CN111650630A - Method and system for arranging radioactive sources - Google Patents
Method and system for arranging radioactive sources Download PDFInfo
- Publication number
- CN111650630A CN111650630A CN202010436928.XA CN202010436928A CN111650630A CN 111650630 A CN111650630 A CN 111650630A CN 202010436928 A CN202010436928 A CN 202010436928A CN 111650630 A CN111650630 A CN 111650630A
- Authority
- CN
- China
- Prior art keywords
- radioactive
- radiation
- source
- module
- exposure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000002285 radioactive effect Effects 0.000 title claims abstract description 196
- 238000000034 method Methods 0.000 title claims abstract description 32
- 230000005855 radiation Effects 0.000 claims abstract description 164
- 238000004364 calculation method Methods 0.000 claims abstract description 56
- 230000000694 effects Effects 0.000 claims abstract description 54
- 231100000987 absorbed dose Toxicity 0.000 claims abstract description 48
- 238000005259 measurement Methods 0.000 claims abstract description 19
- 238000011156 evaluation Methods 0.000 claims abstract description 13
- 230000003068 static effect Effects 0.000 claims description 18
- 230000001174 ascending effect Effects 0.000 claims description 10
- 238000011158 quantitative evaluation Methods 0.000 claims description 10
- 238000010606 normalization Methods 0.000 claims description 6
- 238000004088 simulation Methods 0.000 claims description 4
- 238000004590 computer program Methods 0.000 claims description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000009659 non-destructive testing Methods 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 239000000941 radioactive substance Substances 0.000 description 1
- 238000001959 radiotherapy Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01T—MEASUREMENT OF NUCLEAR OR X-RADIATION
- G01T1/00—Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
- G01T1/16—Measuring radiation intensity
- G01T1/167—Measuring radioactive content of objects, e.g. contamination
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N23/00—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
- G01N23/02—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
- G01N23/06—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2223/00—Investigating materials by wave or particle radiation
- G01N2223/30—Accessories, mechanical or electrical features
- G01N2223/323—Accessories, mechanical or electrical features irradiation range monitor, e.g. light beam
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- High Energy & Nuclear Physics (AREA)
- Molecular Biology (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Measurement Of Radiation (AREA)
Abstract
本发明属于放射源技术领域,公开了一种放射源的排列方法及系统,所述放射源的排列系统包括:参数获取模块、放射源能量获取模块分别用于获取放射源排列参数以及放射源能量;放射源活度测量模块、照射量率确定模块、照射量计算模块、待辐射物品吸收剂量计算模块、总照射量计算模块分别用于确定放射源活度、放射源的照射量率、放射源在参考点的照射量率、待辐射物品吸收剂量以及总照射量;排列位置计算模块、评价模块分别用于确定放射源的排列位置并对结果进行评价;排列模块用于进行放射源的排列;本发明能够提供多种放射源排列方式,同时对每一种排列方式进行量化评价,从而确定最优排列方法,得到参考面剂量率不均匀度最小的放射源排列方式。
The invention belongs to the technical field of radioactive sources, and discloses a method and a system for arranging radioactive sources. The arranging system for radioactive sources includes: a parameter acquisition module and a radioactive source energy acquisition module for acquiring radioactive source arrangement parameters and radioactive source energy respectively. ;The radiation source activity measurement module, the exposure rate determination module, the exposure calculation module, the absorbed dose calculation module of the object to be irradiated, and the total exposure calculation module are used to determine the activity of the radioactive source, the exposure rate of the radioactive source, the radiation source The exposure rate at the reference point, the absorbed dose of the object to be irradiated and the total exposure; the arrangement position calculation module and the evaluation module are respectively used to determine the arrangement position of the radiation sources and evaluate the results; the arrangement module is used to arrange the radiation sources; The invention can provide a variety of radiation source arrangements, and quantitatively evaluate each arrangement at the same time, so as to determine the optimal arrangement method, and obtain the radiation source arrangement with the smallest dose rate unevenness on the reference surface.
Description
技术领域technical field
本发明属于放射源技术领域,尤其涉及一种放射源的排列方法及系统。The invention belongs to the technical field of radioactive sources, and in particular relates to a method and system for arranging radioactive sources.
背景技术Background technique
目前,放射源是采用放射性物质制成的辐射源的通称。放射源一般用所制成放射性核素的活度标识其强弱,也可用射线发射率或注量率标识其强弱。习惯上将无损探伤、放射治疗、辐射处理所用的高活度或高射线发射率的放射源称作辐射源(radiationsource)。以放射源为基础的射线应用技术在工业、农业、医学、资源、环境、军事、科学研究等领域有广泛的应用。At present, a radioactive source is a general term for a radiation source made of radioactive substances. The radioactive source generally uses the activity of the radionuclide made to identify its strength, and can also use the ray emissivity or fluence rate to identify its strength. Conventionally, radioactive sources with high activity or high ray emissivity used in nondestructive testing, radiotherapy, and radiation treatment are called radiation sources. Radiation application technology based on radioactive sources has a wide range of applications in industry, agriculture, medicine, resources, environment, military, scientific research and other fields.
然而,现有放射源排列主要是通过人工经验进行,尤其是在新旧源更换时需要重新排列以保证辐射场的均匀性,不仅耗时长,且排列结果不一定是最优结果,同时效率低。However, the existing radioactive source arrangement is mainly carried out by manual experience, especially when the old and new sources are replaced, they need to be rearranged to ensure the uniformity of the radiation field, which not only takes a long time, but also the arrangement result is not necessarily the optimal result, and the efficiency is low.
通过上述分析,现有技术存在的问题及缺陷为:现有放射源的排列方法耗时长,且排列结果不一定是最优结果,同时效率低。Through the above analysis, the existing problems and defects in the prior art are: the existing method for arranging radioactive sources takes a long time, the arrangement result is not necessarily the optimal result, and at the same time, the efficiency is low.
发明内容SUMMARY OF THE INVENTION
针对现有技术存在的问题,本发明提供了一种放射源的排列方法及系统。Aiming at the problems existing in the prior art, the present invention provides a method and system for arranging radiation sources.
本发明是这样实现的,一种放射源的排列方法,所述放射源的排列方法,包括以下步骤:The present invention is realized by a method for arranging radioactive sources, and the method for arranging radioactive sources includes the following steps:
步骤一,利用扫描装置、摄像装置获取相关放射源排列参数,或利用输入装置进行相关放射源排列参数的输入;利用闪烁探测器获取放射源能量;
步骤二,利用放射源活度探测仪进行放射源活度的测量;基于获取或输入的放射源类型确定某种确定放射源的照射量率常数;
步骤三,基于获取或输入的放射源架形状、位置、结构、参考点群空间位置及其他相关参数计算放射源在参考点的照射量率;基于获取到的相关参数进行待辐射物品吸收剂量的计算;Step 3: Calculate the radiation dose rate of the radiation source at the reference point based on the acquired or input shape, position, structure, spatial position of the reference point group and other related parameters; calculate;
步骤四,基于相关辐照类型、放射源在参考点的照射量以及待辐射物品吸收剂量进行总照射量的计算;基于放射源活度测量结果按照从小到大的顺序进行放射源分组排序;Step 4: Calculate the total exposure based on the relevant irradiation type, the exposure of the radioactive source at the reference point, and the absorbed dose of the object to be irradiated; the radioactive sources are grouped and sorted in ascending order based on the activity measurement results of the radioactive source;
步骤五,基于放射辐照要求、放射源架形状、放射源架结构以及相关放射源参数、待辐射物品吸收剂量进行辐射场划分,确定每个区域的所需照射量;基于每个区域所需照射量以及放射源活度、能量参数确定放射源的排列位置;Step 5: Divide the radiation field based on the radiation exposure requirements, the shape of the radiation source rack, the structure of the radiation source rack, the relevant radiation source parameters, and the absorbed dose of the object to be irradiated, and determine the required amount of radiation in each area; The radiation dose and the activity and energy parameters of the radioactive source determine the arrangement position of the radioactive source;
步骤六,利用量化评价函数对计算得到的排列位置进行评价;按照评价最优的位置排列方案进行放射源的排列;基于各项放射源排列参数以及放射排列结果进行放射源排列的模拟显示。Step 6: Use the quantitative evaluation function to evaluate the calculated arrangement position; arrange the radioactive sources according to the optimal evaluation position arrangement plan; perform a simulation display of the radiation source arrangement based on various radioactive source arrangement parameters and radiation arrangement results.
进一步,步骤三中,所述基于获取或输入的放射源架形状、位置、结构、参考点群空间位置及其他相关参数计算放射源在参考点的照射量率包括:Further, in
(1)单根放射源时:(1) For a single radioactive source:
在离单根放射源的中心点处的垂直平面上作两条直线,分别表示两个方向上的照射量率分布量;Draw two straight lines on the vertical plane from the center point of a single radioactive source to represent the radiation dose rate distribution in two directions respectively;
在两条线上全程取点,对两条线上的各点照射量率进行计算。Points are taken throughout the two lines, and the irradiation dose rate of each point on the two lines is calculated.
各点照射量率的计算式为:The formula for calculating the exposure rate at each point is:
式中:XP表示直线上所取点的照射量率,单位C·kg-1·s-1;A表示单根放射源的活度,单位Bq;Γ表示放射源的照射量率常数;L表示放射源的长度,单位m;r表示直线上计算点到放射源的垂直距离,单位m;l表示放射源底端到计算点的高度,单位m。In the formula: X P represents the irradiation dose rate at the point taken on the straight line, in C·kg -1 ·s -1 ; A represents the activity of a single radioactive source, in Bq; Γ represents the irradiation dose rate constant of the radioactive source; L represents the length of the radioactive source, in m; r represents the vertical distance from the calculation point on the straight line to the radioactive source, in m; l represents the height from the bottom of the radioactive source to the calculation point, in m.
(2)多根放射源时:(2) When there are multiple radioactive sources:
基于单根放射源计算方法计算每一根放射源在参考点处的照射量率,然后对计算得到的每根放射源在同一参考点处的照射量率进行加和,即得多根放射源在参考点的照射量率。Calculate the exposure rate of each radioactive source at the reference point based on the calculation method of a single radioactive source, and then add up the calculated exposure rate of each radioactive source at the same reference point, that is, multiple radioactive sources Exposure rate at the reference point.
进一步,步骤三中,所述基于获取到的相关参数进行待辐射物品吸收剂量的计算包括:Further, in
首先,确定放射源的数量以及放射源的安放位置;First, determine the number of radioactive sources and the placement of the radioactive sources;
其次,计算待辐射物品对于每一个放射源的吸收剂量。Next, calculate the absorbed dose of the object to be irradiated for each radiation source.
进一步,步骤四,所述基于相关辐照类型、放射源在参考点的照射量以及待辐射物品吸收剂量进行总照射量的计算包括:Further, in
1)判断待辐射物品在辐照场内的运动形态;所述运动形态包括静态、动态或静态动态均有;所述静态为待辐射物品在辐照场内固定位置进行辐照;所述动态为待辐射物品在辐照场内,以某一固定速度辐照;1) Judging the motion form of the object to be irradiated in the irradiation field; the motion form includes static, dynamic or static dynamic; the static state is that the object to be irradiated is irradiated at a fixed position in the irradiation field; the dynamic To irradiate the object to be irradiated at a fixed speed in the irradiation field;
2)根据不同运动形态进行总照射量计算:2) Calculate the total exposure according to different movement patterns:
静态总照射量计算公式:总照射量=待辐射物品在某点的照射量率*辐照时间;The formula for calculating the total static exposure: total exposure = exposure rate of the object to be irradiated at a certain point * exposure time;
动态总照射量计算公式为:总照射量=待辐射物品在某点的照射量率*(待辐射物品走过的路程/辐照时间);The calculation formula of dynamic total exposure is: total exposure = exposure rate of the object to be irradiated at a certain point * (distance traveled by the object to be irradiated/irradiation time);
若辐照有静态和动态辐照,则总照射量值为静态总照射量与动态总照射量之和。If the irradiation includes static and dynamic irradiation, the total exposure value is the sum of the static total exposure and the dynamic total exposure.
进一步,步骤四中,所述基于放射源活度测量结果按照从小到大的顺序进行放射源分组排序包括:Further, in
在排列时,将同一组中的放射源放置于处于对称位置的放射源安放位置中。When arranging, the radioactive sources in the same group are placed in symmetrically positioned radioactive source placement positions.
进一步,步骤六中,所述量化评价函数为:Further, in step 6, the quantitative evaluation function is:
s.t.s.t.
其中,表示对参考面上所有参考点吸收剂量的平均值作归一化处理;P'为对目标函数值P作归一化处理;α为加权系数,表示放射源排列过程中用户对于D和P重视程度的倾向;W、H分别是源架的宽度和高度;F函数反映了任一排源方案在参考面上的吸收剂量率分布的均匀程度,函数值越小则代表吸收剂量率分布越均匀。in, Represents the average absorbed dose to all reference points on the reference plane for normalization; P' is for the normalization of the objective function value P; α is the weighting coefficient, which indicates the tendency of users to attach importance to D and P in the process of arranging the radiation sources; W, H are the width of the source rack respectively and height; the F function reflects the uniformity of the absorbed dose rate distribution on the reference plane of any source scheme. The smaller the function value, the more uniform the absorbed dose rate distribution.
本发明另一目的在于提供一种实施所述的放射源的排列方法的放射源的排列系统,所述放射源的排列系统,包括:Another object of the present invention is to provide an arrangement system of radioactive sources for implementing the method for arranging radioactive sources. The arrangement system of radioactive sources includes:
参数获取模块,用于利用扫描装置、摄像装置获取相关放射源排列参数,或利用输入装置进行相关放射源排列参数的输入,并将数据传递到主控模块连接;The parameter acquisition module is used to obtain the relevant radiation source arrangement parameters by using the scanning device and the camera device, or use the input device to input the relevant radiation source arrangement parameters, and transmit the data to the main control module for connection;
放射源能量获取模块,用于利用闪烁探测器获取放射源能量,并将数据传递到主控模块连接;The radioactive source energy acquisition module is used to obtain the radioactive source energy by using the scintillation detector, and transmit the data to the main control module for connection;
放射源活度测量模块,用于利用放射源活度探测仪进行放射源活度的测量;并将数据传递到主控模块连接;The radioactive source activity measurement module is used to measure the radioactive source activity by using the radioactive source activity detector; and transmit the data to the main control module for connection;
照射量率确定模块,用于基于获取或输入的放射源参数确定放射源的照射量率常数,并将数据传递到主控模块连接;The exposure rate determination module is used to determine the exposure rate constant of the radioactive source based on the acquired or input parameters of the radioactive source, and transmit the data to the main control module for connection;
主控模块,与参数获取模块、放射源能量获取模块、放射源活度测量模块、照射量率确定模块、照射量计算模块、待辐射物品吸收剂量计算模块、总照射量计算模块、放射源活度排序模块、辐射场划分模块、排列位置计算模块、评价模块、排列模块、显示模块连接,用于控制各个模块正常工作;Main control module, and parameter acquisition module, radioactive source energy acquisition module, radioactive source activity measurement module, exposure rate determination module, exposure calculation module, absorbed dose calculation module for objects to be irradiated, total exposure calculation module, radioactive source activity The degree sorting module, the radiation field division module, the arrangement position calculation module, the evaluation module, the arrangement module and the display module are connected to control the normal operation of each module;
照射量计算模块,用于基于获取或输入的放射源架形状、位置、结构、参考点群空间位置及其他相关参数计算放射源在参考点的照射量率,并将数据传递到主控模块连接;The exposure calculation module is used to calculate the exposure rate of the radiation source at the reference point based on the acquired or input shape, position, structure, spatial position of the reference point group and other related parameters of the radiation source frame, and transmit the data to the main control module for connection ;
待辐射物品吸收剂量计算模块,用于基于获取到的相关参数进行待辐射物品吸收剂量的计算,并将数据传递到主控模块连接;The absorbed dose calculation module of the object to be irradiated is used to calculate the absorbed dose of the object to be irradiated based on the obtained relevant parameters, and transmit the data to the main control module for connection;
总照射量计算模块,用于基于相关辐照类型、放射源在参考点的照射量以及待辐射物品吸收剂量进行总照射量的计算,并将数据传递到主控模块连接;The total exposure calculation module is used to calculate the total exposure based on the relevant radiation type, the exposure of the radiation source at the reference point and the absorbed dose of the object to be irradiated, and transmit the data to the main control module for connection;
放射源活度排序模块,用于基于放射源活度测量结果按照从小到大的顺序进行放射源分组排序,并将数据传递到主控模块连接;The radioactive source activity sorting module is used to sort radioactive sources in ascending order based on the measurement results of the radioactive source activity, and transmit the data to the main control module connection;
辐射场划分模块,用于基于放射辐照要求、放射源架形状、放射源架结构以及相关放射源参数、待辐射物品吸收剂量进行辐射场划分,确定每个区域的所需照射量,并将数据传递到主控模块连接;The radiation field division module is used to divide the radiation field based on the radiation exposure requirements, the shape of the radiation source rack, the structure of the radiation source rack and the relevant radiation source parameters, and the absorbed dose of the object to be irradiated. The data is transmitted to the main control module connection;
排列位置计算模块,用于基于每个区域所需照射量以及放射源活度、能量参数确定放射源的排列位置,并将数据传递到主控模块连接;The arrangement position calculation module is used to determine the arrangement position of the radioactive source based on the required irradiation amount of each area, the activity and energy parameters of the radioactive source, and transmit the data to the main control module for connection;
评价模块,用于利用量化评价函数对计算得到的排列位置进行评价,并将数据传递到主控模块连接;The evaluation module is used to evaluate the calculated arrangement position by using the quantitative evaluation function, and transmit the data to the main control module for connection;
排列模块,用于按照评价最优的位置排列方案进行放射源的排列,并将数据传递到主控模块连接;The arrangement module is used to arrange the radioactive sources according to the optimal position arrangement scheme, and transmit the data to the main control module for connection;
显示模块,用于基于各项放射源排列参数以及放射排列结果进行放射源排列的模拟显示,并将数据传递到主控模块连接。The display module is used to simulate and display the radiation source arrangement based on various radiation source arrangement parameters and radiation arrangement results, and transmit the data to the main control module for connection.
进一步,所述放射源排列参数包括但不限于待照射物品、放射辐照要求、放射源架形状、放射源架结构、放射源架位置、放射源架与参考面距离、参考点群空间位置及规格、放射源数量、放射源长度、放射源安放位置数量以及相应安放位置坐标、放射源种类以及辐照类型。Further, the radiation source arrangement parameters include but are not limited to the objects to be irradiated, radiation irradiation requirements, the shape of the radiation source rack, the structure of the radiation source rack, the position of the radiation source rack, the distance between the radiation source rack and the reference plane, the spatial position of the reference point group and Specifications, number of radioactive sources, length of radioactive sources, number of locations where radioactive sources are placed and the coordinates of the corresponding placement locations, types of radioactive sources and irradiation types.
本发明的另一目的在于提供一种存储在计算机可读介质上的计算机程序产品,包括计算机可读程序,供于电子装置上执行时,提供用户输入接口以实施所述放射源排列方法。Another object of the present invention is to provide a computer program product stored on a computer-readable medium, including a computer-readable program, which, when executed on an electronic device, provides a user input interface to implement the method for arranging radiation sources.
本发明的另一目的在于提供一种计算机可读存储介质,储存有指令,当所述指令在计算机上运行时,使得计算机执行所述放射源排列方法。Another object of the present invention is to provide a computer-readable storage medium storing instructions that, when executed on a computer, cause the computer to execute the method for arranging radiation sources.
结合上述的所有技术方案,本发明所具备的优点及积极效果为:本发明通过参数获取模块利用扫描装置、摄像装置获取相关放射源排列参数,或利用输入装置进行相关放射源排列参数的输入。放射源能量获取模块利用闪烁探测器获取放射源能量。放射源活度测量模块利用放射源活度探测仪进行放射源活度的测量。照射量率确定模块基于获取或输入的放射源参数确定放射源的照射量率常数。照射量计算模块基于获取或输入的放射源架形状、位置、结构、参考点群空间位置及其他相关参数计算放射源在参考点的照射量率。待辐射物品吸收剂量计算模块基于获取到的相关参数进行待辐射物品吸收剂量的计算。总照射量计算模块基于相关辐照类型、放射源在参考点的照射量以及待辐射物品吸收剂量进行总照射量的计算。放射源活度排序模块基于放射源活度测量结果按照从小到大的顺序进行放射源分组排序。辐射场划分模块基于放射辐照要求、放射源架形状、放射源架结构以及相关放射源参数、待辐射物品吸收剂量进行辐射场划分,确定每个区域的所需照射量。排列位置计算模块基于每个区域所需照射量以及放射源活度、能量参数确定放射源的排列位置。评价模块利用量化评价函数对计算得到的排列位置进行评价。排列模块按照评价最优的位置排列方案进行放射源的排列。本发明能够提供多种放射源排列方式,同时对每一种排列方式进行量化评价,从而确定最优排列方法,得到参考面剂量率不均匀度最小的放射源排列方式。本发明通过将同一组放射源放入位置对称的安放位置上,能大幅缩减解空间状态数;提高放射源排列的效率,节省人力、物力,获得全面、准确、有效的放射源排列方式。Combined with all the above technical solutions, the present invention has the following advantages and positive effects: the present invention uses a scanning device and a camera device to obtain relevant radiation source arrangement parameters through a parameter acquisition module, or uses an input device to input relevant radiation source arrangement parameters. The radioactive source energy acquisition module utilizes the scintillation detector to acquire the radioactive source energy. The radioactive source activity measurement module uses a radioactive source activity detector to measure the radioactive source activity. The exposure rate determination module determines an exposure rate constant for the radiation source based on the acquired or input parameters of the radiation source. The radiation dose calculation module calculates the radiation dose rate of the radiation source at the reference point based on the acquired or input shape, position, structure, spatial position of the reference point group and other relevant parameters of the radiation source frame. The absorbed dose calculation module of the object to be irradiated calculates the absorbed dose of the object to be irradiated based on the acquired relevant parameters. The total exposure calculation module calculates the total exposure based on the relevant radiation type, the exposure of the radiation source at the reference point and the absorbed dose of the object to be irradiated. The radioactive source activity sorting module sorts the radioactive sources in ascending order based on the radioactive source activity measurement results. The radiation field division module divides the radiation field based on the radiation exposure requirements, the shape of the radiation source rack, the structure of the radiation source rack, the relevant radiation source parameters, and the absorbed dose of the object to be irradiated, and determines the required radiation amount of each area. The arrangement position calculation module determines the arrangement position of the radiation source based on the required irradiation amount of each area and the parameters of the activity and energy of the radiation source. The evaluation module uses a quantitative evaluation function to evaluate the calculated arrangement positions. The arrangement module arranges the radioactive sources according to the optimal position arrangement scheme. The invention can provide a variety of radiation source arrangements, and quantitatively evaluate each arrangement at the same time, so as to determine the optimal arrangement method, and obtain the radiation source arrangement with the smallest dose rate unevenness on the reference surface. The present invention can greatly reduce the number of solution space states by placing the same group of radioactive sources in symmetrical placement positions; improve the efficiency of radioactive source arrangement, save manpower and material resources, and obtain a comprehensive, accurate and effective arrangement of radioactive sources.
附图说明Description of drawings
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图做简单的介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下还可以根据这些附图获得其他的附图。In order to explain the technical solutions of the embodiments of the present application more clearly, the following will briefly introduce the drawings that need to be used in the embodiments of the present application. Obviously, the drawings described below are only some embodiments of the present application. For those of ordinary skill in the art, other drawings can also be obtained from these drawings without creative effort.
图1是本发明实施例提供的放射源的排列系统结构示意图。FIG. 1 is a schematic structural diagram of an arrangement system of radioactive sources provided by an embodiment of the present invention.
图中:1、参数获取模块;2、放射源能量获取模块;3、放射源活度测量模块;4、照射量率确定模块;5、主控模块;6、照射量计算模块;7、待辐射物品吸收剂量计算模块;8、总照射量计算模块;9、放射源活度排序模块;10、辐射场划分模块;11、排列位置计算模块;12、评价模块;13、排列模块;14、显示模块。In the figure: 1. Parameter acquisition module; 2. Radioactive source energy acquisition module; 3. Radioactive source activity measurement module; 4. Exposure rate determination module; 5. Main control module; 6. Exposure calculation module; 7. To be Calculation module for absorbed dose of radiation articles; 8. Total exposure calculation module; 9. Radioactive source activity sorting module; 10. Radiation field division module; 11. Arrangement position calculation module; 12. Evaluation module; 13. Arrangement module; 14. Display module.
图2是本发明实施例提供的放射源的排列方法流程图。FIG. 2 is a flowchart of a method for arranging radioactive sources according to an embodiment of the present invention.
图3是本发明实施例提供的单根放射源照射量率计算方法流程图。FIG. 3 is a flowchart of a method for calculating the irradiation dose rate of a single radiation source provided by an embodiment of the present invention.
图4是本发明实施例提供的待辐射物品吸收剂量计算方法流程图。FIG. 4 is a flowchart of a method for calculating the absorbed dose of an article to be irradiated according to an embodiment of the present invention.
图5是本发明实施例提供的总照射量计算方法流程图。FIG. 5 is a flow chart of a method for calculating total exposure provided by an embodiment of the present invention.
具体实施方式Detailed ways
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。In order to make the objectives, technical solutions and advantages of the present invention clearer, the present invention will be further described in detail below with reference to the embodiments. It should be understood that the specific embodiments described herein are only used to explain the present invention, but not to limit the present invention.
针对现有技术存在的问题,本发明提供了一种放射源的排列方法及系统,下面结合附图对本发明作详细的描述。In view of the problems existing in the prior art, the present invention provides a method and system for arranging radioactive sources. The present invention will be described in detail below with reference to the accompanying drawings.
如图1所示,本发明实施例提供的放射源的排列系统包括:As shown in FIG. 1 , the arrangement system of radioactive sources provided by the embodiment of the present invention includes:
参数获取模块1,与主控模块5连接,用于利用扫描装置、摄像装置获取相关放射源排列参数,或利用输入装置进行相关放射源排列参数的输入。The
放射源能量获取模块2,与主控模块5连接,用于利用闪烁探测器获取放射源能量。The radioactive source
放射源活度测量模块3,与主控模块5连接,用于利用放射源活度探测仪进行放射源活度的测量。The radioactive source
照射量率确定模块4,与主控模块5连接,用于基于获取或输入的放射源参数确定放射源的照射量率常数。The irradiation dose
主控模块5,与参数获取模块1、放射源能量获取模块2、放射源活度测量模块3、照射量率确定模块4、照射量计算模块6、待辐射物品吸收剂量计算模块7、总照射量计算模块8、放射源活度排序模块9、辐射场划分模块10、排列位置计算模块11、评价模块12、排列模块13、显示模块14连接,用于控制各个模块正常工作。
照射量计算模块6,与主控模块5连接,用于基于获取或输入的放射源架形状、位置、结构、参考点群空间位置及其他相关参数计算放射源在参考点的照射量率。The radiation dose calculation module 6 is connected to the
待辐射物品吸收剂量计算模块7,与主控模块5连接,用于基于获取到的相关参数进行待辐射物品吸收剂量的计算。The absorbed
总照射量计算模块8,与主控模块5连接,用于基于相关辐照类型、放射源在参考点的照射量以及待辐射物品吸收剂量进行总照射量的计算。The total irradiation
放射源活度排序模块9,与主控模块5连接,用于基于放射源活度测量结果按照从小到大的顺序进行放射源分组排序。The radioactive source
辐射场划分模块10,与主控模块5连接,用于基于放射辐照要求、放射源架形状、放射源架结构以及相关放射源参数、待辐射物品吸收剂量进行辐射场划分,确定每个区域的所需照射量。The radiation
排列位置计算模块11,与主控模块5连接,用于基于每个区域所需照射量以及放射源活度、能量参数确定放射源的排列位置。The arrangement
评价模块12,与主控模块5连接,用于利用量化评价函数对计算得到的排列位置进行评价。The
排列模块13,与主控模块5连接,用于按照评价最优的位置排列方案进行放射源的排列。The
显示模块14,与主控模块5连接,用于基于各项放射源排列参数以及放射排列结果进行放射源排列的模拟显示。The
本发明实施例提供的放射源排列参数包括但不限于待照射物品、放射辐照要求、放射源架形状、放射源架结构、放射源架位置、放射源架与参考面距离、参考点群空间位置及规格、放射源数量、放射源长度、放射源安放位置数量以及相应安放位置坐标、放射源种类以及辐照类型。The radiation source arrangement parameters provided in this embodiment of the present invention include, but are not limited to, the object to be irradiated, radiation irradiation requirements, the shape of the radiation source rack, the structure of the radiation source rack, the position of the radiation source rack, the distance between the radiation source rack and the reference plane, and the space of the reference point group. Location and specifications, number of radioactive sources, length of radioactive sources, number of radioactive source placement locations and coordinates of corresponding placement locations, types of radioactive sources and irradiation types.
如图2所示,本发明实施例提供的放射源排列方法包括以下步骤:As shown in FIG. 2 , the method for arranging radiation sources provided by an embodiment of the present invention includes the following steps:
S101,利用扫描装置、摄像装置获取相关放射源排列参数,或利用输入装置进行相关放射源排列参数的输入;利用闪烁探测器获取放射源能量。S101 , use a scanning device and a camera to obtain relevant radiation source arrangement parameters, or use an input device to input relevant radiation source arrangement parameters; use a scintillation detector to obtain radiation source energy.
S102,利用放射源活度探测仪进行放射源活度的测量;基于获取或输入的放射源类型确定某种确定放射源的照射量率常数。S102, using a radioactive source activity detector to measure the activity of the radioactive source; determining a certain irradiation rate constant of the determined radioactive source based on the acquired or input type of the radioactive source.
S103,基于获取或输入的放射源架形状、位置、结构、参考点群空间位置及其他相关参数计算放射源在参考点的照射量率;基于获取到的相关参数进行待辐射物品吸收剂量的计算。S103: Calculate the radiation dose rate of the radiation source at the reference point based on the acquired or input shape, position, structure, spatial position of the reference point group, and other related parameters of the radiation source frame; calculate the absorbed dose of the article to be irradiated based on the acquired related parameters .
S104,基于相关辐照类型、放射源在参考点的照射量以及待辐射物品吸收剂量进行总照射量的计算;基于放射源活度测量结果按照从小到大的顺序进行放射源分组排序。S104 , calculating the total irradiation amount based on the relevant irradiation type, the irradiation amount of the radioactive source at the reference point, and the absorbed dose of the object to be irradiated; based on the activity measurement result of the radioactive source, the radioactive sources are grouped and sorted in ascending order.
S105,基于放射辐照要求、放射源架形状、放射源架结构以及相关放射源参数、待辐射物品吸收剂量进行辐射场划分,确定每个区域的所需照射量;基于每个区域所需照射量以及放射源活度、能量参数确定放射源的排列位置。S105: Divide the radiation field based on the radiation exposure requirements, the shape of the radiation source rack, the structure of the radiation source rack, the relevant radiation source parameters, and the absorbed dose of the object to be irradiated, and determine the required irradiation amount of each area; based on the required irradiation of each area The quantity and the activity and energy parameters of the radioactive source determine the arrangement position of the radioactive source.
S106,利用量化评价函数对计算得到的排列位置进行评价;按照评价最优的位置排列方案进行放射源的排列;基于各项放射源排列参数以及放射排列结果进行放射源排列的模拟显示。S106: Evaluate the calculated arrangement positions by using a quantitative evaluation function; arrange the radioactive sources according to the optimal evaluation position arrangement scheme; perform a simulation display of the arrangement of the radioactive sources based on various radiation source arrangement parameters and the radiation arrangement results.
如图3所示,步骤S103中,本发明实施例提供的基于获取或输入的放射源架形状、位置、结构、参考点群空间位置及其他相关参数计算放射源在参考点的照射量率包括:As shown in FIG. 3 , in step S103 , the calculation of the radiation dose rate of the radiation source at the reference point based on the acquired or inputted shape, position, structure, spatial position of the reference point group, and other related parameters of the radiation source frame provided by the embodiment of the present invention includes: :
(1)单根放射源时:(1) For a single radioactive source:
在离单根放射源的中心点0.4m处的垂直平面上作两条直线,分别表示两个方向上的照射量率分布量。Draw two straight lines on the vertical plane at 0.4m from the center point of a single radioactive source to represent the radiation dose rate distribution in two directions respectively.
在两条线上全程取点,对两条线上的各点照射量率进行计算。Points are taken throughout the two lines, and the irradiation dose rate of each point on the two lines is calculated.
各点照射量率的计算式为:The formula for calculating the exposure rate at each point is:
式中:XP表示直线上所取点的照射量率,单位C·kg-1·s-1;A表示单根放射源的活度,单位Bq;Γ表示放射源的照射量率常数;L表示放射源的长度,单位m;r表示直线上计算点到放射源的垂直距离,单位m;l表示放射源底端到计算点的高度,单位m。In the formula: X P represents the irradiation dose rate at the point taken on the straight line, in C·kg -1 ·s -1 ; A represents the activity of a single radioactive source, in Bq; Γ represents the irradiation dose rate constant of the radioactive source; L represents the length of the radioactive source, in m; r represents the vertical distance from the calculation point on the straight line to the radioactive source, in m; l represents the height from the bottom of the radioactive source to the calculation point, in m.
(2)多根放射源时:(2) When there are multiple radioactive sources:
基于单根放射源计算方法计算每一个放射源在参考点处的照射量率,然后对计算得到的每个放射源在同一参考点处的照射量率进行加和,即得多根放射源在参考点的照射量率。Calculate the exposure dose rate of each radioactive source at the reference point based on the single radioactive source calculation method, and then add up the calculated exposure dose rate of each radioactive source at the same reference point, that is, multiple radioactive sources are Exposure rate at the reference point.
如图4所示,步骤S103中,本发明实施例提供的基于获取到的相关参数进行待辐射物品吸收剂量的计算包括:As shown in FIG. 4 , in step S103, the calculation of the absorbed dose of the object to be irradiated based on the obtained relevant parameters provided by the embodiment of the present invention includes:
S301,确定放射源的数量以及放射源的安放位置。S301, determine the number of radioactive sources and the placement position of the radioactive sources.
S302,计算待辐射物品对于每一个放射源的吸收剂量。S302, calculate the absorbed dose of the object to be irradiated for each radiation source.
如图5所示,步骤S104中,本发明实施例提供的基于相关辐照类型、放射源在参考点的照射量以及待辐射物品吸收剂量进行总照射量的计算包括:As shown in FIG. 5, in step S104, the calculation of the total irradiation amount based on the relevant irradiation type, the irradiation amount of the radiation source at the reference point, and the absorbed dose of the object to be irradiated provided by the embodiment of the present invention includes:
S401,判断待辐射物品在辐照场内的运动形态;所述运动形态包括静态、动态或静态动态均有;所述静态为待辐射物品在辐照场内固定位置进行辐照;所述动态为待辐射物品在辐照场内,以某一固定速度辐照;S401, judging the motion shape of the object to be irradiated in the irradiation field; the motion shape includes static, dynamic or static dynamic; the static state is that the object to be irradiated is irradiated at a fixed position in the irradiation field; the dynamic shape To irradiate the object to be irradiated at a fixed speed in the irradiation field;
S402,根据不同运动形态进行总照射量计算。S402, calculating the total irradiation amount according to different motion forms.
静态总照射量计算公式:总照射量=待辐射物品在某点的照射量率*辐照时间;The formula for calculating the total static exposure: total exposure = exposure rate of the object to be irradiated at a certain point * exposure time;
动态总照射量计算公式为:总照射量=待辐射物品在某点的照射量率*(待辐射物品走过的路程/辐照时间)。The formula for calculating the dynamic total exposure is: total exposure = exposure rate of the object to be irradiated at a certain point * (distance traveled by the object to be irradiated/irradiation time).
若辐照有静态和动态辐照,则总照射量值为静态总照射量与动态总照射量之和。If the irradiation includes static and dynamic irradiation, the total exposure value is the sum of the static total exposure and the dynamic total exposure.
步骤S104中,本发明实施例提供的基于放射源活度测量结果按照从小到大的顺序进行放射源分组排序包括:In step S104, the grouping of radioactive sources in ascending order based on the measurement results of the activity of the radioactive sources provided by the embodiment of the present invention includes:
在排列时,将同一组中的放射源放置于处于对称位置的放射源安放位置中。When arranging, the radioactive sources in the same group are placed in symmetrically positioned radioactive source placement positions.
步骤S106中,本发明实施例提供的量化评价函数为:In step S106, the quantitative evaluation function provided by the embodiment of the present invention is:
s.t.s.t.
其中,表示对参考面上所有参考点吸收剂量的平均值作归一化处理;P'为对目标函数值P作归一化处理;α为加权系数,表示放射源排列过程中用户对于D和P重视程度的倾向;W、H分别是源架的宽度和高度;F函数反映了任一排源方案在参考面上的吸收剂量率分布的均匀程度,函数值越小则代表吸收剂量率分布越均匀。in, Represents the average absorbed dose to all reference points on the reference plane for normalization; P' is for the normalization of the objective function value P; α is the weighting coefficient, which indicates the tendency of users to attach importance to D and P in the process of arranging the radiation sources; W, H are the width of the source rack respectively and height; the F function reflects the uniformity of the absorbed dose rate distribution on the reference plane of any source scheme. The smaller the function value, the more uniform the absorbed dose rate distribution.
以上所述仅是对本发明的较佳实施例而已,并非对本发明作任何形式上的限制,凡是依据本发明的技术实质对以上实施例所做的任何简单修改,等同变化与修饰,均属于本发明技术方案的范围内。The above is only the preferred embodiment of the present invention, and does not limit the present invention in any form. Any simple modifications, equivalent changes and modifications made to the above embodiments according to the technical essence of the present invention belong to the present invention. within the scope of the technical solution of the invention.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010436928.XA CN111650630B (en) | 2020-05-21 | 2020-05-21 | Arrangement method and system of radioactive sources |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010436928.XA CN111650630B (en) | 2020-05-21 | 2020-05-21 | Arrangement method and system of radioactive sources |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111650630A true CN111650630A (en) | 2020-09-11 |
CN111650630B CN111650630B (en) | 2023-09-01 |
Family
ID=72342355
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010436928.XA Active CN111650630B (en) | 2020-05-21 | 2020-05-21 | Arrangement method and system of radioactive sources |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111650630B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112816813A (en) * | 2020-12-31 | 2021-05-18 | 中国人民解放军总参谋部第六十研究所 | Ionization irradiation verification test system |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003035683A (en) * | 2001-07-24 | 2003-02-07 | Univ Tohoku | 2D radiation distribution measurement method |
EP1513163A2 (en) * | 2003-09-08 | 2005-03-09 | Ion Beam Applications S.A. | Method and apparatus for X-ray irridiation having improved throughput and dose uniformity ratio |
GB0619145D0 (en) * | 2006-09-27 | 2006-11-08 | React Engineering Ltd | Improvements in radiation modelling |
CN1919374A (en) * | 2005-08-25 | 2007-02-28 | 惠小兵 | Radiation therapeutical irradiation device |
US20110013748A1 (en) * | 2009-07-16 | 2011-01-20 | Yokogawa Electric Corporation | Radiation inspection apparatus |
WO2013012331A1 (en) * | 2011-07-20 | 2013-01-24 | Nucletron Operations B.V. | A gamma source tracking system |
CN105355256A (en) * | 2015-09-30 | 2016-02-24 | 湖北省农业科学院农产品加工与核农技术研究所 | Method for arranging radioactive sources |
CN205666958U (en) * | 2016-05-13 | 2016-10-26 | 东华理工大学 | Different structure sensor network device towards nuclear radiation on -line monitoring |
CN208255428U (en) * | 2018-01-26 | 2018-12-18 | 中国石油集团安全环保技术研究院有限公司 | Radioactive source detection device |
CN110927776A (en) * | 2019-12-23 | 2020-03-27 | 中国医学科学院放射医学研究所 | Multifunctional Irradiation System |
-
2020
- 2020-05-21 CN CN202010436928.XA patent/CN111650630B/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003035683A (en) * | 2001-07-24 | 2003-02-07 | Univ Tohoku | 2D radiation distribution measurement method |
EP1513163A2 (en) * | 2003-09-08 | 2005-03-09 | Ion Beam Applications S.A. | Method and apparatus for X-ray irridiation having improved throughput and dose uniformity ratio |
CN1919374A (en) * | 2005-08-25 | 2007-02-28 | 惠小兵 | Radiation therapeutical irradiation device |
GB0619145D0 (en) * | 2006-09-27 | 2006-11-08 | React Engineering Ltd | Improvements in radiation modelling |
US20110013748A1 (en) * | 2009-07-16 | 2011-01-20 | Yokogawa Electric Corporation | Radiation inspection apparatus |
WO2013012331A1 (en) * | 2011-07-20 | 2013-01-24 | Nucletron Operations B.V. | A gamma source tracking system |
CN105355256A (en) * | 2015-09-30 | 2016-02-24 | 湖北省农业科学院农产品加工与核农技术研究所 | Method for arranging radioactive sources |
CN205666958U (en) * | 2016-05-13 | 2016-10-26 | 东华理工大学 | Different structure sensor network device towards nuclear radiation on -line monitoring |
CN208255428U (en) * | 2018-01-26 | 2018-12-18 | 中国石油集团安全环保技术研究院有限公司 | Radioactive source detection device |
CN110927776A (en) * | 2019-12-23 | 2020-03-27 | 中国医学科学院放射医学研究所 | Multifunctional Irradiation System |
Non-Patent Citations (6)
Title |
---|
KRASIMIR MITEV ET AL.: "Design,production,metrological tests and certification of a large-volume(200L)calibration source for gamma-spectrometry system for assay of radioactive waste drums", 《IEEE NUCLEAR SCIENCE SYMPOSUIM AND MEDICAL IMAGING CONFERENCE》 * |
W.PARKER ET AL.: "Some methods in the preparation of radio-active materials for use in beta-spectroscopy", 《NUCLEAR INSTRUMENTS AND METHODS》 * |
W.V.MAYNEORD ET AL.: "The Distribution of Radiation around Simple Radioactive Source", 《THE BRITISH JOURNAL OF RADIOLOGY》 * |
潘红英: "辐射装置源棒排列最优化算法的研究", 《微计算机信息》 * |
陈明利 等: "放射源60Coγ射线的利用效率研究", 《原子能科学技术》 * |
陈玉霞等: "不同排源方式对辐照剂量不均匀度及射线利用率的影响", 《湖北农业科学》 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112816813A (en) * | 2020-12-31 | 2021-05-18 | 中国人民解放军总参谋部第六十研究所 | Ionization irradiation verification test system |
Also Published As
Publication number | Publication date |
---|---|
CN111650630B (en) | 2023-09-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Andreyev et al. | Fast image reconstruction for Compton camera using stochastic origin ensemble approach | |
CN109541675A (en) | Tomographic Gamma scanning voxel efficiency calibration method based on point source space efficiency function | |
CN117491573B (en) | Laboratory harmful gas detection early warning method and system based on multi-point-position monitoring | |
CN109471999B (en) | Gamma radiation field data correction calculation method and system for non-uniform source item distribution | |
Stapleton et al. | Angle statistics reconstruction: a robust reconstruction algorithm for muon scattering tomography | |
CN110310720A (en) | A kind of Monte Carto dosage computing method, equipment and storage medium | |
CN104655075B (en) | It is a kind of to be used for the method and apparatus of high-precision immersed tube tube coupling end face fitting measurement | |
CN111650630A (en) | Method and system for arranging radioactive sources | |
CN100464185C (en) | Ultrasonic Tomography Algorithm of Concrete | |
CN105181716B (en) | The liquid scintillation energy disperse spectroscopy rapid analysis method of total α/β in a kind of water | |
CN104216000B (en) | It is a kind of to be used for neutron Soller collimators divergent angle test method | |
Bonner et al. | Ensuring the effectiveness of safeguards through comprehensive uncertainty quantification | |
CN100495022C (en) | Ultrasonic Tomography Algorithm of Concrete | |
JP2020003327A (en) | Radioactivity concentration evaluation system, and radioactivity concentration evaluation system | |
CN102109605B (en) | Method for measuring energy of accelerator | |
CN116953770A (en) | Muon detector, three-dimensional photographic imaging method, device and storage medium | |
CN114373513A (en) | Method for analyzing dose unevenness of cobalt source irradiation test | |
CN116009055A (en) | A Fast Acquisition Method of Full Energy Response Matrix | |
Moslemian | Study of solids motion, mixing, and heat transfer in gas-fluidized beds | |
JP2023023463A (en) | Water amount measurement method and water amount measurement system | |
CN114692474A (en) | Method for predicting protection efficiency of X/gamma ray protection material | |
CN110727020B (en) | Measuring and scaling method, device and system for medium-low level waste and storage medium | |
CN117150773A (en) | An electronic total dose conversion method | |
CN109613592A (en) | Gamma ray spectrometer system quickly measures dotted radioactive substance activity methods | |
Gollwitzer et al. | On POD estimations with radiographic simulator aRTist |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
EE01 | Entry into force of recordation of patent licensing contract | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20200911 Assignee: Shenzhen Ruimei Technology Co.,Ltd. Assignor: EAST CHINA INSTITUTE OF TECHNOLOGY Contract record no.: X2025980006011 Denomination of invention: A method and system for arranging radioactive sources Granted publication date: 20230901 License type: Common License Record date: 20250321 |