CN111637972A - Remote sensing definition method for industrial heat island effect - Google Patents
Remote sensing definition method for industrial heat island effect Download PDFInfo
- Publication number
- CN111637972A CN111637972A CN202010331105.0A CN202010331105A CN111637972A CN 111637972 A CN111637972 A CN 111637972A CN 202010331105 A CN202010331105 A CN 202010331105A CN 111637972 A CN111637972 A CN 111637972A
- Authority
- CN
- China
- Prior art keywords
- surface temperature
- industrial
- response
- layer
- tool
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 22
- 230000000694 effects Effects 0.000 title claims abstract description 20
- 230000004044 response Effects 0.000 claims abstract description 28
- 239000000872 buffer Substances 0.000 claims abstract description 21
- 230000008859 change Effects 0.000 claims abstract description 15
- 238000007781 pre-processing Methods 0.000 claims abstract description 7
- 230000008569 process Effects 0.000 claims abstract description 6
- 230000005855 radiation Effects 0.000 claims description 9
- 238000004364 calculation method Methods 0.000 claims description 6
- 238000012937 correction Methods 0.000 claims description 6
- 238000010586 diagram Methods 0.000 claims description 4
- 238000012546 transfer Methods 0.000 claims description 4
- 230000005457 Black-body radiation Effects 0.000 claims description 2
- 238000002834 transmittance Methods 0.000 claims description 2
- 230000000007 visual effect Effects 0.000 claims description 2
- 238000012544 monitoring process Methods 0.000 claims 1
- 230000007613 environmental effect Effects 0.000 abstract description 6
- 238000000691 measurement method Methods 0.000 abstract 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 238000009776 industrial production Methods 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000005265 energy consumption Methods 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 230000002411 adverse Effects 0.000 description 1
- 238000003915 air pollution Methods 0.000 description 1
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 1
- 230000003851 biochemical process Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- 239000002918 waste heat Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/007—Radiation pyrometry, e.g. infrared or optical thermometry for earth observation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/48—Thermography; Techniques using wholly visual means
- G01J5/485—Temperature profile
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A30/00—Adapting or protecting infrastructure or their operation
- Y02A30/60—Planning or developing urban green infrastructure
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Mathematical Physics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Theoretical Computer Science (AREA)
- Data Mining & Analysis (AREA)
- Pure & Applied Mathematics (AREA)
- Algebra (AREA)
- Mathematical Analysis (AREA)
- Computational Mathematics (AREA)
- Databases & Information Systems (AREA)
- Software Systems (AREA)
- General Engineering & Computer Science (AREA)
- Mathematical Optimization (AREA)
- Life Sciences & Earth Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Radiation Pyrometers (AREA)
- Investigating Or Analyzing Materials Using Thermal Means (AREA)
Abstract
工业活动产生的热污染对城市生态环境造成了严重的负面影响,但目前尚且缺少工业区域热环境效应的定量化测算方法与流程。本发明针对上述问题,公开了一种工业热岛效应的遥感定义方法,该方法包括如下步骤:步骤1)利用Google Earth框定工业目标区域矢量边界;步骤2)对目标工业区域Landsat8影像进行数据预处理,并反演地表温度;步骤3)在工业区域外围构建5千米缓冲区,并将其100等分,生成50米的逐层缓冲区100个;步骤4)计算每层缓冲区的平均地表温度,绘制平均地表温度随距离变化的散点图,并利用B样条曲线进行插值;步骤5)根据地表温度变化曲线,找到首个变化临界点,进而计算响应范围(km)、响应温差(℃)以及响应强度(℃/km)。
Thermal pollution from industrial activities has caused serious negative impacts on the urban ecological environment, but there is still a lack of quantitative measurement methods and processes for thermal environmental effects in industrial areas. Aiming at the above problems, the present invention discloses a remote sensing definition method for industrial heat island effect. The method includes the following steps: step 1) using Google Earth to frame the vector boundary of the industrial target area; step 2) performing data preprocessing on the Landsat8 image of the target industrial area , and invert the surface temperature; step 3) build a 5-kilometer buffer zone at the periphery of the industrial area, and divide it into 100 equal parts to generate 100 layer-by-layer buffers of 50 meters; step 4) calculate the average surface of each layer of buffer zone temperature, draw a scatter plot of the average surface temperature with distance, and use the B-spline curve to interpolate; step 5) According to the surface temperature change curve, find the first change critical point, and then calculate the response range (km), the response temperature difference ( °C) and response intensity (°C/km).
Description
技术领域technical field
本发明涉及一种工业热岛效应的遥感定义方法,针对城市内工业园区的热环境效应问题,提出了适用于热排放地物目标的热岛效应遥感测算方法,结合工业园区周边区域的地表温度变化曲线,建立了面向工业地物的三个响应指标,用于清晰地量化此类具有热排放的城市大型目标对局地热环境的影响,以期进一步了解城市工业热源对微气候的影响机制。The invention relates to a remote sensing definition method of industrial heat island effect. Aiming at the problem of thermal environment effect of industrial parks in cities, a remote sensing calculation method of heat island effect suitable for thermal emission objects is proposed, combined with the surface temperature change curve of the surrounding area of the industrial park. , three response indicators for industrial features were established to clearly quantify the impact of such large-scale urban targets with heat emissions on the local geothermal environment, in order to further understand the impact mechanism of urban industrial heat sources on the microclimate.
背景技术Background technique
在世界范围内,快速的城市化导致了城市气候和地表生化过程的重大变化。其中,城市热岛效应(UHI effect)是最典型的城市生态环境问题之一,即城市地区的气温和地表温度(LST)高于其周边郊区的现象。城市温度上升影响了城市居民的宜居性,加剧了空气污染,增加了对冷却能源的消耗,损害了人类健康。针对以上问题,城市研究人员正急切地评估能够缓解城市地区进一步变暖的策略。Worldwide, rapid urbanization has led to major changes in urban climate and surface biochemical processes. Among them, the urban heat island effect (UHI effect) is one of the most typical urban ecological environmental problems, that is, the air temperature and surface temperature (LST) in urban areas are higher than those in the surrounding suburbs. Rising urban temperatures affect the livability of urban residents, exacerbate air pollution, increase cooling energy consumption, and harm human health. In response to these questions, urban researchers are eagerly evaluating strategies that could mitigate further warming in urban areas.
目前的研究广泛地总结了工业、交通和建筑能源产生的人为余热是导致城市热岛效应的重要原因之一(Kato and Yamaguchi 2005,Kotharkar and Surawar 2016,Papadopoulos and Moussiopoulos 2004,Han and Taylor 2015)。在资源开发和利用的过程中,工业生产发展所需的基本材料和能源消耗引起了一系列的环境问题(Rao etal.2018),引起城市热量的再分配以及地表能量的波动(Chakraborty,Kant and Mitra2015)。根据以往的研究,工业用地在高地表温度的形成中起着主导作用(Li等人,2011年),城市高温区域高度集中在工业区(Pearsall 2017,Tran et al.2017)。此外,如果忽视工业生产活动对环境的影响,用于缓解环境恶化的人力、物力、财力投入甚至会翻倍(Wan,Shenand Choi 2017)。另外,人工地表(即人造区域),如商业区、居住区和工业区,通常作为一个整体来研究城市热环境的变化(Li et al.2011,Chakraborty et al.2015)。因此,将工业园区作为一种单独的研究目标,专注研究工业地物目标的热响应与热排放之间的关系,有待深入探索。Current studies have broadly concluded that anthropogenic waste heat from industry, transport and building energy is one of the important causes of the urban heat island effect (Kato and Yamaguchi 2005, Kotharkar and Surawar 2016, Papadopoulos and Moussiopoulos 2004, Han and Taylor 2015). In the process of resource development and utilization, the basic materials and energy consumption required for the development of industrial production have caused a series of environmental problems (Rao et al. 2018), the redistribution of urban heat and the fluctuation of surface energy (Chakraborty, Kant and Mitra 2015). According to previous studies, industrial land plays a leading role in the formation of high surface temperature (Li et al., 2011), and urban high temperature areas are highly concentrated in industrial areas (Pearsall 2017, Tran et al. 2017). In addition, if the impact of industrial production activities on the environment is ignored, the human, material and financial resources used to alleviate environmental degradation will even be doubled (Wan, Shenand Choi 2017). In addition, artificial surfaces (i.e., man-made areas), such as commercial, residential, and industrial areas, are often used as a whole to study changes in the urban thermal environment (Li et al. 2011, Chakraborty et al. 2015). Therefore, taking the industrial park as a separate research target and focusing on the relationship between the thermal response and heat emission of the industrial feature target needs to be further explored.
以往的研究也曾关注到城市气候调控目标对热环境的影响,如城市绿地(大型公园)的冷岛效应、城市水体等(Yan,Wu and Dong 2018,Cao et al.2010,Bowler etal.2010,Bartesaghi-Koc,Osmond and Peters 2019)。早期的研究是基于固定点位的实测数据来估计城市水体的冷岛效应影响范围(Chang,Li and Chang 2007)。为了采用更方便的数据获取方式,(Du et al.2016)利用谷歌地球和landsat-8卫星图像数据定量化探测了上海市水体的冷岛效应。总之,大量的研究证明,利用遥感技术准确、实时地提取动态热辐射信息,可以为区域热环境优化提供有力的支持(Wilson et al.2003,Stone and Rodgers2001,Meng et al.2018,Dos Santos et al.2017,Powers et al.2015,Feng etal.2019)。Previous studies have also paid attention to the impact of urban climate regulation targets on the thermal environment, such as the cold island effect of urban green space (large parks), urban water bodies, etc. (Yan, Wu and Dong 2018, Cao et al. 2010, Bowler et al. 2010 , Bartesaghi-Koc, Osmond and Peters 2019). Early studies were based on measured data at fixed points to estimate the extent of the cold island effect in urban water bodies (Chang, Li and Chang 2007). In order to adopt a more convenient data acquisition method, (Du et al. 2016) used Google Earth and landsat-8 satellite image data to quantitatively detect the cold island effect of water bodies in Shanghai. In conclusion, a large number of studies have proved that the accurate and real-time extraction of dynamic thermal radiation information using remote sensing technology can provide strong support for regional thermal environment optimization (Wilson et al. 2003, Stone and Rodgers 2001, Meng et al. 2018, Dos Santos et al. al. 2017, Powers et al. 2015, Feng et al. 2019).
综上所述,准确量化工业园区对热环境的影响是目前工业热污染管控的一项紧迫任务。因此,本发明将研究焦点集中在城市大型工业园区,旨在建立一种工业热岛效应的定量化测算方法。环境部门和城市规划者可根据不同季节工业热岛效应的强度调整生产任务的部署,旨在降低工业生产活动对局地热环境的不利影响。To sum up, accurately quantifying the impact of industrial parks on the thermal environment is an urgent task for industrial thermal pollution control. Therefore, the present invention focuses the research on large-scale urban industrial parks, aiming to establish a quantitative calculation method of industrial heat island effect. Environmental departments and urban planners can adjust the deployment of production tasks according to the intensity of the industrial heat island effect in different seasons, aiming to reduce the adverse impact of industrial production activities on the local geothermal environment.
发明内容SUMMARY OF THE INVENTION
针对现有研究中对于工业热岛效应的技术缺失问题,本发明的目的在于提出一种工业热岛效应的遥感定义方法,利用热红外遥感影像对城市工业区局地热环境效应进行定量化测算。Aiming at the technical lack of industrial heat island effect in existing research, the purpose of the present invention is to propose a remote sensing definition method of industrial heat island effect, and use thermal infrared remote sensing images to quantitatively measure the local geothermal environmental effect of urban industrial areas.
本发明的目的通过以下技术步骤实现:The object of the present invention is achieved through the following technical steps:
步骤1)利用Google Earth框定工业目标区域矢量边界;Step 1) utilize Google Earth to frame the vector boundary of the industrial target area;
步骤2)对目标工业区域Landsat8影像进行数据预处理,并反演地表温度;Step 2) Data preprocessing is performed on the Landsat8 image of the target industrial area, and the surface temperature is inverted;
步骤3)在工业区域外围构建5千米缓冲区,并将其100等分,生成50米的逐层缓冲区100个;Step 3) Build a 5-kilometer buffer zone on the periphery of the industrial area, and divide it into 100 equal parts to generate 100 layer-by-layer buffer zones of 50 meters;
步骤4)计算每层缓冲区的平均地表温度,绘制平均地表温度随距离变化的散点图,并利用B样条曲线进行插值;Step 4) Calculate the average surface temperature of each layer of buffer zone, draw a scatter diagram of the average surface temperature changing with distance, and use B-spline curve to interpolate;
步骤5)根据地表温度变化曲线,找到首个变化临界点,进而计算响应范围(km)、响应温差(℃)以及响应强度(℃/km)。Step 5) According to the surface temperature change curve, find the first change critical point, and then calculate the response range (km), the response temperature difference (°C) and the response intensity (°C/km).
附图说明Description of drawings
图1基于工业区连续缓冲区的平均地表温度变化曲线解析图;Fig. 1 Analytical diagram of the average surface temperature change curve based on the continuous buffer zone in the industrial zone;
图2样本钢铁厂地表温度反演结果图;Fig. 2 Inversion result of surface temperature of sample iron and steel plant;
图3样本钢铁厂平均地表温度变化曲线拟合结果图;Fig. 3 The fitting result of the average surface temperature change curve of the sample iron and steel plant;
具体实施方式Detailed ways
下面结合附图对本发明“一种工业热岛效应的遥感定义方法”作进一步阐述说明。The following describes "a remote sensing definition method for industrial heat island effect" of the present invention in conjunction with the accompanying drawings.
(一)研究区矢量边界框定(1) Vector bounding box of the study area
首先,利用Google Earth通过目视解译确定目标区域基本位置,利用“添加多边形”工具框定工业目标区域矢量边界,并保存为kml或kmz格式,之后利用ArcGIS的“由kml转出”工具将矢量数据转化为shp格式并再次保存。First, use Google Earth to determine the basic position of the target area through visual interpretation, use the "Add Polygon" tool to frame the vector boundary of the industrial target area, and save it in kml or kmz format, and then use ArcGIS's "convert from kml" tool to convert the vector The data is converted to shp format and saved again.
(二)数据预处理与地表温度遥感反演(2) Data preprocessing and remote sensing inversion of surface temperature
首先对原始Landsat8一级数据产品进行辐射定标与大气校正的预处理,之后基于辐射传输方程利用Landsat8的Band10数据反演地表温度,辐射传输方程为:First, the original Landsat8 primary data products are preprocessed by radiometric calibration and atmospheric correction, and then the surface temperature is inverted using the Band10 data of Landsat8 based on the radiative transfer equation. The radiative transfer equation is:
上式中Ts代表待计算的地表温度;Lsensor为经过辐射定标的辐射亮度值;B(Ts)是温度为Ts时的黑体辐射值;和分别指代大气的上行辐射和下行辐射;τ为大气透过率;上述的数据预处理过程可以通过ENVI的辐射校正工具与大气校正工具实现,地表温度反演的计算过程可通过ENVI的波段运算工具实现,样本区的地表温度反演结果如图2所示。In the above formula, T s represents the surface temperature to be calculated; L sensor is the radiance value calibrated by radiation; B(T s ) is the black body radiation value when the temperature is T s ; and respectively refer to the upward and downward radiation of the atmosphere; τ is the atmospheric transmittance; the above data preprocessing process can be realized by the radiation correction tool and atmospheric correction tool of ENVI, and the calculation process of the surface temperature inversion can be performed by the band calculation of ENVI The tool is implemented, and the inversion results of the surface temperature in the sample area are shown in Figure 2.
(三)逐层缓冲区构建(3) Layer-by-layer buffer construction
在工业区域外围构建5千米缓冲区,并将其100等分,生成50米的逐层缓冲区100个;该步骤可以通过ArcGIS的缓冲区工具的批处理方式实现。Construct a 5-kilometer buffer at the periphery of the industrial area, and divide it into 100 equal parts to generate 100 layer-by-layer buffers of 50 meters; this step can be realized by the batch method of ArcGIS's buffer tool.
(四)平均地表温度变化曲线拟合(4) Curve fitting of average surface temperature
计算每层缓冲区的平均地表温度,绘制平均地表温度随距离变化的散点图,并利用B样条曲线进行拟合,得到平滑后的地表温度变化曲线(横坐标为到工业区边界的距离,纵坐标为地表温度);其中,逐层缓冲区的平均地表温度可以利用ArcGIS的“属性”功能获取,将其导入至origin后使用非线性曲线拟合工具实现地表温度变化曲线的生成。Calculate the average surface temperature of each buffer layer, draw a scatter diagram of the average surface temperature changing with distance, and use the B-spline curve to fit to obtain the smoothed surface temperature change curve (the abscissa is the distance to the industrial zone boundary. , the ordinate is the surface temperature); among them, the average surface temperature of the layer-by-layer buffer can be obtained by using the "attribute" function of ArcGIS, and then imported into the origin and then used the nonlinear curve fitting tool to generate the surface temperature change curve.
(五)定量化指标计算(5) Calculation of quantitative indicators
根据地表温度变化曲线(图1),找到首个转折临界点,进而计算响应范围(km)、响应温差(℃)以及响应强度(℃/km)。其中转折临界点是指曲线斜率为非负数的首个点位,该点位的横坐标即为响应范围(km);转折临界点的纵坐标代表转折点的地表温度,将工业区边界地表温度与转折点地表温度求差,即可求出响应温差(℃);响应强度(℃/km)为响应温差与响应范围的比值。样本区平均地表温度曲线拟合结果如图3所示。According to the surface temperature change curve (Fig. 1), find the first critical point, and then calculate the response range (km), response temperature difference (°C) and response strength (°C/km). The turning critical point refers to the first point where the slope of the curve is a non-negative number, and the abscissa of this point is the response range (km); the ordinate of the turning critical point represents the surface temperature of the turning point. The response temperature difference (°C) can be obtained by calculating the surface temperature difference at the turning point; the response intensity (°C/km) is the ratio of the response temperature difference to the response range. The fitting results of the average surface temperature curve in the sample area are shown in Figure 3.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010331105.0A CN111637972B (en) | 2020-04-23 | 2020-04-23 | A Remote Sensing Definition Method of Industrial Heat Island Effect |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010331105.0A CN111637972B (en) | 2020-04-23 | 2020-04-23 | A Remote Sensing Definition Method of Industrial Heat Island Effect |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111637972A true CN111637972A (en) | 2020-09-08 |
CN111637972B CN111637972B (en) | 2021-07-13 |
Family
ID=72328711
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010331105.0A Active CN111637972B (en) | 2020-04-23 | 2020-04-23 | A Remote Sensing Definition Method of Industrial Heat Island Effect |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111637972B (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114812822A (en) * | 2022-03-08 | 2022-07-29 | 南通大学 | Irregular urban heat island footprint extraction method based on angle segmentation |
CN115077719A (en) * | 2022-06-17 | 2022-09-20 | 南通大学 | Urban heat island footprint extraction method based on rotary scanning |
CN115308261A (en) * | 2022-09-06 | 2022-11-08 | 中国科学院空天信息创新研究院 | Landscape plaque cooling rate extraction method for industrial thermal pollution |
CN115630535A (en) * | 2022-12-19 | 2023-01-20 | 中国农业科学院农业资源与农业区划研究所 | Method, device and electronic equipment for dynamic quantification of urban surface heat island intensity |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100305913A1 (en) * | 2009-05-29 | 2010-12-02 | Johnson Daniel P | Method of modeling the socio-spatial dynamics of extreme urban heat events |
CN102235911A (en) * | 2010-04-20 | 2011-11-09 | 北京师范大学 | Method for detecting thermal radiation directivity of urban goal |
CN102944880A (en) * | 2012-11-13 | 2013-02-27 | 中国科学院城市环境研究所 | Urban industrial thermal pollution source investigation method based on remote sensing |
CN103617565A (en) * | 2013-12-06 | 2014-03-05 | 国网山东省电力公司 | Method for establishing relationship between city micro weather and electric power air conditioner loads |
CN105243266A (en) * | 2015-09-18 | 2016-01-13 | 中国科学院遥感与数字地球研究所 | Heat island intensity defining and spatial feature remote sensing analysis method based on variable threshold |
CN108332859A (en) * | 2018-01-18 | 2018-07-27 | 广州大学 | A kind of extracting method and device of urban heat island range |
CN108549858A (en) * | 2018-04-08 | 2018-09-18 | 武汉理工大学 | A kind of quantitative evaluation method of urban heat land effect |
CN108776360A (en) * | 2018-06-13 | 2018-11-09 | 华南农业大学 | A kind of method of urban heat island strength Monitoring on Dynamic Change |
-
2020
- 2020-04-23 CN CN202010331105.0A patent/CN111637972B/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100305913A1 (en) * | 2009-05-29 | 2010-12-02 | Johnson Daniel P | Method of modeling the socio-spatial dynamics of extreme urban heat events |
CN102235911A (en) * | 2010-04-20 | 2011-11-09 | 北京师范大学 | Method for detecting thermal radiation directivity of urban goal |
CN102944880A (en) * | 2012-11-13 | 2013-02-27 | 中国科学院城市环境研究所 | Urban industrial thermal pollution source investigation method based on remote sensing |
CN103617565A (en) * | 2013-12-06 | 2014-03-05 | 国网山东省电力公司 | Method for establishing relationship between city micro weather and electric power air conditioner loads |
CN105243266A (en) * | 2015-09-18 | 2016-01-13 | 中国科学院遥感与数字地球研究所 | Heat island intensity defining and spatial feature remote sensing analysis method based on variable threshold |
CN108332859A (en) * | 2018-01-18 | 2018-07-27 | 广州大学 | A kind of extracting method and device of urban heat island range |
CN108549858A (en) * | 2018-04-08 | 2018-09-18 | 武汉理工大学 | A kind of quantitative evaluation method of urban heat land effect |
CN108776360A (en) * | 2018-06-13 | 2018-11-09 | 华南农业大学 | A kind of method of urban heat island strength Monitoring on Dynamic Change |
Non-Patent Citations (5)
Title |
---|
SHI, YUAN: "Modelling the fine-scale spatiotemporal pattern of urban heat island effect using land use regression approach in a megacity", 《SCIENCE OF THE TOTAL ENVIRONMEN》 * |
ZHANG, YU: "Research on the Contribution of Urban Land Surface Moisture to the Alleviation Effect of Urban Land Surface Heat Based on Landsat 8 Data", 《REMOTE SENSING》 * |
刘勇洪: "京津冀城市群热岛定量评估", 《生态学报》 * |
吴慧凤: "福州市城市热岛效应的转移矩阵与缓冲区", 《天津师范大学学报(自然科学版)》 * |
胡远满: "RS与GIS在城市热岛效应研究中的应用", 《环境保护科学》 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114812822A (en) * | 2022-03-08 | 2022-07-29 | 南通大学 | Irregular urban heat island footprint extraction method based on angle segmentation |
CN115077719A (en) * | 2022-06-17 | 2022-09-20 | 南通大学 | Urban heat island footprint extraction method based on rotary scanning |
CN115308261A (en) * | 2022-09-06 | 2022-11-08 | 中国科学院空天信息创新研究院 | Landscape plaque cooling rate extraction method for industrial thermal pollution |
CN115308261B (en) * | 2022-09-06 | 2024-11-26 | 中国科学院空天信息创新研究院 | A method for extracting cooling rate of landscape patches for industrial heat pollution |
CN115630535A (en) * | 2022-12-19 | 2023-01-20 | 中国农业科学院农业资源与农业区划研究所 | Method, device and electronic equipment for dynamic quantification of urban surface heat island intensity |
Also Published As
Publication number | Publication date |
---|---|
CN111637972B (en) | 2021-07-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111637972A (en) | Remote sensing definition method for industrial heat island effect | |
Han et al. | Spatial distribution characteristics of PM2. 5 and PM10 in Xi’an City predicted by land use regression models | |
Dong et al. | Quantitative study on the cooling effect of green roofs in a high-density urban Area—A case study of Xiamen, China | |
Lin et al. | Exploring the relationship between thermal environmental factors and land surface temperature of a “furnace city” based on local climate zones | |
Song et al. | Response characteristics and influencing factors of carbon emissions and land surface temperature in Guangdong Province, China | |
Tominaga et al. | CFD simulation of near-field pollutant dispersion in the urban environment: A review of current modeling techniques | |
Meng et al. | Do industrial parks generate intra-heat island effects in cities? New evidence, quantitative methods, and contributing factors from a spatiotemporal analysis of top steel plants in China | |
Georgakis et al. | Studying the effect of “cool” coatings in street urban canyons and its potential as a heat island mitigation technique | |
Cai | Effects of wall heating on flow characteristics in a street canyon | |
CN109903234B (en) | Quantitative description and multi-scale feature analysis method for urban thermal landscape | |
Cui et al. | Particle image velocimetry measurement and CFD simulation of pedestrian level wind environment around U-type street canyon | |
CN107941344B (en) | Steel plant capacity-removing monitoring method based on surface temperature remote sensing inversion | |
CN109447478B (en) | A method for extracting industrial thermally polluted areas based on the octal method | |
CN108168710A (en) | A kind of city tropical island effect appraisal procedure based on remote sensing technology | |
CN108549858A (en) | A kind of quantitative evaluation method of urban heat land effect | |
CN111487199A (en) | A remote sensing extraction method for iron and steel plants based on the characteristics of industrial production activities | |
CN104765903A (en) | Comprehensive urban climate environment assessment method integrated with multiple-source remote sensing and climate environment information | |
CN105787184A (en) | Atmospheric aerosol optical depth estimation method based on PM2.5 | |
Jia et al. | Multi-scale remote sensing estimates of urban fractions and road widths for regional models | |
CN116362567B (en) | Urban industrial heat source enterprise emergency response remote sensing evaluation method | |
CN115931659A (en) | A system and method for evaluating the impact of dust in urban storage yards on air quality | |
CN117708769A (en) | Clean energy power station ecological environment influence balance evaluation method | |
Wang et al. | Spatial effect of urban morphology on land surface tempature from the perspective of local climate zone | |
CN109635477A (en) | A kind of thermal infrared radiation mode for considering to close on pixel effect | |
Sheng et al. | Examining urban agglomeration heat island with explainable AI: An enhanced consideration of anthropogenic heat emissions |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |