CN111646942A - 一种热激活延迟荧光探针分子、其制备及其在细胞成像中的应用 - Google Patents

一种热激活延迟荧光探针分子、其制备及其在细胞成像中的应用 Download PDF

Info

Publication number
CN111646942A
CN111646942A CN201910163693.9A CN201910163693A CN111646942A CN 111646942 A CN111646942 A CN 111646942A CN 201910163693 A CN201910163693 A CN 201910163693A CN 111646942 A CN111646942 A CN 111646942A
Authority
CN
China
Prior art keywords
fluorescence
acid
imaging
probe molecule
chain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910163693.9A
Other languages
English (en)
Other versions
CN111646942B (zh
Inventor
胡海宇
张青扬
许胜男
王庆华
张蕾磊
王亚丽
张娜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Materia Medica of CAMS
Original Assignee
Institute of Materia Medica of CAMS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Materia Medica of CAMS filed Critical Institute of Materia Medica of CAMS
Priority to CN201910163693.9A priority Critical patent/CN111646942B/zh
Publication of CN111646942A publication Critical patent/CN111646942A/zh
Application granted granted Critical
Publication of CN111646942B publication Critical patent/CN111646942B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D221/00Heterocyclic compounds containing six-membered rings having one nitrogen atom as the only ring hetero atom, not provided for by groups C07D211/00 - C07D219/00
    • C07D221/02Heterocyclic compounds containing six-membered rings having one nitrogen atom as the only ring hetero atom, not provided for by groups C07D211/00 - C07D219/00 condensed with carbocyclic rings or ring systems
    • C07D221/04Ortho- or peri-condensed ring systems
    • C07D221/06Ring systems of three rings
    • C07D221/14Aza-phenalenes, e.g. 1,8-naphthalimide
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1022Heterocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • C09K2211/1033Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with oxygen

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

本发明涉及一种基于萘酰亚胺结构的热激活延迟荧光探针分子,制备方法及应用,属于生物荧光成像领域。其特征是以一系列基于萘酰亚胺结构的热激活延迟荧光探针分子。其能对细胞进行了荧光检测、双光子成像及荧光寿命成像。与首次将两个及以上电子供体基团连接到萘酰亚胺结构。已报道的MG类探针分子相比,所合成探针分子具有长荧光寿命、大斯托克斯位移及近红外光区发射光,有利于降低自吸收效应、减少了发射光和散射光之间的检测错误、降低了荧光成像的背景噪音、提高了成像信噪比。并可用于活体成像研究及双光子荧光成像实验。

Description

一种热激活延迟荧光探针分子、其制备及其在细胞成像中的 应用
技术领域:
本发明属于生物荧光成像技术领域。涉及一种用于细胞荧光检测及荧光寿命成像的萘酰亚胺类热激活延迟荧光探针分子,其制备方法及应用。
背景内容:
近年来快速发展的生物荧光成像技术将荧光显像技术与分子探针结合,对特定分子靶点和通路在组织水平、细胞和亚细胞水平进行非侵袭性显影,实现在活体状态下可视、无损分析和监测不同阶段疾病发展,为疾病的诊断和治疗开启了一片崭新的天地。荧光信号高特异性、高信噪比是生物荧光成像质量关键,然而由激发光源产生的杂散光及生物体内几乎涵盖整个紫外-可见光区的大量内源性荧光物质产生的荧光背景噪音干扰,严重影响了目标荧光信号的灵敏度及精准性,降低了成像信噪比。为提高生物成像信噪比,除了需要先进的荧光成像设备外,还需要发展新型而高效的荧光探针。近年来出现的激活型智能荧光分子探针1、近红外荧光探针2及双光子荧光探针3均能在一定程度上降低背景噪音,提高信噪比,使得荧光成像更加清晰。然而由于生物环境的复杂性和多样性,已有荧光探针很难避免来自生物环境自身的干扰。因此开发新型无毒、高靶向性、高特异性、低剂量和低成本的荧光分子探针,避免背景荧光噪音干扰,提高成像信噪比,将成为未来荧光影像技术研究发展的重点需求。
由于来自生物内源性物质自身荧光及光源杂散光的荧光信号均为短寿命荧光(ns级),利用具有长荧光寿命性质的分子探针(μs-ms级)对生物体进行时间分辨成像,在激发光和检测窗口之间引入适当的延迟时间,可高效避免短寿命荧光背景干扰,极大地提高了信噪比和成像质量4。但目前应用于生物成像领域的长寿命分子探针往往含有稀有金属元素,其经济成本高,毒性大5,6。近年来,热激活延迟荧光(TADF)有机小分子长寿命荧光材料避免了稀有金属类探针的缺点,已在有机发光材料领域(OLED)得到广泛的研究7,8。这类探针具有荧光效率高、荧光寿命长等优点,具有非常好的生物领域时间分辨成像潜力,但其结构往往只含有芳香共轭基团,没有生物功能基团(靶向性基团)连接位点,生物环境中水溶性差,不具备生物相容性,此外其延迟荧光性质易受氧气影响,也限制了其在生物成像领域的应用。
热激活延迟荧光(Thermally activated delayed fluorescence,TADF)分子利用其T1激发态上的激子在分子热运动下通过反系间穿越(reverse intersystem crossing,RISC)跃迁回激发单线态(S1)上,再从S1态回到基态单线态(S0),其荧光寿命达到μs级(图1)。TADF分子往往由电子供体部分(Donor)和电子受体部分(Acceptor)组成,而其T1态与S1态之间的能量差ΔEst值小于0.3eV,才会使分子具有TADF性质。这种延迟荧光分子一般只需要<300K的温度就能激活延迟发光,并且这种探针分子不需要金属及其有机配体的参与,避免了含有金属元素分子探针的不足,降低了经济成本。此外由于其利用了T1态的激子,其内量子效率可达100%,比瞬时荧光提高了3倍,从而具有更强的荧光强度和更好的荧光性质,目前作为一种新兴材料已在有机发光材料领域得到了广泛的研究9,10
2012年,Adachi将TADF材料用于有机发光二极管(OLED)材料研究,他以4个咔唑基团作为电子供体,二氰基苯作为电子受体构建了分子4CzIPN11,这个分子的ΔEst为0.08eV,荧光寿命5.1μs,荧光量子产率93.8%,具有良好的TADF性质。此后,其又在201412、201513年以吩恶嗪及二氢吖啶类基团为电子供体参与构建了不同的TADF材料(图2)。目前TADF材料得到了广泛的研究,不同的电子供体如吖啶芴14、三苯胺15等基团,及不同的电子受体如三嗪16、苯并吡嗪17、二苯砜18等基团,用于构建TADF分子,并取得了良好的效果。
目前,TADF分子应用于生物成像领域的研究报道较少,主要是因为这些分子不论是电子供体部分还是电子受体部分,均是由芳香共轭基团组成的疏水性分子,整个分子水溶性差,也没有靶向性基团连接位点,不利于探针分子进入细胞,生物相容性差,因此很难直接应用于生物成像领域。此外,因T1态对氧气敏感,延迟荧光容易被氧气淬灭,也为应用于生物成像领域带来了困难。
2014年,彭孝军课题组首次报道了小分子TADF材料DCF-MPYM直接应用于MCF-7细胞时间分辨成像研究(图3A)19。其在细胞成像中加入了牛血清白蛋白(BSA),通过此类生物大分子与分子探针结合,将分子探针包裹其中,在增加水溶性的同时隔绝了氧气,避免了氧气对其的影响,实现了分子探针的细胞延迟成像。2017年,黄维课题组报道了TADF有机小分子CPy与DSPE-PEG2000结合,构建具有长荧光寿命性质的量子点探针,在避免氧气影响的同时,具有不错的生物相容性,并应用于Hela细胞及斑马鱼活体荧光寿命成像研究(图3B)20
发明内容:
本发明解决的技术问题是提供了一种基于萘酰亚胺结构的热激活延迟荧光探针分子、其制备方法、以及其应用。
为解决本发明的技术问题,本发明提供如下技术方案:
本发明技术方案的第一方面是提供了一类如(I)所示的荧光探针分子及其可接受的盐:
Figure BDA0001984757290000031
其中:R1,R2,R3,R4分别独立地表示氢原子、羟基、氨基、C1~6直链及支链烷氧基、C1~6直链及支链烷氨基、咔唑、叔丁基咔唑、吖啶、二甲基吖啶、苯胺、二苯胺、三苯胺、吩噁嗪、吩噻嗪及二氢吩嗪,所述的C1~6选自C1,C2,C3,C4,C5,C6;
L1表示C1~9直链及支链烷基、C1~9直链及支链烯基、C1~9直链及支链炔基、
Figure BDA0001984757290000032
其中n=1、2、3、4、5、6、7、8、9,所述C1~9选自C1,C2,C3,C4,C5,C6,C7,C8,C9;
R5表示亚甲基,醚键,氨基,羰基,羧酸酯基,酰胺基,
Figure BDA0001984757290000033
R6表示
Figure BDA0001984757290000034
以上所述的可接受的盐为所述化合物的有机酸盐或无机酸盐,所述的有机酸为三氟乙酸,草酸,琥珀酸,醋酸,丁二酸,马来酸,富马酸或酒石酸;无机酸为盐酸,氢溴酸,氢碘酸,硫酸或磷酸。
进一步的,本发明所述的荧光探针分子优选自
Figure BDA0001984757290000035
本发明技术方案的第二方面是提供了一类热激活延迟荧光探针及其可接受的盐的制备方法,
Figure BDA0001984757290000041
其中R1、R2、R3、R4、L1、R5、R6的定义同权利要求1-3任一项;
步骤a:加入CsF和二甲基亚砜,100℃,反应1h;
步骤b:二甲基亚砜为溶剂,加入碳酸钾,100℃反应1h。
所述的制备步骤b中,不需要加入金属催化剂或强碱,属于温和亲核取代反应。
本发明所提供的制备式I所示化合物的方法,将二溴萘酰亚胺类化合物与氟化铯,在二甲基亚砜溶剂中,100℃反应1小时,得到中间体。此中间体在二甲基亚砜溶剂中,在碳酸钾参与下,生成相应的目标探针分子。
所述的荧光探针生物药学上可接受的盐也属于本发明的保护范围。
本发明技术方案的第三方面是提供第一方面所述萘酰亚胺类热激活延迟荧光探针在体外、细胞或活体水平对细胞荧光检测及荧光寿命成像中的应用,其中,所述的细胞为HepG 2细胞。
有益技术效果
合成了一系列基于萘酰亚胺结构的热激活延迟荧光探针分子。并利用此类探针分子,对细胞进行了荧光检测及荧光寿命成像研究。
首次将两个及以上电子供体基团连接到萘酰亚胺结构;所合成的探针分子具有良好的生物相容性,适合应用于生物细胞检测及成像研究中;所合成的探针分子的发射波长达到近红外光区,利于进行活体成像;所合成的探针分子具有细胞溶酶体靶向性,可实现对溶酶体的特异性标记;所合成的探针分子还具有双光子成像性质,极大的提高了此类分子的成像信噪比。
所合成的荧光探针分子具有长荧光寿命和大斯托克斯位移,从而更有利于此探针分子降低自吸收效应和内滤效应、减少了发射光和散射光之间的检测错误、降低了荧光成像的背景噪音、提高了成像信噪比,并可用于超高分辨荧光成像实验。
附图说明
图1 TADF探针分子发光机理;
图2已有TADF分子举例;
图3在生物成像领域应用的TADF分子探针;
图4表示探针分子Cz-N在无氧甲苯中的的延迟荧光衰减光谱(激发波长460nm,检测波长640nm);
图5表示探针分子tCz-N在无氧甲苯中的的延迟荧光衰减光谱(激发波长460nm,检测波长640nm);
图6表示本发明用于测定探针分子Cz-N和tCz-N全波长扫描谱图和荧光发射谱图。
图7表示本发明用于测定探针分子Cz-N在HepG 2细胞中的共定位荧光成像。
图8表示本发明用于测定探针分子Cz-N在HepG 2细胞中的双光子显微镜荧光成像。
图9表示本发明用于测定探针分子Cz-N在HepG 2细胞中的荧光寿命成像。
具体实施方式:
实施例1 Cz-N,tCz-N的的制备步骤:
Figure BDA0001984757290000051
Scheme 1.Cz-N,tCz-N的合成.反应试剂与条件:(a)2-氨基乙基吗啉,乙醇,80℃,2h;(b)氟化铯,二甲基亚砜,100℃,1h;(c)二甲基亚砜,碳酸钾,咔唑或叔丁基咔唑,100℃,1h。
制备例1,化合物2的制备
将化合物1(945mg)加入到乙醇(20mL)中,加入2-氨基乙基吗啉(380mg),氩气保护加热至80℃反应2h,冷却至室温。减压蒸馏,柱层析分离(二氯甲烷:甲醇=100:1)得白色固体643mg,收率52%.1H NMR(400MHz,CDCl3)δ8.38(d,J=8Hz,2H,-Ar),8.20(d,J=8Hz,2H,-Ar),4.320(t,J=6.4Hz,2H,-CH2-),3.68(s,4H,-CH2-),2.72(s,2H,-CH2-),2.61(s,4H,-CH2-).13C NMR(100MHz,CDCl3)δ163.20,136.15,133.31,132.04,131.49,131.23,131.09,130.62,130.34,128.26,128.07,127.76,123.00,66.83,56.04,55.90,53.71,37.26.
制备例2,化合物3的制备
将化合物2(300mg)和氟化铯(585mg)加入到二甲基亚砜(10mL)中,加热至100℃反应1h,冷却至室温。用乙酸乙酯萃取(2×20mL),干燥,柱层析分离(石油醚:乙酸乙酯=3:1),得白色固体170mg,收率77%。1H NMR(400MHz,CDCl3)δ8.65–8.61(m,2H,-Ar),7.47–7.42(m,2H,-Ar),4.33(t,J=6.8Hz,2H,-CH2-),3.68(t,J=4.8Hz,4H,-CH2-),2.70(t,J=5.6Hz,2H,-CH2-),2.59(s,4H,-CH2-).13C NMR(100MHz,CDCl3)δ163.14,162.45,162.36,160.55,160.47,133.93,118.94,113.15,113.09,113.00,112.41,66.98,56.05,53.79,37.27,29.71.
Cz-N的制备
将化合物3(100mg),咔唑(242mg)和碳酸钾(88mg)溶于二甲基亚砜(5mL)中,氩气保护,加热至100℃反应1h,冷却至室温。用乙酸乙酯萃取(2×20mL),干燥,柱层析分离(石油醚:乙酸乙酯=1:1),得橙色固体110mg,收率60%。1H NMR(400MHz,CDCl3)δ8.89–8.87(m,2H,-Ar),7.87(d,J=7.6Hz,2H,-Ar),7.50–7.47(m,4H,-Ar),6.91–6.83(m,8H,-Ar),6.68(d,J=8Hz,4H,-Ar),4.52(s,2H,-CH2-),3.81(s,4H,-CH2-),2.92(s,2H,-CH2-),2.73(s,4H,-CH2-).13C NMR(100MHz,CDCl3)δ163.64,142.47,140.62,139.88,135.33,132.51,132.40,132.13,131.85,130.96,129.81,126.36,126.10,125.19,123.85,123.03,122.88,120.48,119.87,119.38,110.03,109.94,109.65,66.63,56.09,53.62,36.95.
tCz-N的制备
将化合物3(100mg),叔丁基咔唑(403mg)和碳酸钾(88mg)溶于二甲基亚砜(5mL)中,氩气保护,加热至100℃反应1h,冷却至室温。用乙酸乙酯萃取(2×20mL),干燥,柱层析分离(石油醚:乙酸乙酯=3:1),得橙色固体90mg,收率36%。1H NMR(400MHz,CDCl3)δ8.81(d,J=8.0Hz,2H,-Ar),7.87(d,J=8.0Hz,2H,-Ar),7.50(d,J=1.6Hz,4H,-Ar),7.02–6.72(m,4H,-Ar),6.73(d,J=8.8Hz,4H,-Ar),4.53(s,2H,-CH2-),3.80(s,4H,-CH2-),2.91–2.66(m,6H,-CH2-),1.27(s,36H,-CH3).13C NMR(100MHz,CDCl3)δ163.82,142.73,141.36,139.08,132.50,132.10,128.00,124.75,123.51,122.82,121.76,115.44,109.63,56.12,53.54,34.43,31.85,29.70,14.13.
药理实验
实验例1:探针分子的荧光寿命
本实验例证实了本文描述的探针分子Cz-N和tCz-N的荧光寿命。将探针分子的化合物用甲苯溶解至10μM的终浓度,进行除氧操作后,使用荧光测试仪测定其荧光寿命衰减曲线。测定结果如图3和图4,并拟合计算其荧光寿命,结果如表1所示。
表1探针分子Cz-N和tCz-N在无氧甲苯中的荧光寿命(激发波长460nm,检测波长640nm)
Figure BDA0001984757290000061
a双拟合衰减曲线的荧光寿命组成;b各寿命组成部分所占比列;c平均寿命。
实验例2:探针分子的荧光性质
本实验例证实了本文描述的探针分子的荧光性质。使用DMSO配制母液浓度为2mM的探针分子Cz-N和tCz-N,将探针分子母液用PBS稀释到10μM的终浓度,2%DMSO作为助溶剂,使用多功能酶标仪分别测定其全波长扫描(350nm-750nm)及荧光发射光谱(Cz-N和tCz-N的激发波长分别是435nm和460nm)。测定结果如图6所示。
实验例3:探针分子在HepG 2细胞中的共定位荧光成像
1.复苏细胞
从-80℃冰箱内取出冻存的HepG 2细胞,置于37℃的水浴中,于1-2min内完全解冻,在无菌操作台内,将其转移到含有4mL DMEM(10%FBS)培养液的培养瓶中,并在37℃,含5%CO2的细胞培养箱内进行培养。
2.观察-传代-转接
在显微镜下观察细胞生长情况,直到HepG 2细胞贴壁生长,其汇合度达到80%,即可传代,在无菌工作台内弃去旧的培养液,用3mL PBS漂洗一下,加入1mL 0.25%胰蛋白酶,37℃,消化2min。此时在显微镜下观察直至细胞缩小变圆后,拍打培养瓶使细胞脱落并立即加入适量的新鲜培养液阻止消化,用滴管将已经消化的细胞吹打成细胞悬液,将细胞悬液吸入15mL离心管中,平衡后将离心管放入台式离心机中,以1000r·min-1离心5min。弃去上清液,加入5mL培养液,用滴管轻轻吹打细胞制成单细胞悬液。将此细胞进行继续传代,待传代后的细胞贴壁生长到汇合度达到80%,再将得到的单细胞悬液,接种于8孔的腔室载玻片中,每孔细胞数为2E4个,置于37℃,含5%CO2的培养箱内进行过夜培养。3.细胞的染色及共聚焦成像
次日观察孔腔内的细胞生长状况,其汇合度70%左右,弃去旧的培养基,加入新的培养基备用。使用DMEM培养液稀释探针分子Cz-N,使其终浓度为10μM,然后将其与HepG 2细胞进行孵育,每孔200μL。于37℃,含5%CO2的培养箱内孵育2h后,用PBS漂洗两次,再与500nM溶酶体绿色荧光探针(Lyso Tracker Green DND-26)在DMEM培养液中孵育30min。30min后,用PBS漂洗两次,最后用激光共聚焦显微镜对细胞进行荧光成像(Cz-N:λex=488nm,λem=560-750nm;溶酶体绿色荧光探针:λex=504nm,λem=510-550nm)。结果如图7所示,从图中可以得出,探针分子Cz-N可以在HepG 2细胞中成像,且具有溶酶体靶向性,可以特异性标记溶酶体。
实验例4:探针分子在HepG 2细胞中的双光子显微镜荧光成像
1.观察-传代-转接
在显微镜下观察细胞生长情况,待传代后的细胞贴壁生长到汇合度达到80%,在无菌工作台,将细胞用胰蛋白酶消化制成单细胞悬液,接种于含有细胞培养盖玻片的24孔板中,每孔细胞数为4E4个,每孔1mL,置于37℃,含5%CO2的培养箱内进行过夜培养。
2.细胞的染色及双光子成像
次日观察孔腔内的细胞生长状况,其汇合度70%左右,弃去旧的培养基,加入新的培养基备用。使用DMEM培养液稀释探针分子Cz-N,使其终浓度为10μM,然后将其与HepG 2细胞进行孵育,每孔500μL。于37℃,含5%CO2的培养箱内孵育2h后,用PBS漂洗两次,然后用4%多聚甲醛固定细胞,每孔500μL,室温放置20min。细胞固定后,用PBS漂洗三次,然后用抗荧光衰减封片剂封片,最后用正置双光子显微镜对细胞进行双光子成像,激发波长为920nm,收集波长为575-630nm。结果如图8所示,从图中可以得出,探针分子Cz-N在HepG 2细胞中具有很好的双光子成像效果。
实验例5:探针分子在HepG 2细胞中的荧光寿命成像
1.观察-传代-转接
在显微镜下观察细胞生长情况,待传代后的细胞贴壁生长到汇合度达到80%,在无菌工作台,将细胞用胰蛋白酶消化制成单细胞悬液,接种于含有细胞培养盖玻片的24孔板中,每孔细胞数为4E4个,每孔1mL,置于37℃,含5%CO2的培养箱内进行过夜培养。
2.细胞的染色及荧光寿命成像
次日观察孔腔内的细胞生长状况,其汇合度70%左右,弃去旧的培养基,加入新的培养基备用。使用DMEM培养液稀释探针分子Cz-N,使其终浓度为10μM,然后将其与HepG 2细胞进行孵育,每孔500μL。于37℃,含5%CO2的培养箱内孵育2h后,用PBS漂洗两次,然后用4%多聚甲醛固定细胞,每孔500μL,室温放置20min。细胞固定后,用PBS漂洗三次,然后用抗荧光衰减封片剂封片,最后对细胞进行荧光寿命成像,Cz-N激发波长为488nm,收集波长为605-680nm。结果如图9所示,从图中可以得出,Cz-N探针分子在HepG 2细胞中(细胞质)的寿命在μs级,~2μs。
参考文献
1.Li,Y.;Sun,Y.;Li,J.;Su,Q.;Yuan,W.;Dai,Y.;Han,C.;Wang,Q.;Feng,W.;Li,F.,Ultrasensitive near-infrared fluorescence-enhanced probe for in vivonitroreductase imaging.J Am Chem Soc 2015,137(19),6407-6416.
2.Verwilst,P.;Kim,H.R.;Seo,J.;Sohn,N.W.;Cha,S.Y.;Kim,Y.;Maeng,S.;Shin,J.W.;Kwak,J.H.;Kang,C.;Kim,J.S.,Rational Design of in Vivo Tau Tangle-Selective Near-Infrared Fluorophores:Expanding the BODIPY Universe.J Am ChemSoc 2017,139(38),13393-13403.
3.Lozano-Torres,B.;Galiana,I.;Rovira,M.;Garrido,E.;Chaib,S.;Bernardos,A.;Munoz-Espin,D.;Serrano,M.;Martinez-Manez,R.;Sancenon,F.,An OFF-ON Two-Photon Fluorescent Probe for Tracking Cell Senescence in Vivo.J AmChem Soc 2017,139(26),8808-8811.
4.Zhang,K.Y.;Yu,Q.;Wei,H.;Liu,S.;Zhao,Q.;Huang,W.,Long-Lived EmissiveProbes for Time-Resolved Photoluminescence Bioimaging and Biosensing.Chem Rev2018,118(4),1770-1839.
5.Hanaoka,K.;Kikuchi,K.;Kobayashi,S.;Nagano,T.,Time-resolved long-lived luminescence imaging method employing luminescent lanthanide probeswith a new microscopy system.J Am Chem Soc 2007,129(44),13502-13509.
6.Gorman,A.;Killoran,J.;O'Shea,C.;Kenna,T.;Gallagher,W.M.;O'Shea,D.F.,In vitro demonstration of the heavy-atom effect for photodynamictherapy.J Am Chem Soc 2004,126(34),10619-10631.
7.Cao,X.D.;Zhang,D.;Zhang,S.M.;Tao,Y.T.;Huang,W.,CN-Containing donor-acceptor-type small-molecule materials for thermally activated delayedfluorescence OLEDs.J Mater Chem C 2017,5(31),7699-7714.
8.Im,Y.;Byun,S.Y.;Kim,J.H.;Lee,D.R.;Oh,C.S.;Yook,K.S.;Lee,J.Y.,RecentProgress in High-Efficiency Blue-Light-Emitting Materials for Organic Light-Emitting Diodes.Adv Funct Mater 2017,27(13),1603007.
9.Yang,Z.;Mao,Z.;Xie,Z.;Zhang,Y.;Liu,S.;Zhao,J.;Xu,J.;Chi,Z.;Aldred,M.P.,Recent advances in organic thermally activated delayed fluorescencematerials.Chem Soc Rev 2017,46(3),915-1016.
10.Tao,Y.;Yuan,K.;Chen,T.;Xu,P.;Li,H.;Chen,R.;Zheng,C.;Zhang,L.;Huang,W.,Thermally activated delayed fluorescence materials towards thebreakthrough of organoelectronics.Adv Mater 2014,26(47),7931-7958.
11.Uoyama,H.;Goushi,K.;Shizu,K.;Nomura,H.;Adachi,C.,Highly efficientorganic light-emitting diodes from delayed fluorescence.Nature 2012,492(7428),234-238.
12.Takahashi,T.;Shizu,K.;Yasuda,T.;Togashi,K.;Adachi,C.,Donor-acceptor-structured 1,4-diazatriphenylene derivatives exhibiting thermallyactivated delayed fluorescence:design and synthesis,photophysical propertiesand OLED characteristics.Sci Technol Adv Mater 2014,15(3),034202.
13.Wada,Y.;Shizu,K.;Kubo,S.;Suzuki,K.;Tanaka,H.;Adachi,C.;Kaji,H.,Highly efficient electroluminescence from a solution-processable thermallyactivated delayed fluorescence emitter.Appl Phys Lett 2015,107(18),183303.
14.Lee,G.H.;Kim,Y.S.,Diphenylsulphone derivatives for a bluethermally activated delayed fluorescence.Polym Bull 2016,73(9),2439-2446.
15.Li,J.;Jiang,Y.;Cheng,J.;Zhang,Y.;Su,H.;Lam,J.W.;Sung,H.H.;Wong,K.S.;Kwok,H.S.;Tang,B.Z.,Tuning the singlet-triplet energy gap of AIEluminogens:crystallization-induced room temperature phosphorescence and delayfluorescence,tunable temperature response,highly efficient non-doped organiclight-emitting diodes.Phys Chem Chem Phys 2015,17(2),1134-1141.
16.Serevicius,T.;Nakagawa,T.;Kuo,M.C.;Cheng,S.H.;Wong,K.T.;Chang,C.H.;Kwong,R.C.;Xia,S.;Adachi,C.,Enhanced electroluminescence based onthermally activated delayed fluorescence from a carbazole-triazinederivative.Phys Chem Chem Phys 2013,15(38),15850-15855.
17.Shizu,K.;Tanaka,H.;Uejima,M.;Sato,T.;Tanaka,K.;Kaji,H.;Adachi,C.,Strategy for Designing Electron Donors for Thermally Activated DelayedFluorescence Emitters.J Phys Chem C 2015,119(3),1291-1297.
18.Wu,S.H.;Aonuma,M.;Zhang,Q.S.;Huang,S.P.;Nakagawa,T.;Kuwabara,K.;Adachi,C.,High-efficiency deep-blue organic light-emitting diodes based on athermally activated delayed fluorescence emitter.J Mater Chem C 2014,2(3),421-424.19.Xiong,X.;Song,F.;Wang,J.;Zhang,Y.;Xue,Y.;Sun,L.;Jiang,N.;Gao,P.;Tian,L.;Peng,X.,Thermally activated delayed fluorescence of fluoresceinderivative for time-resolved and confocal fluorescence imaging.J Am Chem Soc2014,136(27),9590-9597.
20.Li,T.;Yang,D.;Zhai,L.;Wang,S.;Zhao,B.;Fu,N.;Wang,L.;Tao,Y.;Huang,W.,Thermally Activated Delayed Fluorescence Organic Dots(TADF Odots)for Time-Resolved and Confocal Fluorescence Imaging in Living Cells and In Vivo.AdvSci(Weinh)2017,4(4),1600166.

Claims (7)

1.一种如(I)所示的荧光探针分子及其可接受的盐:
Figure FDA0001984757280000011
其中:R1,R2,R3,R4分别独立地表示氢原子、羟基、氨基、C1~6直链及支链烷氧基、C1~6直链及支链烷氨基、咔唑、叔丁基咔唑、吖啶、二甲基吖啶、苯胺、二苯胺、三苯胺、吩噁嗪、吩噻嗪及二氢吩嗪,所述的C1~6选自C1,C2,C3,C4,C5,C6;
L1表示C1~9直链及支链烷基、C1~9直链及支链烯基、C1~9直链及支链炔基、
Figure FDA0001984757280000012
其中n=1~9,所述C1~9选自C1,C2,C3,C4,C5,C6,C7,C8,C9;R5表示亚甲基,醚键,氨基,羰基,羧酸酯基,酰胺基,
Figure FDA0001984757280000013
R6表示
Figure FDA0001984757280000014
2.根据权利要求1的荧光探针分子及其可接受的盐,其特征在于,所述的可接受的盐为所述化合物的有机酸盐或无机酸盐,所述的有机酸为三氟乙酸,草酸,琥珀酸,醋酸,丁二酸,马来酸,富马酸或酒石酸;无机酸为盐酸,氢溴酸,氢碘酸,硫酸或磷酸。
3.根据权利要求1的荧光探针分子及其可接受的盐,其特征在于,所述的荧光探针分子选自
Figure FDA0001984757280000021
4.权利要求1-3任一项的荧光探针分子及其可接受的盐在体外、细胞或活体水平对细胞检测及荧光寿命成像中的应用。
5.根据权利要求4的应用,其特征在于,所述的细胞为HepG 2细胞。
6.权利要求1-3任一项的荧光探针分子及其可接受的盐的制备方法,其特征在于,其制备方法为:
Figure FDA0001984757280000022
其中R1、R2、R3、R4、L1、R5、R6的定义同权利要求1-3任一项;
步骤a:加入CsF和二甲基亚砜,100℃,反应1h;
步骤b:二甲基亚砜为溶剂,加入碳酸钾,100℃反应1h。
7.根据权利要求6的制备方法,其特征在于,所述的制备步骤b中,不需要加入金属催化剂或强碱,属于温和亲核取代反应。
CN201910163693.9A 2019-03-04 2019-03-04 一种热激活延迟荧光探针分子、其制备及其在细胞成像中的应用 Active CN111646942B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910163693.9A CN111646942B (zh) 2019-03-04 2019-03-04 一种热激活延迟荧光探针分子、其制备及其在细胞成像中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910163693.9A CN111646942B (zh) 2019-03-04 2019-03-04 一种热激活延迟荧光探针分子、其制备及其在细胞成像中的应用

Publications (2)

Publication Number Publication Date
CN111646942A true CN111646942A (zh) 2020-09-11
CN111646942B CN111646942B (zh) 2022-07-19

Family

ID=72340506

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910163693.9A Active CN111646942B (zh) 2019-03-04 2019-03-04 一种热激活延迟荧光探针分子、其制备及其在细胞成像中的应用

Country Status (1)

Country Link
CN (1) CN111646942B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113336701A (zh) * 2021-04-16 2021-09-03 温州医科大学 一种一氧化氮双光子脂滴锁定荧光探针及其制备方法和在检测神经炎症中的应用
CN114507219A (zh) * 2022-03-14 2022-05-17 宁波卢米蓝新材料有限公司 一种基于萘酰亚胺的有机化合物及其应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106867521A (zh) * 2017-03-29 2017-06-20 叶凤池 一种新型萘酰亚胺h2s荧光探针及其制备方法与应用
CN106867271A (zh) * 2015-12-11 2017-06-20 中国科学院大连化学物理研究所 一种大斯托克斯位移和长发射波长的萘酰亚胺类荧光染料及其合成方法和应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106867271A (zh) * 2015-12-11 2017-06-20 中国科学院大连化学物理研究所 一种大斯托克斯位移和长发射波长的萘酰亚胺类荧光染料及其合成方法和应用
CN106867521A (zh) * 2017-03-29 2017-06-20 叶凤池 一种新型萘酰亚胺h2s荧光探针及其制备方法与应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
TIANYU LIU等: "A Lysosome-Targetable Fluorescent Probe for Imaging Hydrogen Sulfide in Living Cells", 《ORGANIC LETTERS》 *
WEI FENG等: "A 1,8-naphthalimide-derived turn-on fluorescent probe for imaging lysosomal nitric oxide in living cells", 《CHINESE CHEMICAL LETTERS》 *
ZHISHENG WU等: "Visualizing Fluoride Ion in Mitochondria and Lysosome of Living Cells and in Living Mice with Positively Charged Ratiometric Probes", 《ANAL. CHEM.》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113336701A (zh) * 2021-04-16 2021-09-03 温州医科大学 一种一氧化氮双光子脂滴锁定荧光探针及其制备方法和在检测神经炎症中的应用
CN114507219A (zh) * 2022-03-14 2022-05-17 宁波卢米蓝新材料有限公司 一种基于萘酰亚胺的有机化合物及其应用

Also Published As

Publication number Publication date
CN111646942B (zh) 2022-07-19

Similar Documents

Publication Publication Date Title
Zhang et al. Rationally designed organelle-specific thermally activated delayed fluorescence small molecule organic probes for time-resolved biological applications
Kong et al. Lysosome-targeting turn-on red/NIR BODIPY probes for imaging hypoxic cells
Shao et al. Styryl-BODIPY based red-emitting fluorescent OFF–ON molecular probe for specific detection of cysteine
CN103087545B (zh) 一类以荧光素为母体的荧光染料、其制备方法及应用
Wang et al. Rational design of novel near-infrared fluorescent DCM derivatives and their application in bioimaging
WO2015153813A1 (en) Azetidine-substituted fluorescent compounds
Kim et al. Far-red/near-infrared emitting, two-photon absorbing, and bio-stable amino-Si-pyronin dyes
Hong et al. Silylated BODIPY dyes and their use in dye-encapsulated silica nanoparticles with switchable emitting wavelengths for cellular imaging
Chevalier et al. Straightforward Access to Water‐Soluble Unsymmetrical Sulfoxanthene Dyes: Application to the Preparation of Far‐Red Fluorescent Dyes with Large Stokes’ Shifts
CN111646942B (zh) 一种热激活延迟荧光探针分子、其制备及其在细胞成像中的应用
Zhang et al. Near-infrared fluorescence of π-conjugation extended benzothiazole and its application for biothiol imaging in living cells
Zhang et al. A photostable AIE luminogen with near infrared emission for monitoring morphological change of plasma membrane
Zhao et al. Maximizing the thiol-activated photodynamic and fluorescence imaging functionalities of theranostic reagents by modularization of Bodipy-based dyad triplet photosensitizers
JPWO2010126077A1 (ja) 近赤外蛍光化合物
Zhu et al. A two-photon off-on fluorescence probe for imaging thiols in live cells and tissues
US8465985B2 (en) Fluorescent probe
CN113999254A (zh) 一种苯并噻二唑并咪唑类荧光染料及其合成方法
CN109456250B (zh) 热激活延迟荧光(tadf)纳米探针及其制备方法和在生物成像中的应用
Huang et al. A series of iridophosphors with tunable excited states for hypoxia monitoring via time-resolved luminescence microscopy
Li et al. Deep-red to near-infrared fluorescent dyes: Synthesis, photophysical properties, and application in cell imaging
Albitz et al. Evaluation of bioorthogonally applicable tetrazine–Cy3 probes for fluorogenic labeling schemes
Li et al. Photostable fluorescent probes based on multifunctional group substituted naphthalimide dyes for imaging of lipid droplets in live cells
CN113651857B (zh) 一类用于氧气传感的铱配合物及其制备方法
CN110105413A (zh) 二噻吩乙烯类化合物及其制备方法和用途
US20210347994A1 (en) Deuterated fluorophores

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant