CN1924117A - Preparation method of two-dimensional plane gold nano single crystal plate - Google Patents
Preparation method of two-dimensional plane gold nano single crystal plate Download PDFInfo
- Publication number
- CN1924117A CN1924117A CN 200610068530 CN200610068530A CN1924117A CN 1924117 A CN1924117 A CN 1924117A CN 200610068530 CN200610068530 CN 200610068530 CN 200610068530 A CN200610068530 A CN 200610068530A CN 1924117 A CN1924117 A CN 1924117A
- Authority
- CN
- China
- Prior art keywords
- single crystal
- nano single
- gold micro
- dimensional planar
- preparing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000013078 crystal Substances 0.000 title claims abstract description 33
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 title claims abstract description 33
- 239000010931 gold Substances 0.000 title claims abstract description 32
- 229910052737 gold Inorganic materials 0.000 title claims abstract description 31
- 238000002360 preparation method Methods 0.000 title claims description 14
- 238000000034 method Methods 0.000 claims abstract description 18
- 239000004976 Lyotropic liquid crystal Substances 0.000 claims abstract description 16
- 239000002253 acid Substances 0.000 claims abstract description 12
- 238000006243 chemical reaction Methods 0.000 claims abstract description 11
- 239000002736 nonionic surfactant Substances 0.000 claims abstract description 8
- 230000005540 biological transmission Effects 0.000 claims abstract description 7
- LZZYPRNAOMGNLH-UHFFFAOYSA-M Cetrimonium bromide Chemical compound [Br-].CCCCCCCCCCCCCCCC[N+](C)(C)C LZZYPRNAOMGNLH-UHFFFAOYSA-M 0.000 claims description 7
- 239000003093 cationic surfactant Substances 0.000 claims description 7
- 239000004973 liquid crystal related substance Substances 0.000 claims description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 7
- 230000035484 reaction time Effects 0.000 claims description 6
- 239000004094 surface-active agent Substances 0.000 claims description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 5
- 238000005119 centrifugation Methods 0.000 claims description 5
- 239000003638 chemical reducing agent Substances 0.000 claims description 5
- 229910052802 copper Inorganic materials 0.000 claims description 5
- 239000010949 copper Substances 0.000 claims description 5
- 238000006722 reduction reaction Methods 0.000 claims description 4
- 229920003171 Poly (ethylene oxide) Polymers 0.000 claims description 3
- 229920001577 copolymer Polymers 0.000 claims 1
- 239000002245 particle Substances 0.000 abstract description 6
- 238000002156 mixing Methods 0.000 abstract description 3
- 239000011248 coating agent Substances 0.000 abstract description 2
- 238000004627 transmission electron microscopy Methods 0.000 abstract description 2
- 239000012071 phase Substances 0.000 description 8
- 229920002415 Pluronic P-123 Polymers 0.000 description 7
- 239000000243 solution Substances 0.000 description 7
- 239000002086 nanomaterial Substances 0.000 description 5
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 238000004070 electrodeposition Methods 0.000 description 3
- 230000002535 lyotropic effect Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 229910000510 noble metal Inorganic materials 0.000 description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 239000002042 Silver nanowire Substances 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 210000001787 dendrite Anatomy 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000002003 electron diffraction Methods 0.000 description 1
- 238000002524 electron diffraction data Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 230000005389 magnetism Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000002082 metal nanoparticle Substances 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 239000002135 nanosheet Substances 0.000 description 1
- 239000002070 nanowire Substances 0.000 description 1
- 238000010587 phase diagram Methods 0.000 description 1
- 239000003223 protective agent Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 238000000235 small-angle X-ray scattering Methods 0.000 description 1
- 239000012798 spherical particle Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
Images
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
本发明公开了一种二维平面金微纳单晶盘的制备方法,由下述步骤组成:(1)配置模板,将非离子表面活性剂、包覆剂与氯金酸溶液混合,得到均匀的六角相溶致液晶;(2)将所述溶致液晶室温下静置反应;(3)收集所得产物,透射电镜观察所得产物呈现规则的三角形或六边形平面结构,边长约为1~10μm,厚度为10-100nm;产物的单晶性质和平面结构性质,分别利用透射电镜来表征。本发明的方法具有产物形貌与粒径有效可控,反应简单易行,条件温和,模板的粘度较低,反应后易于除去,产物尺寸调控范围大以及产量大,结构明晰等特点。
The invention discloses a method for preparing a two-dimensional planar gold micro-nano single crystal disk, which consists of the following steps: (1) configuring a template, mixing a nonionic surfactant, a coating agent and a chloroauric acid solution to obtain a uniform (2) leave the lyotropic liquid crystal to react at room temperature; (3) collect the obtained product, and observe the obtained product under a transmission electron microscope to present a regular triangular or hexagonal planar structure with a side length of about 1 ~10μm, thickness 10-100nm; single crystal properties and planar structure properties of the product were characterized by transmission electron microscopy. The method of the invention has the characteristics of effective controllable product morphology and particle size, simple and easy reaction, mild conditions, low template viscosity, easy removal after reaction, large product size control range, large output, clear structure and the like.
Description
技术领域technical field
本发明涉及一种纳米材料的制备方法,尤其涉及一种利用六角相溶致液晶化学还原制备二维平面金微纳单晶盘的制备方法。The invention relates to a preparation method of a nanometer material, in particular to a preparation method for preparing a two-dimensional plane gold micro-nano single crystal disk by utilizing hexagonal lysotropic liquid crystal chemical reduction.
背景技术Background technique
贵金属纳米材料由于具有光学、电学、声学、磁学和力学等方面的独特性质以及可能的应用前景而引起广泛的关注。最近人们对非球形的贵金属纳米材料显示出了极大的兴趣,棒状、树枝状、管状和片状等非球形贵金属纳米粒子均获得了一定的应用,如纳米级片状银粉对改善电子浆料的电性能及降低浆料烧结温度非常重要。其中模板法是制备该种材料的一种有效方法。而用溶致液晶有序结构引导其结构形成,具有模板易于去除、反应条件温和等优势,是合成纳米结构材料的一个良好途径。结合电化学沉积方法,Attard等利用溶致液晶六角相制备了金属铂的多孔膜(G S Attard,P N Bartlett,N R BColeman,J M Elliott,J R Owen,J H Wang.Mesoporous Platinum Films from LyotropicLiquid Crystalline Phases.Science,1997,Vol 278,838-840),Yan等则利用溶致液晶反六角相得到了金属银的纳米线(L M Huang,H T Wang,Z B Wang,A Mitra,K N Bozhilov,YS Yan.Nanowire Arrays Electrodeposited from Liquid crystalline Phase.Adv.Mater.,2002,Vol 14,61-64)。关于制备金纳米盘,国内外也已出现相关报道,例如Lee等利用紫外光辐照和加热(70℃)处理(Kim J.U.,Cha S.H.,Shin K.,Jho J.Y.,Lee J.C..Preparation ofGold Nanowires and Nanosheets in Bulk Block Copolymer Phases under Mild Conditions.Adv.Mater.,2004,16(5):459-464.),汪等利用液相还原(Sun X.,Dong S.,Wang E..Large-Scale Synthesis of Micrometer-Scale Single-Crystalline Au Plates of NanometerThickness by a Wet-Chemical Route.Angew.Chem.Int.Ed.,2004,43(46):6360-6363;Shankar S.S.,Rai A.,Ankamwar B.,Singh A.,Ahmad A.,Sastry M..Biological Syntiesis ofTriangular Gold Nanoprisms.Nature Mater.,2004,3:482-488.)等。但以上方法存在需要特殊的制备条件,或者所得到的产物尺寸较小,以及机理不明确等缺点。Noble metal nanomaterials have attracted widespread attention due to their unique properties in optics, electricity, acoustics, magnetism, and mechanics, as well as their possible application prospects. Recently, people have shown great interest in non-spherical noble metal nanomaterials. Non-spherical noble metal nanoparticles such as rods, dendrites, tubes and flakes have been used in certain applications, such as nanoscale flake silver powder for improving electronic paste. It is very important to improve the electrical properties and reduce the sintering temperature of the slurry. Among them, the template method is an effective method to prepare this kind of material. Using the ordered structure of lyotropic liquid crystals to guide its structure formation has the advantages of easy removal of templates and mild reaction conditions, and is a good way to synthesize nanostructured materials. Combined with the electrochemical deposition method, Attard et al. prepared porous films of metal platinum by using the lyotropic liquid crystal hexagonal phase (G S Attard, P N Bartlett, N R BColeman, J M Elliott, J R Owen, J H Wang. Mesoporous Platinum Films from Lyotropic Liquid Crystalline Phases.Science, 1997, Vol 278, 838-840), Yan et al. obtained metallic silver nanowires by using lyotropic liquid crystal reverse hexagonal phase (L M Huang, HT Wang, Z B Wang, A Mitra, K N Bozhilov, YS Yan. Nanowire Arrays Electrodeposited from Liquid crystalline Phase. Adv. Mater., 2002, Vol 14, 61-64). Regarding the preparation of gold nanodisks, relevant reports have also appeared at home and abroad. For example, Lee et al. used ultraviolet light irradiation and heating (70°C) for treatment (Kim J.U., Cha S.H., Shin K., Jho J.Y., Lee J.C..Preparation of Gold Nanowires and Nanosheets in Bulk Block Copolymer Phases under Mild Conditions.Adv.Mater., 2004, 16(5):459-464.), Wang et al. used liquid phase reduction (Sun X., Dong S., Wang E..Large-Scale Synthesis of Micrometer-Scale Single-Crystalline Au Plates of NanometerThickness by a Wet-Chemical Route. Angew. Chem. Int. Ed., 2004, 43(46): 6360-6363; Shankar S.S., Rai A., Ankamwar B., Singh A., Ahmad A., Sastry M.. Biological Syntiesis of Triangular Gold Nanoprisms. Nature Mater., 2004, 3: 482-488.), etc. However, the above methods have disadvantages such as the need for special preparation conditions, or the size of the obtained product is small, and the mechanism is not clear.
发明内容Contents of the invention
本发明要解决的问题是,采用一种简便易操作的溶致液晶六角相模板,提供一种温和条件下大量制备二维平面金微纳单晶盘的方法。The problem to be solved by the present invention is to provide a method for preparing a large amount of two-dimensional planar gold micro-nano single crystal disks under mild conditions by using a simple and easy-to-operate lyotropic liquid crystal hexagonal phase template.
本发明的目的是通过如下技术方案实现的。The purpose of the present invention is achieved through the following technical solutions.
本发明纳米材料的化学还原过程涉及的两个反应方程如下:Two reaction equations involved in the chemical reduction process of the nanometer material of the present invention are as follows:
总的反应方程式为:The overall reaction equation is:
上述反应是在由表面活性剂与氯金酸水溶液所形成溶致液晶内的极性水区域中进行的,其中形成液晶的非离子表面活性剂即是模板剂又作为还原剂。The above reaction is carried out in the polar water region in the lyotropic liquid crystal formed by the surfactant and the chloroauric acid aqueous solution, wherein the nonionic surfactant forming the liquid crystal is both a template agent and a reducing agent.
本发明的二维平面金微纳单晶盘的制备方法,步骤如下:The preparation method of the two-dimensional planar gold micro-nano single crystal disk of the present invention, the steps are as follows:
(1)配置模板,将质量百分数为40-50%的非离子表面活性剂以及质量百分数为0.5-4%的包覆剂阳离子表面活性剂与浓度为0.01-0.05mol/dm3氯金酸溶液混合,得到均匀的六角相溶致液晶;(1) configure the template, the nonionic surfactant of 40-50% by mass percent and the cationic surfactant of coating agent cationic surfactant of 0.5-4% by mass percent and concentration are 0.01-0.05mol/dm chloroauric acid solution Mix to obtain a uniform hexagonal lyotropic liquid crystal;
(2)将上述溶致液晶在室温下静置24~240小时;(2) Standing the above-mentioned lyotropic liquid crystal at room temperature for 24 to 240 hours;
(3)用水洗涤上述样品,将表面活性剂除掉,并在3000rpm条件下离心15分钟,用覆有Formvor膜的铜网收集离心后所得沉淀产物,然后用透射电镜观察,所得产物呈现有规则的正三角形、截角三角形以及正六边形结构,边长为1~10μm的金微纳单晶盘。(3) Wash the above sample with water, remove the surfactant, and centrifuge at 3000rpm for 15 minutes, collect the precipitated product after centrifugation with a copper grid covered with a Formvor film, and then observe it with a transmission electron microscope. The resulting product appears regular A gold micro-nano single crystal disk with a regular triangle, truncated triangle and regular hexagonal structure with a side length of 1-10 μm.
其中,步骤(1)所述的非离子表面活性剂是聚氧乙烯-聚氧丙烯-聚氧乙烯共聚物(EO20PO70EO20,Pluronic P123)。Wherein, the nonionic surfactant described in step (1) is polyoxyethylene-polyoxypropylene-polyoxyethylene copolymer (EO 20 PO 70 EO 20 , Pluronic P123).
其中,步骤(1)所述的阳离子表面活性剂是十六烷基三甲基溴化铵。Wherein, the cationic surfactant described in step (1) is cetyltrimethylammonium bromide.
其中,步骤(1)所述的非离子表面活性剂的质量百分数优选为43-46wt%。Wherein, the mass percent of the nonionic surfactant described in step (1) is preferably 43-46wt%.
其中,步骤(1)所述的阳离子表面活性剂的质量百分数优选为1-2wt%。Wherein, the mass percentage of the cationic surfactant described in step (1) is preferably 1-2 wt%.
其中,步骤(1)所述的氯金酸溶液的浓度优选为0.02~0.04mol/dm3。Wherein, the concentration of the chloroauric acid solution described in step (1) is preferably 0.02-0.04 mol/dm 3 .
其中,步骤(2)所述的静置时间优选为48~150h。Wherein, the standing time described in step (2) is preferably 48 to 150 hours.
其中,步骤(3)所述的金微纳单晶盘厚度在10-100nm。Wherein, the gold micro-nano single crystal disk described in step (3) has a thickness of 10-100 nm.
其中,所述步骤(1)、(2)中最优选质量百分数为45%的EO20PO70EO20(Pluronic P123)和质量百分数1%的十六烷基三甲基溴化铵与0.03mol/dm3氯金酸溶液混合,静置反应时间为120h。Wherein, the EO 20 PO 70 EO 20 (Pluronic P123) and the cetyltrimethylammonium bromide of 1% mass percent and 0.03mol /dm 3 mixed with chloroauric acid solution, and the standing reaction time is 120h.
采用本发明的方法制备二维平面金微纳单晶盘,得到的金微纳单晶盘具有规则的三角形或六边形结构(如图3所示),边长约为1~10μm;产物的单晶性质和二维平面结构性质均利用透射电镜来表征(如图4和图5所示),能应用于电子器件和催化等领域。Adopt the method of the present invention to prepare two-dimensional planar gold micro-nano single crystal disk, the obtained gold micro-nano single crystal disk has a regular triangular or hexagonal structure (as shown in Figure 3), and the side length is about 1-10 μm; the product Both the single crystal properties and the two-dimensional planar structural properties are characterized by transmission electron microscopy (as shown in Figure 4 and Figure 5), which can be applied to the fields of electronic devices and catalysis.
本发明的方法与已有的利用溶致液晶电沉积纳米材料的技术以及其它制备二维金盘的技术相比,具有以下的优势:通过控制保护剂/还原剂的比例以及其它反应条件,可以有效地控制粒径大小和粒子形貌;反应简单易行,消除了电化学沉积的不易控制的传质因素;模板反应后易于除去,反应条件温和可控,不需要其它能量消耗,这更有利于节约成本;受到液晶有序模板结构的控制,得到的产物量大,结构明晰,实现对产物结构和产量的人为调控。Compared with the existing technology of using lyotropic liquid crystal electrodeposition nanomaterials and other technologies for preparing two-dimensional gold discs, the method of the present invention has the following advantages: by controlling the ratio of protective agent/reductant and other reaction conditions, it can Effectively control the particle size and particle shape; the reaction is simple and easy, eliminating the uncontrollable mass transfer factors of electrochemical deposition; the template reaction is easy to remove, the reaction conditions are mild and controllable, and no other energy consumption is required, which is more It is beneficial to cost saving; controlled by the ordered template structure of the liquid crystal, the obtained product has a large amount and a clear structure, and the artificial control of the product structure and output is realized.
附图说明Description of drawings
下面结合附图对本发明做进一步说明。The present invention will be further described below in conjunction with the accompanying drawings.
图1是Pluronic P123与水两组份体系的相图,是如何配置溶致液晶模板的基础。Figure 1 is the phase diagram of the two-component system of Pluronic P123 and water, which is the basis for how to configure the lyotropic liquid crystal template.
图2是Pluronic P123与氯金酸水溶液(0.03M)混合得到溶致液晶的小角X射线散射曲线,进一步表明模板为六角相。Figure 2 is the small-angle X-ray scattering curve of lyotropic liquid crystal obtained by mixing Pluronic P123 with chloroauric acid aqueous solution (0.03M), further indicating that the template is a hexagonal phase.
图3是产物的透射电镜照片,可以观察到具有规则三角形或六边形的纳米结构,其边长约为4~10μm,厚度为10-100nm。Fig. 3 is a transmission electron microscope photograph of the product, and it can be observed that there are regular triangular or hexagonal nanostructures with a side length of about 4-10 μm and a thickness of 10-100 nm.
图4是产物各种形状以及单个粒子的电子衍射图,其中,a:三角形,b和c:截角三角形,d:六边形,e:单个粒子,说明所得单个纳米粒子均为单晶。Figure 4 is the electron diffraction pattern of various shapes and individual particles of the product, wherein, a: triangle, b and c: truncated triangle, d: hexagon, e: single particle, indicating that the obtained single nanoparticles are all single crystals.
图5是产物的倾斜观测电镜照片,其中,a、b和c为三个不同形状的单晶盘,d、e和f分别对应于样品倾斜-50°时的产物,表明产物具有二维平面结构。Figure 5 is an oblique electron microscope photo of the product, where a, b and c are three single crystal disks of different shapes, and d, e and f correspond to the product when the sample is tilted at -50°, indicating that the product has a two-dimensional plane structure.
具体实施方式Detailed ways
实施例1.二维平面金微纳单晶盘的制备方法,步骤如下:
(1)选用质量百分数为40wt%的EO20PO70EO20(Pluronic P123)、0.5wt%的十六烷基三甲基溴化铵与0.02mol/dm3氯金酸溶液混合,得到均匀六角相溶致液晶;(1) select mass percent as EO 20 PO 70 EO 20 (Pluronic P123), 0.5wt% hexadecyltrimethylammonium bromide and 0.02mol/dm 3 chloroauric acid solution mixing of 40wt% to obtain uniform hexagonal Compatible liquid crystal;
(2)将上述溶致液晶在室温下静置,反应时间48h;(2) The above-mentioned lyotropic liquid crystal is left standing at room temperature, and the reaction time is 48h;
(3)用水洗涤上述样品,将表面活性剂除掉,并在3000rpm条件下离心15分钟,用覆有Formvor膜的铜网收集离心后所得沉淀产物。用透射电镜观测所得产物形貌为球形粒子和形状规则的金微纳单晶盘的混合物,金微纳单晶盘边长为1~5μm,厚度为10-50nm。(3) The above sample was washed with water to remove the surfactant, and centrifuged at 3000 rpm for 15 minutes, and the precipitated product obtained after centrifugation was collected with a copper mesh covered with a Formvor membrane. The appearance of the product obtained by observing with a transmission electron microscope is a mixture of spherical particles and regular-shaped gold micro-nano single crystal disks, the side length of the gold micro-nano single crystal disks is 1-5 μm, and the thickness is 10-50 nm.
实施例2.二维平面金微纳单晶盘的制备方法,步骤如下:
(1)选用质量百分数为45wt%的EO20PO70EO20(Pluronic P123)、1wt%的十六烷基三甲基溴化铵与0.03mol/dm3氯金酸溶液混合,得到均匀六角相溶致液晶;(1) select mass percent as 45wt% EO 20 PO 70 EO 20 (Pluronic P123), 1wt% hexadecyltrimethylammonium bromide and 0.03mol/ dm chloroauric acid solution mix, obtain uniform hexagonal phase Lyotropic liquid crystals;
(2)将上述溶致液晶在室温下静置,反应时间120h;(2) The above-mentioned lyotropic liquid crystal is left standing at room temperature, and the reaction time is 120h;
(3)用水洗涤上述样品,将表面活性剂除掉,并在3000rpm条件下离心15分钟,用覆有Formvor膜的铜网收集离心后所得沉淀产物。用透射电镜观测所得产物形貌为形状规则的金盘形粒子,单晶盘的边长约为4~10μm,厚度为10-100nm,如图3所示。对该产物进一步做电子衍射分析(如图4所示)以及倾斜观察实验(如图5所示),表明产物为金单晶并具有二维平面结构。(3) The above sample was washed with water to remove the surfactant, and centrifuged at 3000 rpm for 15 minutes, and the precipitated product obtained after centrifugation was collected with a copper mesh covered with a Formvor membrane. The appearance of the product obtained by observation with a transmission electron microscope is gold disc-shaped particles with regular shape. The side length of the single crystal disc is about 4-10 μm and the thickness is 10-100 nm, as shown in FIG. 3 . Further electron diffraction analysis (as shown in FIG. 4 ) and oblique observation experiments (as shown in FIG. 5 ) of the product showed that the product was a gold single crystal and had a two-dimensional planar structure.
实施例3.二维平面金微纳单晶盘的制备方法,步骤如下:
(1)选用质量百分数为50wt%的Pluronic P123、4wt%的十六烷基三甲基溴化铵与0.04mol/dm3氯金酸溶液混合,得到均匀六角相溶致液晶;(1) Selecting mass percent as 50wt% Pluronic P123, 4wt% cetyltrimethylammonium bromide mixed with 0.04mol/ dm chloroauric acid solution to obtain a uniform hexagonal lyotropic liquid crystal;
(2)将上述溶致液晶在室温下静置,反应时间240h;(2) The above-mentioned lyotropic liquid crystal is left standing at room temperature, and the reaction time is 240h;
(3)用水洗涤上述样品,将表面活性剂除掉,并在3000rpm条件下离心15分钟,用覆有Formvor膜的铜网收集离心后所得沉淀产物。用透射电镜观测所得产物形貌为形状规则的金微纳单晶盘,边长为2~10μm,厚度为10-100nm。(3) The above sample was washed with water to remove the surfactant, and centrifuged at 3000 rpm for 15 minutes, and the precipitated product obtained after centrifugation was collected with a copper mesh covered with a Formvor membrane. The appearance of the product obtained by observing with a transmission electron microscope is a regular-shaped gold micro-nano single crystal disk, the side length is 2-10 μm, and the thickness is 10-100 nm.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 200610068530 CN1924117A (en) | 2006-08-24 | 2006-08-24 | Preparation method of two-dimensional plane gold nano single crystal plate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 200610068530 CN1924117A (en) | 2006-08-24 | 2006-08-24 | Preparation method of two-dimensional plane gold nano single crystal plate |
Publications (1)
Publication Number | Publication Date |
---|---|
CN1924117A true CN1924117A (en) | 2007-03-07 |
Family
ID=37816931
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 200610068530 Pending CN1924117A (en) | 2006-08-24 | 2006-08-24 | Preparation method of two-dimensional plane gold nano single crystal plate |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN1924117A (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102717091A (en) * | 2012-05-15 | 2012-10-10 | 同济大学 | Method for preparing NiCo nanometer material having hexagon sheet structure |
CN102728849A (en) * | 2012-05-08 | 2012-10-17 | 清华大学 | Self-supporting noble metal nanosheet with equal thickness of monatomic layer and preparation method of nanosheet |
CN102872860A (en) * | 2012-10-12 | 2013-01-16 | 安徽理工大学 | Method for preparing nanometer Pd electrocatalyst |
CN103273078A (en) * | 2013-05-12 | 2013-09-04 | 山东理工大学 | Preparation method of anisotropy silver nanorod |
CN104275493A (en) * | 2013-07-02 | 2015-01-14 | 济南大学 | Method for preparing gold nanoplates with amino acid as reducing agent |
CN104275492A (en) * | 2013-07-02 | 2015-01-14 | 济南大学 | Sugarcoated-haws-on-stick shaped one-dimensional gold nano-particle preparation method |
CN104274335A (en) * | 2013-07-02 | 2015-01-14 | 济南大学 | Gold-containing liquid crystal as anti-oxidation active composition of skin-care products and preparation method thereof |
CN104625086A (en) * | 2015-02-10 | 2015-05-20 | 纳米籽有限公司 | Preparation method of gold nanometer triangular plate and method for preparing gold nanometer disc and gold nanometer hexagonal plate based on method |
CN110616454A (en) * | 2019-03-07 | 2019-12-27 | 北京大学 | Method for vertical heteroepitaxy monocrystal metal film based on monocrystal two-dimensional material/monocrystal copper |
CN112877782A (en) * | 2021-01-12 | 2021-06-01 | 南京工业大学 | Molecular design strategy of two-dimensional organic single crystal and preparation method thereof |
CN114559029A (en) * | 2022-03-02 | 2022-05-31 | 广州大学 | Gold nanoparticles, preparation method and application thereof |
-
2006
- 2006-08-24 CN CN 200610068530 patent/CN1924117A/en active Pending
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102728849A (en) * | 2012-05-08 | 2012-10-17 | 清华大学 | Self-supporting noble metal nanosheet with equal thickness of monatomic layer and preparation method of nanosheet |
CN102728849B (en) * | 2012-05-08 | 2013-09-18 | 清华大学 | Self-supporting noble metal nanosheet with equal thickness of monatomic layer and preparation method of nanosheet |
CN102717091A (en) * | 2012-05-15 | 2012-10-10 | 同济大学 | Method for preparing NiCo nanometer material having hexagon sheet structure |
CN102872860A (en) * | 2012-10-12 | 2013-01-16 | 安徽理工大学 | Method for preparing nanometer Pd electrocatalyst |
CN103273078A (en) * | 2013-05-12 | 2013-09-04 | 山东理工大学 | Preparation method of anisotropy silver nanorod |
CN104274335B (en) * | 2013-07-02 | 2017-03-01 | 济南大学 | A kind of liquid crystal containing gold is as skin care item oxidation-resistant active ingredient and preparation method thereof |
CN104275493A (en) * | 2013-07-02 | 2015-01-14 | 济南大学 | Method for preparing gold nanoplates with amino acid as reducing agent |
CN104275492A (en) * | 2013-07-02 | 2015-01-14 | 济南大学 | Sugarcoated-haws-on-stick shaped one-dimensional gold nano-particle preparation method |
CN104274335A (en) * | 2013-07-02 | 2015-01-14 | 济南大学 | Gold-containing liquid crystal as anti-oxidation active composition of skin-care products and preparation method thereof |
CN104275492B (en) * | 2013-07-02 | 2016-06-22 | 济南大学 | A kind of preparation method of the one-dimensional golden nanometer particle of sugarcoated haws on a stick shape |
CN104275493B (en) * | 2013-07-02 | 2016-07-06 | 济南大学 | A kind of method preparing gold nano dish for reducing agent with aminoacid |
CN104625086A (en) * | 2015-02-10 | 2015-05-20 | 纳米籽有限公司 | Preparation method of gold nanometer triangular plate and method for preparing gold nanometer disc and gold nanometer hexagonal plate based on method |
CN110616454A (en) * | 2019-03-07 | 2019-12-27 | 北京大学 | Method for vertical heteroepitaxy monocrystal metal film based on monocrystal two-dimensional material/monocrystal copper |
CN112877782A (en) * | 2021-01-12 | 2021-06-01 | 南京工业大学 | Molecular design strategy of two-dimensional organic single crystal and preparation method thereof |
CN114559029A (en) * | 2022-03-02 | 2022-05-31 | 广州大学 | Gold nanoparticles, preparation method and application thereof |
CN114559029B (en) * | 2022-03-02 | 2023-10-24 | 广州大学 | Gold nanoparticle, preparation method and application thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1924117A (en) | Preparation method of two-dimensional plane gold nano single crystal plate | |
Zhang et al. | Morphosynthesis and ornamentation of 3D dendritic nanoarchitectures | |
Wang et al. | Microtwinning in template-synthesized single-crystal metal nanowires | |
Chang et al. | Manipulative synthesis of multipod frameworks for self-organization and self-amplification of Cu2O microcrystals | |
Liang et al. | Controlled synthesis of one‐dimensional inorganic nanostructures using pre‐existing one‐dimensional nanostructures as templates | |
Wei et al. | Self-organized synthesis of silver chainlike and dendritic nanostructures via a solvothermal method | |
Yang et al. | Synthesis of nickel hydroxide nanoribbons with a new phase: a solution chemistry approach | |
Yan et al. | A modified electroless deposition route to dendritic Cu metal nanostructures | |
Qiao et al. | Self-templating of metal-driven supramolecular self-assembly: A general approach toward 1D inorganic nanotubes | |
Wang et al. | Size-dependent orientation growth of large-area ordered Ni nanowire arrays | |
Mandke et al. | Growth of silver dendritic nanostructures via electrochemical route | |
Chen et al. | Hierarchical growth and shape evolution of HgS dendrites | |
CN104625086B (en) | Preparation method of gold nanotriangular sheet and method for preparing gold nanodisc and gold nanohexagonal sheet based on the method | |
Zuo et al. | l-Cysteine-assisted synthesis of PbS nanocube-based pagoda-like hierarchical architectures | |
Liu et al. | Mesocrystals of rutile TiO2: Mesoscale transformation, crystallization, and growth by a biologic molecules-assisted hydrothermal process | |
Zhang et al. | Hierarchical construction of ZnO architectures promoted by heterogeneous nucleation | |
CN105220205B (en) | A kind of method that composite electrodeposition prepares CNTs/Ni composites | |
CN102094246A (en) | Gold nucleus and silver shell double-metal nanocrystal and preparation method thereof | |
Qi et al. | One-dimensional CuS microstructures prepared by a PVP-assisted microwave hydrothermal method | |
Wang et al. | An electrodeposition approach to obtaining carbon nanotubes embedded copper powders for the synthesis of copper matrix composites | |
Guo et al. | Controlled mineralization of barium carbonate mesocrystals in a mixed solvent and at the air/solution interface using a double hydrophilic block copolymer as a crystal modifier | |
CN101323964A (en) | Synthetic method of loaded flower-like silver nanostructure material | |
Han et al. | Fabrication of hierarchical nanostructure of silver via a surfactant-free mixed solvents route | |
Mohammadi et al. | In-situ study of electrophoretic deposition of zinc oxide nanosheets and nanorods | |
CN111647871A (en) | Super-assembly controllable growth method of metal nano grain boundary surface carbon-based material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |