounted brake disc) for a rail vehicle and a shaft brake disc/hub connection for a rail vehicle according to the preamble of claim 1.
Background
A typical axle brake disc for a rail vehicle usually comprises two friction bands arranged at a distance from one another, between which cooling plates are moulded for cooling the friction bands, and a connecting plate moulded on the friction bands for connection to the axle.
Such shaft brake discs are usually cast from one piece. This is accompanied by a relatively complex production, since, due to the geometry of the shaft brake disk, lost cores and open mold tooling must be used.
Due to the manufacturing process, the geometric design variations and material choices of such shaft brake discs are severely limited.
Disclosure of Invention
The object of the invention is to provide a shaft brake disc which can be produced in a simple manner and which allows greater design freedom in terms of geometric design and material selection.
Another object of the invention is to provide a shaft brake disc/hub connection which can be mounted in a relatively simple manner.
The first object is achieved by a shaft brake disc having the features of claim 1.
The second object is achieved by a shaft brake disc/hub connection having the features of claim 12.
The shaft brake disc according to the invention has a first friction ring and a second friction ring arranged parallel to the first friction ring and at a distance therefrom, and means for fixing the brake disc on a web extending radially outward from the hub. The two friction rings are designed here as separate components.
The advantage of such a multi-part shaft brake disk is, in particular, that the design freedom is increased with regard to the geometric design and the material selection.
Furthermore, due to the multiple parts and the associated changes in the production method, more possibilities arise in the selection of materials, so that, for example, materials having a high thermal conductivity can be used to conduct away the heat of the friction surface of the friction ring.
Furthermore, it is advantageous that the material used has a high heat capacity in order to be able to absorb as much heat as possible with a small temperature increase.
Furthermore, it is advantageous that the material used has a high yield limit in order to obtain as little plasticization as possible and thus a small disc (Tellerung).
There is no such variability in the cast materials currently used, from which shaft brake discs are typically manufactured.
Advantageous embodiment variants of the invention are the subject matter of the dependent claims.
According to an advantageous embodiment variant, the friction ring is designed as a stamped or forged part.
It is also conceivable to produce the friction ring from a simple semi-finished product by means of laser cutting/water jet cutting.
Both variants enable particularly simple production of the shaft brake disk.
According to a further advantageous embodiment variant, the first friction ring and the second friction ring of the brake disk are symmetrical with respect to the mirror image in the center between the friction rings and are perpendicular to the axis of rotation of the brake disk.
This makes it possible to keep the number of parts of the shaft brake disk small.
The means for fastening the shaft brake disk to the radially outwardly extending web are at least partially designed as friction ring webs which extend radially inwardly toward the axis of rotation of the brake disk.
This provides the following advantages: when the hub is mounted, the friction ring can be mounted and dismounted axially in both directions relative to the hub.
According to a further embodiment variant, at least one part of the device is designed as a through-opening in the first friction ring and the second friction ring, perpendicular to the friction surfaces of the friction rings, into which through-opening a screw can be inserted for fastening the friction rings to a web extending radially outward from the hub.
This makes it possible to fasten, in particular screw, the shaft brake disk in the region of the friction ring, so that the shaft brake disk can thus be configured approximately similarly to a wheel brake disk.
According to a further advantageous embodiment variant, a cooling body in the form of a separate component is accommodated between the first friction ring and the second friction ring, which cooling body is connected to the friction rings in a form-fitting, force-fitting or material-fitting manner.
The multiple part design of the shaft brake disk also has the great advantage that the cooling body can be made of a material which has the best cooling effect.
According to an advantageous embodiment variant, the cooling body is designed as a 3D printing, sheet metal, sintered or cast part, or is made of a solid material from which the cooling channels are machined.
The cooling body is designed as a 3D printing, sheet metal, sintered or cast part, which has the advantage of simple production.
The shape of the heat sink, which is a separately embodied component, can be selected very variably here both in terms of material selection and in terms of shape design.
According to a further embodiment variant, the cooling body is designed as a flat plate and as alternating layers of undulated or trapezoidal bent or folded intermediate elements arranged parallel to the friction surfaces of the friction ring for forming the cooling channels.
Such an embodiment of the cooling body makes it possible to generate a large surface at the maximum cooling air volume flow, so that a particularly high cooling effect can be achieved with a cooling body of this design.
The plate and/or the intermediate element is particularly preferably designed as a circular ring when viewed parallel to the friction surface of the friction ring. This enables a particularly simple assembly of the heat sink.
In order to absorb the contact pressure of the brake lining or the forces resulting from thermal expansion during braking, according to a further preferred embodiment variant, the heat sink has spacer sleeves which are oriented perpendicularly to the friction surface of the friction ring and bear against the rear side of the friction ring facing away from the friction surface.
The axle brake disc/hub connection for a rail vehicle according to the invention, wherein the brake disc has a first friction ring and a second friction ring arranged parallel to and at a distance from the first friction ring, and the hub has a web extending radially outwards, is characterized by an axle brake disc as described above.
According to an advantageous embodiment, the respective web of the hub in the connecting position is accommodated between the friction ring web of the first friction ring and the friction ring web of the second friction ring.
By means of this arrangement, a two-part connection is obtained instead of the single-part connection known from the prior art, whereby a significantly higher torque transmission to the hub connection point or the wheel connection point can be achieved.
Furthermore, this design makes it possible to reduce the number of connection points between the brake disk and the hub overall.
Drawings
Preferred embodiments are described in more detail below with reference to the accompanying drawings.
It shows that:
FIG. 1 shows a schematic perspective view, partly in section, of an embodiment variant of a shaft brake disc according to the invention, which is connected to a wheel hub, and
fig. 2 shows a schematic partial perspective view of an alternative embodiment variant of a shaft brake disk.
Detailed Description
In the following description of the figures, the terms upper, lower, left, right, front, rear, etc. relate only to selected exemplary illustrations and positions of brake discs, friction rings, cooling bodies, wheel hubs, cooling channels and the like in the respective figures. These terms should not be construed as limiting, i.e., these references may vary due to different operating positions or mirror-symmetrical designs, etc.
In fig. 1 and 2, reference numeral 1 generally designates an embodiment variant of a shaft brake disc 1 for a rail vehicle according to the invention.
As shown in fig. 1, the shaft brake disk 1 has a first friction ring 2 and a second friction ring 4, which is arranged parallel to the first friction ring and at a distance therefrom.
On the inner edges of the friction rings 2, 4 facing the hub 6, means are formed for fixing the shaft brake disc 1 on a web 7 extending radially outward from the hub 6. The friction rings 2, 4 are designed here as separate components.
The two friction rings 2, 4 are preferably designed symmetrically with respect to the mirror image in the center between the friction rings 2, 4 and perpendicular to the axis of rotation D of the shaft brake disk 1.
In order to fix the shaft brake disk 1 on the hub 6 placed on the shaft 5, a plurality of devices designed as friction ring webs 14 extend radially inward from the radially inner circumferential surfaces 16 of the friction rings 2, 4, as shown in the embodiment variant in fig. 1.
Accordingly, the web 7 extends radially outwardly from the hub 6.
As can also be seen from fig. 1, the respective webs 7 of the hub 6 are clamped between the mutually opposite friction ring webs 14 of the first friction ring 2 and of the second friction ring 4.
In order to fix the shaft brake disk 1 on the wheel hub 6, screws are guided through the openings of the friction-ring webs 14 and the webs 7, which screws serve to fix the friction-ring webs 14 to the corresponding webs 7 of the wheel hub 6.
This results in a two-stage connection between the friction ring web 14 and the web 7 of the hub 6, as a result of which an increase in the torque that can be transmitted during braking can be achieved.
A reduction in the number of connection points between the shaft brake disk 1 and the hub 6, which are formed by the connection plates 7 and the friction ring connection plates 14, can also be achieved due to the greater transmissible torque.
In the embodiment variant shown in fig. 2, a hub 6 with radially outwardly extending webs 7, the ends of which bear against the inner faces of the friction rings 2, 4 and have holes through which screws can be guided, is used to fix the friction rings 2, 4 to the respective webs 7 of the hub 6 for fixing the shaft brake disk 1 to the shaft 5.
Between the friction rings 2, 4, the shaft brake disk 1 has a cooling body 3 connected to the friction rings 2, 4 in the two embodiment variants shown in fig. 1 and 2.
The heat sink 3 is also designed as a component that is produced separately from the friction rings 2, 4. The friction rings 2, 4 and the heat sink 3 are connected to one another in a form-fitting, force-fitting or material-fitting manner.
The friction ring 2 shown in fig. 2 can be constructed as a solid casting. Preferably, the friction rings 2, 4 are configured as stampings, mills or forgings.
In the embodiment variant shown in fig. 1, the heat sink 3 is designed as a flat plate 11 and as alternating layers of a corrugated or trapezoidal bent or folded intermediate element 12 arranged parallel to the friction surfaces of the friction ring 2 or friction rings 2, 4.
The corrugated or trapezoidal bent or folded intermediate element 12 forms the cooling channel 10 with the sheet 11 surrounding the intermediate element.
On the contact surfaces with the respective inner faces of the friction rings 2, 4, the intermediate element 12 can form a cooling channel 10 together with the inner faces of the friction rings 2, 4.
It is also conceivable to omit the sheet metal 11, so that, as in the embodiment variant shown in fig. 2, the heat sink 3 is designed as a layer of a corrugated or trapezoidal bent or folded intermediate element 12 which is arranged parallel to the friction surfaces of the friction ring 2 or of the friction rings 2, 4. Here, superimposed undulated or trapezoidally curved or folded intermediate elements 12 or intermediate elements 12 form the cooling channel 10 together with the inner face of the friction ring 2.
The wave orientation of the intermediate element 12 is preferably designed such that the cooling channels 10 extend radially with respect to the axis of rotation of the friction ring 2. It is also conceivable for the cooling channel 10 to be oriented obliquely to the axis of rotation of the friction ring 2.
As shown in fig. 1, the cooling body 3 is accommodated between two friction rings 2, 4 of a shaft brake disk 1.
Alternatively, the heat sink 3 can also be designed as a component produced using a 3D printing process or as a sheet metal part or a sintered part.
It is also conceivable for the heat sink 3 to be designed as a casting. It is also conceivable to produce the cooling body 3 from a solid material from which the cooling channels 10 are produced.
In the embodiment variant of the cooling body 3 shown in fig. 1 and 2, the flat plate 11 and the corrugated or trapezoidal bent or folded intermediate element 12 are designed as circular rings, viewed parallel to the friction surface of the friction ring 2.
It is also conceivable that the sheet 11 and/or the intermediate element 12 is configured, for example, only partially in the form of a circular ring, and that a plurality of such sheets 11 and/or intermediate elements 12 are therefore arranged next to one another.
In order to reduce the efficiency of the air transport through the cooling body, it is also conceivable to provide holes or slits in the plate 11 and/or the intermediate element 12.
The connection between the sheet 11 and the intermediate element 12 is preferably produced in a material-locking manner, for example by soldering or welding.
It is also conceivable that the flat sheet 11 and the intermediate element 12 are screwed to one another.
As fig. 1 also shows, the heat sink 3 has spacer sleeves 9, which are oriented perpendicularly to the friction surface of the at least one friction ring 2 and which bear against a rear side 15 of the at least one friction ring 2 facing away from the friction surface 13.
Screws or bolts can preferably be inserted into the spacer sleeves 9 from the friction surface 13 of the friction ring 2.
For this purpose, holes 8 are provided in the friction ring 2, into which corresponding screws or bolts can be inserted for fastening the friction ring 2 to a hub or wheel, and through which the cooling body 3 can be fastened to the friction ring 2.
In order to be able to achieve a compensating movement due to thermally induced expansion of the components of the heat sink 3, according to a further preferred embodiment variant, a spring element is provided between two or more of the metal sheets 11.
The spring element is designed here, for example, as a disk spring.
List of reference numerals
1-shaft brake disc
2 Friction ring
3 Cooling body
4 Friction ring
5 shaft
6 wheel hub
7 fixing element
8 holes
9 spacer sleeve
10 Cooling channel
11 sheet material
12 intermediate element
13 friction surface
14 friction ring connecting plate
15 rear side
16 peripheral surface
17 holes
D axis of rotation

Claims (14)

1. Shaft brake disc (1) for a rail vehicle, having a first friction ring (2) and a second friction ring (4) arranged parallel to and at a distance from the first friction ring, and means for fixing the brake disc (1) to a web (7) extending radially outwards from a hub (6), characterized in that the two friction rings (2, 4) are constructed as separate components.
2. Shaft brake disc (1) according to claim 1, characterized in that the friction rings (2, 4) are configured as a stamping or forging.
3. Shaft brake disc (1) according to claim 1, characterized in that the friction rings (2, 4) are manufactured from semi-finished products by means of laser/water jet cutting.
4. Shaft brake disc (1) according to one of the preceding claims, characterized in that the first friction ring (2) and the second friction ring (4) of the brake disc are symmetrical with respect to the mirror image in the center between the friction rings (2, 4) and perpendicular to the axis of rotation (D) of the brake disc (1).
5. Shaft brake disc (1) according to any of the preceding claims, characterized in that at least one part of the means is configured as a friction ring web (14) extending radially inwards towards the axis of rotation (D) of the brake disc (1).
6. Shaft brake disc (1) according to one of the preceding claims, characterized in that at least one part of the means is configured as a through-hole in the first friction ring (2) and the second friction ring (4) perpendicular to the friction surfaces of the friction rings (2, 4), into which a bolt for fixing the friction rings (2, 4) on a web (7) extending radially outwards from the hub (6) can be inserted.
7. Shaft brake disc (1) according to one of the preceding claims, characterized in that a cooling body (3) designed as a separate component is accommodated between the first friction ring (2) and the second friction ring (4), which cooling body is connected to the friction rings (2, 4) in a form-fitting, force-fitting or material-fitting manner.
8. Shaft brake disc (1) according to claim 7, characterized in that the cooling body (3) is configured as a 3D print, sheet, sintered or cast piece or consists of a solid material from which the cooling channels (10) are machined.
9. Shaft brake disc (1) according to claim 7 or 8, characterized in that the cooling body (3) is configured as a layer of an undulated or trapezoidally bent or folded intermediate element (12) arranged parallel to the friction surfaces of the friction rings (2, 4) for forming a cooling channel (10).
10. Shaft brake disc (1) according to claim 7 or 8, characterized in that the cooling bodies (3) are configured as alternating layers of flat sheet metal (11) and wave-shaped or trapezoidally curved or folded intermediate elements (12) arranged parallel to the friction faces of the friction rings (2, 4) for forming cooling channels (10).
11. Shaft brake disc (1) according to claim 9 or 10, characterized in that the plate (11) and/or the intermediate element (12) is configured as a circular ring when viewed parallel to the friction surfaces of the friction rings (2, 4).
12. Shaft brake disc (1) according to one of claims 7 to 11, characterized in that the cooling body (3) has spacer sleeves (9) which are oriented perpendicularly to the friction surface of at least one friction ring (2, 4) and bear against a rear side (15) of the at least one friction ring (2, 4) facing away from the friction surface (13).
13. Shaft brake disc/hub connection for a rail vehicle, wherein the brake disc (1) has a first friction ring (2) and a second friction ring (4) arranged parallel to and at a distance from the first friction ring, and the hub (6) has a radially outwardly extending web (7), characterized in that the shaft brake disc (1) is constructed according to one of the preceding claims.
14. Shaft brake disc/hub connection according to claim 13, characterized in that the respective web (7) of the hub (6) in the connection position is accommodated between the friction ring web (14) of the first friction ring (2) and the friction ring web of the second friction ring (4).
CN201980010533.9A 2018-01-29 2019-01-21 Shaft brake disc and shaft brake disc/hub connection Active CN111656042B (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102018101920.3A DE102018101920A1 (en) 2018-01-29 2018-01-29 Shaft brake disc and shaft brake discs / hub connection
DE102018101920.3 2018-01-29
PCT/EP2019/051346 WO2019145249A1 (en) 2018-01-29 2019-01-21 Axle-mounted brake disc and axle-mounted brake disc-hub connection

Publications (2)

Publication Number Publication Date
CN111656042A true CN111656042A (en) 2020-09-11
CN111656042B CN111656042B (en) 2022-09-23

Family

ID=65516454

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201980010533.9A Active CN111656042B (en) 2018-01-29 2019-01-21 Shaft brake disc and shaft brake disc/hub connection

Country Status (3)

Country Link
CN (1) CN111656042B (en)
DE (1) DE102018101920A1 (en)
WO (1) WO2019145249A1 (en)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB542762A (en) * 1939-03-17 1942-01-27 Budd Wheel Co Improvements in or relating to brakes
DE1132950B (en) * 1959-09-09 1962-07-12 Bergische Stahlindustrie Brake disc
DE1625827A1 (en) * 1967-09-20 1970-08-20 Teves Gmbh Alfred Composite ventilated brake disc
EP0241767A1 (en) * 1986-04-17 1987-10-21 Schwäbische Hüttenwerke Gesellschaft mit beschränkter Haftung Disc brake device
EP0318687A2 (en) * 1987-12-03 1989-06-07 BUDERUS GUSS GmbH Use of a variety of cast iron for brake bodies and brake discs comprising brake rings and a wave-shaped transition between brake ring and hub situated in the brake area
JPH06199237A (en) * 1992-10-26 1994-07-19 Gec Alsthom Transport Sa Brake system for railway vehicle using material consisting mainly of carbon
WO2006005526A1 (en) * 2004-07-13 2006-01-19 Knorr-Bremse Systeme für Nutzfahrzeuge GmbH Axle shaft comprising an electromechanically or pneumatically actuated disc brake
WO2009080135A1 (en) * 2007-12-20 2009-07-02 Daimler Ag Brake disc for a motor vehicle
CN101909902A (en) * 2008-01-11 2010-12-08 克诺尔-布里姆斯轨道车辆系统有限公司 Rail wheel
DE102011101432A1 (en) * 2011-05-10 2012-11-15 Daimler Ag Brake disk for use in motor car, has inner friction ring, outer friction ring, and wire structure element arranged between inner and outer rings, where structure element is connected with one of rings in firmly-bonded and/or form-fit manner
CN104126079A (en) * 2012-02-14 2014-10-29 大陆-特韦斯贸易合伙股份公司及两合公司 Internally ventilated motor vehicle brake disc made of fibre composite material
CN105134838A (en) * 2015-07-21 2015-12-09 青岛四方车辆研究所有限公司 High-speed train wheel brake disc with sliding block structure and installing method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1540720A (en) * 1975-04-08 1979-02-14 Girling Ltd Rotatable braking members
DE3223405C2 (en) * 1982-06-23 1984-09-20 Daimler-Benz Ag, 7000 Stuttgart Brake disc designed as a rotating heat pipe
US20080142319A1 (en) * 2006-12-14 2008-06-19 Gary Manter Brake rotor having corrugated fin structure
DE202011052265U1 (en) * 2011-12-12 2013-03-13 Faiveley Transport Witten Gmbh Built shaft brake disk
DE202011052267U1 (en) * 2011-12-12 2013-03-13 Faiveley Transport Witten Gmbh Built shaft brake disk

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB542762A (en) * 1939-03-17 1942-01-27 Budd Wheel Co Improvements in or relating to brakes
DE1132950B (en) * 1959-09-09 1962-07-12 Bergische Stahlindustrie Brake disc
DE1625827A1 (en) * 1967-09-20 1970-08-20 Teves Gmbh Alfred Composite ventilated brake disc
EP0241767A1 (en) * 1986-04-17 1987-10-21 Schwäbische Hüttenwerke Gesellschaft mit beschränkter Haftung Disc brake device
EP0318687A2 (en) * 1987-12-03 1989-06-07 BUDERUS GUSS GmbH Use of a variety of cast iron for brake bodies and brake discs comprising brake rings and a wave-shaped transition between brake ring and hub situated in the brake area
JPH06199237A (en) * 1992-10-26 1994-07-19 Gec Alsthom Transport Sa Brake system for railway vehicle using material consisting mainly of carbon
WO2006005526A1 (en) * 2004-07-13 2006-01-19 Knorr-Bremse Systeme für Nutzfahrzeuge GmbH Axle shaft comprising an electromechanically or pneumatically actuated disc brake
WO2009080135A1 (en) * 2007-12-20 2009-07-02 Daimler Ag Brake disc for a motor vehicle
CN101909902A (en) * 2008-01-11 2010-12-08 克诺尔-布里姆斯轨道车辆系统有限公司 Rail wheel
DE102011101432A1 (en) * 2011-05-10 2012-11-15 Daimler Ag Brake disk for use in motor car, has inner friction ring, outer friction ring, and wire structure element arranged between inner and outer rings, where structure element is connected with one of rings in firmly-bonded and/or form-fit manner
CN104126079A (en) * 2012-02-14 2014-10-29 大陆-特韦斯贸易合伙股份公司及两合公司 Internally ventilated motor vehicle brake disc made of fibre composite material
CN105134838A (en) * 2015-07-21 2015-12-09 青岛四方车辆研究所有限公司 High-speed train wheel brake disc with sliding block structure and installing method

Also Published As

Publication number Publication date
DE102018101920A1 (en) 2019-08-01
CN111656042B (en) 2022-09-23
WO2019145249A1 (en) 2019-08-01

Similar Documents

Publication Publication Date Title
US4177883A (en) Discs for disc brakes
DK2791540T3 (en) Total brake disc, mounted on shaft
US20120085603A1 (en) Brake Disk
KR101964125B1 (en) Brake Disc
US6098764A (en) Shaft brake disk for rail vehicle disk brake systems and method of making same
US20120255820A1 (en) Segmented brake rotor with externally vented carrier
US10527116B2 (en) Brake disc comprising a friction ring and a hub produced as a separate element and arranged inside of the friction ring
US8297416B2 (en) Rotor device and method of making same
US20070199778A1 (en) Vented disc brake rotor
CA2920060C (en) Friction ring body for a rail wheel brake and rail wheel brake
US8523108B2 (en) Heat shield installation for aircraft wheel to improve convective cooling of aircraft brake
US10781876B2 (en) Brake disk for vehicles
US20160298706A1 (en) Floating Disc Brake Rotor Assemble and Method for Attaching Same
US10989260B2 (en) Air cooling of disc brake unit by longitudinal vortex generator
US5137123A (en) Brake disk
KR101866046B1 (en) Brake disk having double cooling structure
JP2017511453A (en) Directly operable clutch with ventilation geometry
KR102606470B1 (en) car brake disc
CN111656042B (en) Shaft brake disc and shaft brake disc/hub connection
KR102150231B1 (en) Brake disk of involute spur mounting structure
EP0020389B1 (en) Disc brake assembly containing split discs
US8857577B2 (en) Damped brake rotor
CN114466982A (en) Brake disc unit for railway vehicle
EP2740961B1 (en) Connecting means for brake disc
RU2768425C2 (en) Friction annular element, set of friction rings for mounting on wheel disc of rail wheel and rail wheel brake

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant