CN111646426B - Method for preparing carbon nanochain @ gold network film - Google Patents
Method for preparing carbon nanochain @ gold network film Download PDFInfo
- Publication number
- CN111646426B CN111646426B CN202010410223.0A CN202010410223A CN111646426B CN 111646426 B CN111646426 B CN 111646426B CN 202010410223 A CN202010410223 A CN 202010410223A CN 111646426 B CN111646426 B CN 111646426B
- Authority
- CN
- China
- Prior art keywords
- carbon
- nanochain
- gold
- network film
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 64
- 229910052799 carbon Inorganic materials 0.000 title claims abstract description 56
- 229910052737 gold Inorganic materials 0.000 title claims abstract description 45
- 238000000034 method Methods 0.000 title claims abstract description 24
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims abstract description 24
- 239000010931 gold Substances 0.000 claims abstract description 24
- 239000000243 solution Substances 0.000 claims description 16
- 239000000084 colloidal system Substances 0.000 claims description 11
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 claims description 10
- 239000011521 glass Substances 0.000 claims description 10
- 239000008103 glucose Substances 0.000 claims description 10
- 238000001027 hydrothermal synthesis Methods 0.000 claims description 10
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 8
- 238000001659 ion-beam spectroscopy Methods 0.000 claims description 7
- 239000011259 mixed solution Substances 0.000 claims description 7
- 238000007747 plating Methods 0.000 claims description 6
- 239000000758 substrate Substances 0.000 claims description 6
- 230000035484 reaction time Effects 0.000 claims description 5
- 238000004528 spin coating Methods 0.000 claims description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 4
- 238000000151 deposition Methods 0.000 claims description 3
- 230000008021 deposition Effects 0.000 claims description 3
- 238000004416 surface enhanced Raman spectroscopy Methods 0.000 abstract description 8
- 239000000126 substance Substances 0.000 abstract description 4
- 238000000053 physical method Methods 0.000 abstract description 3
- 230000001105 regulatory effect Effects 0.000 abstract description 3
- 230000015572 biosynthetic process Effects 0.000 abstract description 2
- 238000001308 synthesis method Methods 0.000 abstract 1
- 238000003786 synthesis reaction Methods 0.000 abstract 1
- 239000010408 film Substances 0.000 description 38
- 239000002245 particle Substances 0.000 description 10
- 238000001878 scanning electron micrograph Methods 0.000 description 7
- 238000002360 preparation method Methods 0.000 description 4
- 239000010409 thin film Substances 0.000 description 3
- 238000001069 Raman spectroscopy Methods 0.000 description 2
- 238000003917 TEM image Methods 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000008367 deionised water Substances 0.000 description 2
- 229910021641 deionized water Inorganic materials 0.000 description 2
- 230000002787 reinforcement Effects 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 238000000479 surface-enhanced Raman spectrum Methods 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000011852 carbon nanoparticle Substances 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000004070 electrodeposition Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- -1 polytetrafluoroethylene Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 238000006722 reduction reaction Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81C—PROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
- B81C1/00—Manufacture or treatment of devices or systems in or on a substrate
- B81C1/00015—Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81B—MICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
- B81B7/00—Microstructural systems; Auxiliary parts of microstructural devices or systems
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81B—MICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
- B81B7/00—Microstructural systems; Auxiliary parts of microstructural devices or systems
- B81B7/04—Networks or arrays of similar microstructural devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81C—PROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
- B81C1/00—Manufacture or treatment of devices or systems in or on a substrate
- B81C1/00015—Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
- B81C1/00023—Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems without movable or flexible elements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81C—PROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
- B81C1/00—Manufacture or treatment of devices or systems in or on a substrate
- B81C1/00349—Creating layers of material on a substrate
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Physical Vapour Deposition (AREA)
- Catalysts (AREA)
- Inert Electrodes (AREA)
- Carbon And Carbon Compounds (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Abstract
本发明公开了一种制备碳纳米链@金网络膜的方法,本发明将化学与物理方法相结合,两步工艺合成了碳纳米链@金网络膜,其中碳纳米链(直径和长度)和金膜(厚度和颗粒尺寸)可通过相应工艺参数进行调控。此合成方法具有普适、绿色、成本低、易于大量合成等优点,由于结构独特,网络膜展现出优异的表面增强拉曼散射性能。
The invention discloses a method for preparing a carbon nanochain@gold network film. The invention combines chemical and physical methods to synthesize a carbon nanochain@gold network film by a two-step process, wherein the carbon nanochain (diameter and length) and The gold film (thickness and grain size) can be regulated by corresponding process parameters. This synthesis method has the advantages of universality, greenness, low cost, and easy mass synthesis. Due to its unique structure, the network film exhibits excellent surface-enhanced Raman scattering properties.
Description
技术领域technical field
本发明是一种低成本、宏量制备碳纳米链@金网络膜的方法,属于贵金属微纳结构的制备领域。The invention is a low-cost, macro-scale method for preparing carbon nanochain@gold network film, which belongs to the field of preparation of precious metal micro-nano structures.
背景技术Background technique
由于在催化、传感、燃料电池等方面具有优异性能和潜在应用,金多孔薄膜引起广泛的研究兴趣。表面增强拉曼散射(SERS)方面,这种薄膜也是极好的SERS衬底,这是因为它们拥有高密度的SERS热点以及大的比表面可用来吸附探测分子。制备金多孔薄膜主要是采用化学方法,包括化学还原、电沉积、选择性刻蚀等。然而,这些方法在不同程度上都存在着耗能高、污染大、成本高等问题,所得薄膜也会被污染,降低性能或影响使用。Due to their excellent performance and potential applications in catalysis, sensing, fuel cells, etc., gold porous thin films have attracted extensive research interest. In terms of surface-enhanced Raman scattering (SERS), such thin films are also excellent SERS substrates because they have a high density of SERS hotspots and a large specific surface area for adsorption of probe molecules. The preparation of porous gold thin films mainly adopts chemical methods, including chemical reduction, electrodeposition, selective etching and so on. However, these methods have problems such as high energy consumption, high pollution, and high cost to varying degrees, and the obtained films will also be polluted, reducing performance or affecting use.
发明内容Contents of the invention
本发明的目的就在于克服上述缺陷,研制一种制备金网络膜的方法。The purpose of the present invention is just to overcome above-mentioned defect, develops a kind of method for preparing gold network film.
实现本发明目的的技术方案是:一种低成本、宏量制备碳纳米链@金网络膜的方法,主要步骤如下:The technical solution for realizing the purpose of the present invention is: a low-cost, macro-preparation method for carbon nanochain@gold network film, the main steps are as follows:
(1)以葡萄糖水热合成碳纳米链胶体溶液;(1) Hydrothermal synthesis of carbon nanochain colloid solution with glucose;
(2)在导电玻璃表面旋涂碳纳米链胶体溶液并自然干燥,获得碳纳米链网络薄膜;(2) Spin-coat the carbon nanochain colloidal solution on the surface of the conductive glass and dry it naturally to obtain the carbon nanochain network film;
(3)在碳纳米链网络薄膜/导电玻璃为衬底,离子束溅射法镀金。(3) The carbon nanochain network film/conductive glass is used as the substrate, and gold is plated by ion beam sputtering.
较佳的,葡萄糖溶解于体积比为10:1的水和乙醇的混合液中,其浓度为0.4 M,以该葡萄糖混合溶液水热合成碳纳米链胶体溶液。Preferably, glucose is dissolved in a mixed solution of water and ethanol with a volume ratio of 10:1, and the concentration is 0.4 M, and the carbon nanochain colloidal solution is hydrothermally synthesized with the glucose mixed solution.
较佳的,水热反应温度为180 ℃,反应时间为6 h。Preferably, the hydrothermal reaction temperature is 180 °C, and the reaction time is 6 h.
较佳的,碳纳米链胶体溶液的浓度为2.8 M。Preferably, the concentration of the carbon nanochain colloidal solution is 2.8 M.
较佳的,在1cm x 1cm导电玻璃表面旋涂5 mL碳纳米链胶体溶液。Preferably, 5 mL of carbon nanochain colloidal solution is spin-coated on the surface of 1 cm x 1 cm conductive glass.
较佳的,旋涂碳纳米链胶体溶液时,转速为200 rpm。Preferably, when spin-coating the carbon nanochain colloid solution, the rotational speed is 200 rpm.
较佳的,离子束溅射镀金时间为30 s,沉积速率为1 nm/s。Preferably, the ion beam sputtering gold plating time is 30 s, and the deposition rate is 1 nm/s.
与现有技术相比,本发明的创新之处在于:本发明制备的碳纳米链@金网络膜在结构上是独特的,且可以通过控制工艺参数(水热法和离子束溅射)调控碳纳米链和金膜微观结构,比单纯化学反应更容易控制。Compared with the prior art, the innovation of the present invention is that the carbon nanochain@gold network film prepared by the present invention is unique in structure, and can be regulated by controlling process parameters (hydrothermal method and ion beam sputtering) The microstructure of carbon nanochains and gold films is easier to control than pure chemical reactions.
本发明的优越之处在下面的附图说明和具体实施方式中将进一步阐述。The advantages of the present invention will be further elaborated in the following descriptions of drawings and specific embodiments.
附图说明Description of drawings
图1为本发明制备碳纳米链@金网络膜的工艺流程示意图。Figure 1 is a schematic diagram of the process flow for preparing carbon nanochain@gold network film according to the present invention.
图2为本发明实施例1碳纳米链胶体TEM像。Fig. 2 is a TEM image of carbon nanochain colloid in Example 1 of the present invention.
图3为本发明实施例1碳纳米链网络膜及碳纳米链@金网络膜SEM像。Fig. 3 is a SEM image of a carbon nanochain network film and a carbon nanochain@gold network film according to Example 1 of the present invention.
图4为本发明实施例1碳纳米链@金网络膜对R6G分子的SERS图谱。Fig. 4 is the SERS pattern of carbon nanochain@gold network film on R6G molecules in Example 1 of the present invention.
图5为本发明实施例2和实施例3碳纳米链@金网络膜的SEM像。Fig. 5 is the SEM image of the carbon nanochain@gold network film of Example 2 and Example 3 of the present invention.
具体实施方式Detailed ways
本发明中,发明人将化学方法与物理方法相结合,采用三步工艺可控制备了碳纳米链@金网络膜。工艺路线见图1:首先,使葡萄糖水热法分解,获得碳纳米链胶体溶液;其次,在洁净导电玻璃表面旋涂碳纳米链胶体溶液并干燥;最后,以获得碳纳米链网络薄膜的导电玻璃为衬底,离子束溅射沉积金。In the present invention, the inventor combined the chemical method with the physical method, and adopted a three-step process to controlly prepare the carbon nanochain@gold network film. The process route is shown in Figure 1: first, the glucose is hydrothermally decomposed to obtain a carbon nanochain colloid solution; secondly, the carbon nanochain colloid solution is spin-coated on the clean conductive glass surface and dried; finally, the conductive carbon nanochain network film is obtained. Glass was used as the substrate, and gold was deposited by ion beam sputtering.
这样制备的碳纳米链@金薄膜呈三维网络状,宏观上均匀一致,微观上既粗糙又多孔。其中,碳纳米链(直径和长度)和金膜(厚度和颗粒尺寸)可通过相应工艺参数进行调控。由于结构独特,薄膜表现出优异的SERS性能。The carbon nanochain@gold film prepared in this way is in the form of a three-dimensional network, which is uniform macroscopically and rough and porous microscopically. Among them, carbon nanochains (diameter and length) and gold film (thickness and particle size) can be regulated by corresponding process parameters. Due to the unique structure, the film exhibits excellent SERS performance.
实施例1Example 1
(1)将8 g葡萄糖粉末溶解于100 mL去离子水中,并加入10 mL乙醇混合均匀,搅拌10 min形成0.4 M的葡萄糖混合溶液,随后取30 mL该混合溶液倒入50 ml聚四氟乙烯衬里的不锈钢水热反应釜中并密封,于180 ℃反应6 h,自然冷却至室温,可得棕色的胶体溶液,使用离心机、去离子水和乙醇反复清洗,最终得到2.8 M高浓度的碳纳米链胶体水溶液。(2)将导电玻璃(1cm x 1cm)置于旋涂仪上,调节转速为200 rpm,其表面滴加5 mL碳纳米链胶体水溶液,至自然干燥,玻璃表面即得一层碳纳米链网络薄膜。(3)以碳纳米链网络薄膜为衬底,利用离子束溅射镀金30 s,沉积速率1 nm/s,使用设备为德国徕卡公司的SCD-500离子溅射仪,该设备在溅射时真空度维持在10-2 pa~10-3 pa,电流保持在40 mA。(1) Dissolve 8 g of glucose powder in 100 mL of deionized water, add 10 mL of ethanol and mix well, stir for 10 min to form a 0.4 M glucose mixed solution, then pour 30 mL of the mixed solution into 50 ml of polytetrafluoroethylene Lined stainless steel hydrothermal reaction kettle and sealed, reacted at 180 °C for 6 h, and cooled naturally to room temperature to obtain a brown colloidal solution, which was washed repeatedly with a centrifuge, deionized water and ethanol, and finally obtained 2.8 M high-concentration carbon Aqueous solution of nanochain colloid. (2) Put the conductive glass (1cm x 1cm) on the spin coater, adjust the rotation speed to 200 rpm, drop 5 mL of carbon nanochain colloid aqueous solution on the surface, let it dry naturally, and a layer of carbon nanochain network is obtained on the surface of the glass film. (3) Using the carbon nanochain network film as the substrate, use ion beam sputtering to plate gold for 30 s, with a deposition rate of 1 nm/s. The vacuum degree is maintained at 10 -2 Pa~10 -3 Pa, and the current is maintained at 40 mA.
采用透射电子显微镜(TEM,JEM-200CX)和日本日立公司的S-4800场发射扫描电子显微镜(FESEM)观察样品形貌。采用英国Renishwa公司的In Via激光共焦拉曼光谱仪分析样品的SERS性能。The morphology of the samples was observed with a transmission electron microscope (TEM, JEM-200CX) and a Hitachi S-4800 field emission scanning electron microscope (FESEM). The SERS performance of the samples was analyzed using an In Via laser confocal Raman spectrometer from Renishwa, UK.
图2为实施例1碳纳米链胶体TEM像。可见,碳纳米链是一种形状不规则、多分枝的链状结构,链是由许多纳米颗粒首尾串连在一起构成的。经统计,链长度约500-2000 nm,直径约60-130 nm。链状碳胶体的形成分为两步:反应开始的一段时间,产生的碳纳米颗粒浓度很稀,且由于胶体颗粒表面电荷的静电排斥作用,颗粒能均匀的分散;随反应时间延长,胶体浓度增高,当达到一定浓度后,颗粒间发生碰撞并团聚,最终形成多分枝的链状结构。Fig. 2 is the TEM image of the carbon nanochain colloid of Example 1. It can be seen that the carbon nanochain is an irregularly shaped and multi-branched chain structure, and the chain is composed of many nanoparticles connected in series. According to statistics, the chain length is about 500-2000 nm, and the diameter is about 60-130 nm. The formation of chain carbon colloids is divided into two steps: a period of time at the beginning of the reaction, the concentration of carbon nanoparticles produced is very dilute, and due to the electrostatic repulsion of the surface charge of the colloidal particles, the particles can be uniformly dispersed; as the reaction time prolongs, the colloidal concentration When it reaches a certain concentration, the particles collide and agglomerate, and finally form a multi-branched chain structure.
图3为实施例1碳纳米链网络膜及碳纳米链@金网络膜SEM像。图3a是碳纳米链网络膜SEM像,如图所示,旋涂获得的碳纳米链薄膜微观上呈多孔网络状结构,孔尺寸从几纳米至几百纳米,分布范围较宽。薄膜是由碳纳米链堆积而成,纳米链之间相互连接、相互叠加,薄膜厚度可通过碳链胶体旋涂量调控。图3b是碳纳米链@金网络膜SEM像。镀金30 s后,金膜沉积在碳链表面,金颗粒呈分散状,分布均匀,颗粒形状不规则,尺寸约20 nm。Fig. 3 is the SEM image of the carbon nanochain network film and the carbon nanochain@gold network film of Example 1. Figure 3a is a SEM image of a carbon nanochain network film. As shown in the figure, the carbon nanochain film obtained by spin coating has a porous network structure microscopically, and the pore size ranges from several nanometers to hundreds of nanometers, and the distribution range is wide. The film is formed by stacking carbon nanochains, and the nanochains are interconnected and superimposed on each other. The thickness of the film can be adjusted by the amount of carbon chain colloid spin coating. Figure 3b is the SEM image of carbon nanochain@gold network film. After gold plating for 30 s, the gold film was deposited on the surface of the carbon chains, and the gold particles were dispersed and evenly distributed, with irregular particle shapes and a size of about 20 nm.
图4为实施例1碳纳米链@金网络膜对R6G分子的SERS图谱。曲线1和2分别对应碳纳米链@金网络膜和平坦硅片上金颗粒膜的SERS谱(二者工艺参数相同)。可以看出,碳纳米链@金网络膜具有更大的增强能力,说明碳链之间纳米级的间隙起了主要增强作用。此外,碳纳米链@金网络膜衬底具有好的信号均匀性,这是因为从统计意义上来说,在拉曼激光斑点10 μm范围内,样品是均匀的。Fig. 4 is the SERS spectrum of the carbon nanochain@gold network film to the R6G molecule in Example 1.
实施例2Example 2
其它步骤和工艺条件与实施例1相同。不同的是,步骤3中溅射镀金时间为2分钟。Other steps and process conditions are identical with embodiment 1. The difference is that the sputtering gold plating time in step 3 is 2 minutes.
图5a对应镀金2分钟的碳纳米链@金网络膜SEM像,对比实施例1,可以观察到金颗粒尺寸变大,约为70-140 nm。可见,通过改变镀金时间可以控制网络膜中金颗粒尺寸或金膜厚度。Figure 5a corresponds to the SEM image of the carbon nanochain@gold network film plated with gold for 2 minutes. Compared with Example 1, it can be observed that the size of the gold particles becomes larger, about 70-140 nm. It can be seen that the size of gold particles in the network film or the thickness of the gold film can be controlled by changing the gold plating time.
实施例3Example 3
其它步骤和工艺条件与实施例1相同。不同的是,步骤1中水热合成碳链时间为4小时。Other steps and process conditions are identical with embodiment 1. The difference is that the hydrothermal synthesis carbon chain time in step 1 is 4 hours.
图5b对应此碳链的金网络膜SEM像,对比实施例1,可以观察到水热反应时间短得到的碳链尺寸较小,约30-70 nm,而金颗粒尺寸没有明显变化。可见,通过改变水热反应时间可以控制网络膜中碳链直径。Figure 5b corresponds to the SEM image of the gold network film of this carbon chain. Compared with Example 1, it can be observed that the size of the carbon chain obtained by the short hydrothermal reaction time is small, about 30-70 nm, and the size of the gold particles does not change significantly. It can be seen that the carbon chain diameter in the network membrane can be controlled by changing the hydrothermal reaction time.
根据上述研究结果可知:结合化学和物理方法,即简单常用的水热反应和溅射镀膜,能以碳链作为模板,可控制备碳纳米链@金网络膜,工艺流程具有成本低、可宏量制备等优点,有望得到实际应用。According to the above research results, it can be known that the combination of chemical and physical methods, that is, the simple and commonly used hydrothermal reaction and sputtering coating, can use carbon chains as templates to controlly prepare carbon nanochains@gold network film, and the process is low-cost and scalable. It is expected to be practically applied due to its advantages such as quantitative preparation.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010410223.0A CN111646426B (en) | 2020-05-15 | 2020-05-15 | Method for preparing carbon nanochain @ gold network film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010410223.0A CN111646426B (en) | 2020-05-15 | 2020-05-15 | Method for preparing carbon nanochain @ gold network film |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111646426A CN111646426A (en) | 2020-09-11 |
CN111646426B true CN111646426B (en) | 2023-03-31 |
Family
ID=72349257
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010410223.0A Active CN111646426B (en) | 2020-05-15 | 2020-05-15 | Method for preparing carbon nanochain @ gold network film |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111646426B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113355687B (en) * | 2021-04-20 | 2022-05-24 | 广东石油化工学院 | Tin-based bimetallic carbide @ carbon nanochain core-shell structure and preparation method and application thereof |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009059017A2 (en) * | 2007-10-30 | 2009-05-07 | Auburn University | Inorganic nanocylinders in liquid crystaline form |
CN102628809A (en) * | 2012-04-20 | 2012-08-08 | 吉林大学 | Surface enhanced raman detection test paper and application thereof |
CN104857902A (en) * | 2015-04-13 | 2015-08-26 | 南京理工大学 | Preparation method of silver/carbon composite hollow nanospheres |
CN105717091A (en) * | 2016-01-29 | 2016-06-29 | 南京理工大学 | Durable and efficient SERS substrate and preparation method thereof |
CN107576649A (en) * | 2017-09-19 | 2018-01-12 | 辽宁大学 | A kind of new carbon-based core-shell material for Raman spectrum detection and its preparation method and application |
CN109470680A (en) * | 2017-09-08 | 2019-03-15 | 清华大学 | Preparation method of molecular carrier for molecular detection |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150069295A1 (en) * | 2013-09-09 | 2015-03-12 | National University Of Singapore | Hydrogel nanocomposite |
-
2020
- 2020-05-15 CN CN202010410223.0A patent/CN111646426B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009059017A2 (en) * | 2007-10-30 | 2009-05-07 | Auburn University | Inorganic nanocylinders in liquid crystaline form |
CN102628809A (en) * | 2012-04-20 | 2012-08-08 | 吉林大学 | Surface enhanced raman detection test paper and application thereof |
CN104857902A (en) * | 2015-04-13 | 2015-08-26 | 南京理工大学 | Preparation method of silver/carbon composite hollow nanospheres |
CN105717091A (en) * | 2016-01-29 | 2016-06-29 | 南京理工大学 | Durable and efficient SERS substrate and preparation method thereof |
CN109470680A (en) * | 2017-09-08 | 2019-03-15 | 清华大学 | Preparation method of molecular carrier for molecular detection |
CN107576649A (en) * | 2017-09-19 | 2018-01-12 | 辽宁大学 | A kind of new carbon-based core-shell material for Raman spectrum detection and its preparation method and application |
Non-Patent Citations (1)
Title |
---|
"水热碳基复合材料的制备及其在分子检测领域的应用";黄维;《中国优秀博硕士学位论文全文数据库(硕士) 工程科技Ⅰ辑》;20150615;第17-44页 * |
Also Published As
Publication number | Publication date |
---|---|
CN111646426A (en) | 2020-09-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111647871B (en) | Gold nanocrystalline interface carbon-based material super-assembly controllable growth method | |
CN101216430B (en) | Nanoporous metal substrate with surface-enhanced Raman scattering activity and preparation method thereof | |
CN102341524B (en) | Highly ordered arrays of nanoholes in metallic films and methods for producing the same | |
Kaniukov et al. | Growth mechanisms of spatially separated copper dendrites in pores of a SiO2 template | |
CN103747870A (en) | Substrate surface structured with thermally stable metal alloy nanoparticles, method for preparing the same and uses thereof, in particular as catalyst | |
CN108459003A (en) | A kind of preparation method of silver nano-grain coating zinc oxide surface enhanced Raman scattering effect substrate | |
CN109612976B (en) | A three-dimensional multilayer structure surface-enhanced Raman substrate and preparation method thereof | |
CN109095459B (en) | ZIF-67/graphene oxide and pyrolysis thereof to obtain hollow Co 3 O 4 Preparation method of graphene | |
CN101003907A (en) | Method for preparing metal and dielectric composite grains of silicon dioxide coated by Nano silver | |
CN101983914B (en) | Method for preparing micro number density or size gradient metal nano-particle lattice | |
CN1924117A (en) | Preparation method of two-dimensional plane gold nano single crystal plate | |
CN102431962A (en) | Preparation method and application of nanoimprint template | |
CN111646426B (en) | Method for preparing carbon nanochain @ gold network film | |
Lim et al. | Electrochemical preparation system for unique mesoporous hemisphere gold nanoparticles using block copolymer micelles | |
CN108227057A (en) | A kind of SERS substrates based on grating resonance and preparation method thereof | |
CN105954251A (en) | Surface enhanced Raman scattering substrate and manufacturing method thereof | |
CN106346016A (en) | Preparation method of silver/graphene composite films and application of preparation method in ultraviolet detectors | |
CN106077697A (en) | Preparation method and application of silver nano flower cluster/silver micron sheet with hierarchical structure | |
CN113125406A (en) | SERS substrate with microscopic ordered nano structure and preparation method | |
CN108254355A (en) | A kind of preparation method of salt bridge auxiliary primary battery induced growth gold nano grain surface enhanced Raman scattering substrate | |
CN111411335B (en) | Preparation method and application of a large-area distribution of Ag@SiO2 nanoparticles | |
US20050274225A1 (en) | Methods for the preparation of metallic alloy nanoparticles and compositions thereof | |
CN108444973A (en) | One kind having the active Ag/FeS composite material and preparation methods of SERS | |
JP6164752B2 (en) | Molecular sensor, redox catalyst and lithium ion battery electrode using mesoporous metal film | |
Jia et al. | Selective growth of TiO 2 beads on Ag nanowires and their photocatalytic performance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |