CN111635911A - 靶向线粒体负载shRNA的纳米材料及其制备方法和应用 - Google Patents
靶向线粒体负载shRNA的纳米材料及其制备方法和应用 Download PDFInfo
- Publication number
- CN111635911A CN111635911A CN202010570215.2A CN202010570215A CN111635911A CN 111635911 A CN111635911 A CN 111635911A CN 202010570215 A CN202010570215 A CN 202010570215A CN 111635911 A CN111635911 A CN 111635911A
- Authority
- CN
- China
- Prior art keywords
- shrna
- mitochondrion
- expression vector
- solution
- target
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/85—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y5/00—Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/87—Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2810/00—Vectors comprising a targeting moiety
- C12N2810/40—Vectors comprising a peptide as targeting moiety, e.g. a synthetic peptide, from undefined source
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biotechnology (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Biomedical Technology (AREA)
- Organic Chemistry (AREA)
- Nanotechnology (AREA)
- Biophysics (AREA)
- Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Crystallography & Structural Chemistry (AREA)
- Plant Pathology (AREA)
- Microbiology (AREA)
- Biochemistry (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Manufacturing & Machinery (AREA)
- General Physics & Mathematics (AREA)
- Medical Informatics (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Medicinal Preparation (AREA)
Abstract
本发明涉及靶向线粒体负载shRNA的纳米材料,以相互电荷吸附的线粒体靶向肽和shRNA表达载体为核心形成复合物后共价连接pH响应聚合物,所述纳米材料通过如下步骤制备得到:(1)合成pH响应聚合物Meo‑PEG‑b‑PDPA和线粒体靶向肽;(2)使用pLKO.1‑puro载体质粒构建shRNA表达载体;(3)将合成的Meo‑PEG‑b‑PDPA溶解在二甲基甲酰胺中形成均相溶液;(4)将合成的shRNA表达载体溶于去离子水中形成溶液;同时将合成的线粒体靶向肽溶于二甲基亚砜中形成溶液;(5)将shRNA表达载体水溶液和线粒体靶向肽二甲亚砜溶液混合后,再与Meo‑PEG‑b‑PDPA均相溶液混合;混合液经强力搅拌后混合液滴加到去离子水中,形成靶向线粒体负载shRNA的纳米颗粒;(6)将靶向线粒体负载shRNA的纳米颗粒洗涤、除杂、定容。
Description
技术领域
本发明涉及靶向线粒体负载shRNA的纳米材料及其制备方法和应用,属于纳米材料技术领域。
背景技术
线粒体是一种存在于大多数细胞中的由两层膜包被的细胞器,直径在在0.5到10微米左右。大多数真核细胞拥有线粒体,但它们各自拥有的线粒体在大小、数量及外观等方面上都有所不同。线粒体拥有自身的遗传物质和遗传体系,但因其基因组大小有限,所以线粒体是一种半自主细胞器,是细胞中制造能量的结构,细胞进行有氧呼吸的主要场所,为细胞的活动提供了能量。由于线粒体在维持生命稳态中发挥着重要作用,涉及细胞能量障碍及氧化损伤的多种疾病(如神经退行性疾病、癌症、衰老、心血管疾病等)都与线粒体的功能紊乱相关,因此,完善线粒体的研究,深入了解它的功能,将为疾病防治提供新策略。
shRNA即“短发夹RNA”,包括两个短反向重复序列,中间由一茎环(loop)序列分隔。通常,shRNA的表达受RNA聚合酶(Pol)III启动子或修饰的pol II启动子控制。转录shRNA后,通过茎环连接的正义链和反义链成对一起形成特征性发夹结构;shRNA可加工成siRNA,也可通过与目标mRNA互补结合序列特异性地实现靶mRNA降解;shRNA是一种通过基因沉默抑制蛋白表达的工具,shRNA在转染/转导细胞的细胞核中合成,形成发夹结构,茎区成对的反义和正义链与未配对的成环核苷酸连接在一起,通过与miRNA的加工相同的RNA干扰(RNAi)机制,shRNA被加工成siRNA。RNAi是有效沉默或抑制目标基因表达的过程,该过程通过双链RNA(dsRNA)使得目标基因相应的mRNA选择性失活来实现的。使用细菌或病毒载体,shRNA能够被导入靶细胞的细胞核内,在某些情况下,载体可以稳定地整合到基因组中。目前,shRNA表达载体可分为病毒载体和非病毒载体两类,病毒作载体虽然转染效率高,但临床应用易引起免疫原性,其临床安全性一直倍受关注;非病毒载体相对安全,但转染效率低。因此,亟需一种能够克服病毒载体和非病毒载体缺点的shRNA表达载体材料。
关于靶向线粒体纳米材料负载的物质基本是药物或者探针,利用靶向线粒体纳米材料负载探针常常应用在线粒体成像或蛋白质标记中,线粒体成像能够实时监控细胞内线粒体的形态和数量变化,进而实现疾病的早期预判,蛋白质标记;利用靶向线粒体纳米材料负载药物能够有助于将药物递送到线粒体中,有效地治疗与线粒体有关的疾病;但是,关于负载shRNA表达载体的靶向线粒体纳米材料的研究鲜有,主要是因为普通的shRNA表达载体难以导入线粒体且普通的shRNA表达载体导入线粒体的效率低。
发明内容
本发明提供靶向线粒体负载shRNA的纳米材料及其制备方法,提高了shRNA表达载体导入线粒体的效率,将靶向线粒体负载shRNA的纳米材料应用在细胞实验中可以将负载的shRNA表达载体高效运送至线粒体内,从而沉默线粒体内特定靶基因的表达,便于研究该线粒体基因的作用。
本发明采用的技术方案如下:
第一方面,本发明提供了靶向线粒体负载shRNA的纳米材料,所述纳米材料为线粒体靶向肽和shRNA表达载体通过电荷吸附成为核心的复合物,复合物表面共价连接pH响应聚合物,在高速旋涡的作用下形成的纳米颗粒。
第二方面,本发明提供靶向线粒体负载shRNA的纳米材料的制备方法,包括如下步骤:
(1)合成pH响应聚合物Meo-PEG-b-PDPA和线粒体靶向肽;
(2)使用pLKO.1-puro载体质粒构建shRNA表达载体;
(3)将经过步骤(1)合成的Meo-PEG-b-PDPA溶解在二甲基甲酰胺中,形成均相溶液;
(4)将经步骤(2)合成的shRNA表达载体溶于去离子水中形成shRNA表达载体水溶液;同时将经过步骤(1)合成的线粒体靶向肽溶于二甲基亚砜中形成线粒体靶向肽二甲亚砜溶液;
(5)将经过步骤(4)制得的shRNA表达载体水溶液和线粒体靶向肽二甲亚砜溶液混合后,再与Meo-PEG-b-PDPA均相溶液混合;混合液经强力搅拌均匀后,在高速涡旋的作用下形成纳米颗粒;将混合液滴加到去离子水中,最终形成负载shRNA的靶向线粒体纳米颗粒;
(6)将经过步骤(5)形成的负载shRNA的靶向线粒体纳米颗粒转移至超滤装置中,离心去除有机溶剂和游离化合物,然后用超纯水洗涤,最后用超纯水定容至1mL。
进一步地,所述步骤(2)中构建shRNA表达载体包括针对靶基因的shRNA-1、shRNA-2以及作为对照的sh-Ctrl;合成shRNA寡核苷酸序列,将其克隆到pLKO.1-puro载体质粒中,并进行测序验证。
进一步地,所述步骤(3)中均相溶液的浓度为10mg/mL。
进一步地,所述步骤(4)中shRNA表达载体水溶液的浓度为1mg/mL;所述线粒体靶向肽二甲亚砜溶液的浓度为5mg/mL。
第三方面,本发明还提供根据靶向线粒体负载shRNA的纳米材料的制备方法制得的靶向线粒体负载shRNA的纳米材料应用在细胞实验中,实现线粒体内特定靶基因的表达沉默。
本发明与现有技术相比,具有如下有益效果:
1、本发明提供了靶向线粒体负载shRNA的纳米材料及其制备方法,是对靶向线粒体的负载运用功能进行了进一步的扩展,在现有的靶向线粒体负载药物或探针的技术上进行了延伸,弥补了靶向线粒体负载shRNA的技术空白。
2、本发明提供的靶向线粒体负载shRNA纳米材料将其应用在细胞实验中,能够将负载的shRNA表达载体高效运送至线粒体内,从而实现线粒体内特定靶基因的表达沉默,便于研究该线粒体基因的作用。
3、本发明提供的靶向线粒体负载shRNA的纳米材料能够克服现有技术中shRNA的病毒载体和非病毒载体的缺点,具有转染效率高且安全性高的优点。
附图说明
图1为本发明的制备流程以及靶向线粒体负载shRNA的纳米材料在细胞内的反应示意图;
图2为本发明实施例细胞实验中负载shRNA-1、shRNA-2表达载体的纳米颗粒处理的成纤维细胞、负载sh-Ctrl表达载体的纳米颗粒处理的成纤维细胞以及未经处理的成纤维细胞内靶基因的mRNA表达量的比较示意图。
具体实施方式
下面结合附图和具体实施例来对发明进行详细的说明。
下述实施例中所使用的实验方法如无特殊说明,均为常规方法。
下述实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径得到。
本发明提供了靶向线粒体负载shRNA的纳米材料,所述纳米材料为线粒体靶向肽和shRNA表达载体通过电荷吸附成为核心的复合物,其中,shRNA表达载体带负电,线粒体靶向肽带正电;复合物表面共价连接pH响应聚合物,在高速旋涡的作用下形成纳米颗粒。
如图1所示,本发明提供了靶向线粒体负载shRNA的纳米材料的制备方法,包括如下步骤:
(1)合成pH响应聚合物Meo-PEG-b-PDPA和线粒体靶向肽;pH响应聚合物Meo-PEG-b-PDPA和线粒体靶向肽的合成方法均为现有技术;
其中,pH响应聚合物Meo-PEG-b-PDPA的合成采用原子转移自由基法,具体的合成方法参见如下文献:
Xu, X., Wu, J., Liu, Y., Saw, P.E., Tao, W., Yu, M., Zope, H., Si, M.,Victorious, A., Rasmussen, J., et al. (2017). Multifunctional Envelope-TypesiRNA Delivery Nanoparticle Platform for Prostate Cancer Therapy. ACS nano11, 2618-2627;
Xu, X., Wu, J., Liu, Y., Yu, M., Zhao, L., Zhu, X., Bhasin, S., Li, Q.,Ha, E., Shi, J., et al. (2016). Ultra-pH-Responsive and Tumor-PenetratingNanoplatform for Targeted siRNA Delivery with Robust Anti-Cancer Efficacy.Angewandte Chemie 55, 7091-7094;
线粒体靶向肽的合成方法采用标准Fmoc化学方法,通过固相多肽合成线粒体靶向肽,具体的合成方法参见如下文献:
Chouchani, E.T., Methner, C., Nadtochiy, S.M., Logan, A., Pell, V.R.,Ding, S., James, A.M., Cocheme, H.M., Reinhold, J., Lilley, K.S., et al.(2013). Cardioprotection by S-nitrosation of a cysteine switch onmitochondrial complex I. Nat Med 19, 753-759;
Zielonka, J., Joseph, J., Sikora, A., Hardy, M., Ouari, O., Vasquez-Vivar, J., Cheng, G., Lopez, M., and Kalyanaraman, B. (2017). Mitochondria-Targeted Triphenylphosphonium-Based Compounds: Syntheses, Mechanisms ofAction, and Therapeutic and Diagnostic Applications. Chem Rev 117, 10043-10120;
本发明对现有技术的改进不在于pH响应聚合物和线粒体靶向肽的合成,且本领域技术人员依据现有技术可知晓关于pH响应聚合物和线粒体靶向肽合成方法,故本发明对此不另做限定;
(2)使用pLKO.1-puro载体质粒构建shRNA表达载体,包括针对靶基因的shRNA-1和shRNA-2,以及作为对照的sh-Ctrl:合成shRNA寡核苷酸序列,将其克隆到pLKO.1-puro载体质粒中,并进行测序验证;
shRNA表达载体的具体合成方法参见如下文献:
Li, Q., Wang, Y., Wu, S., Zhou, Z., Ding, X., Shi, R., Thorne, R.F.,Zhang, X.D., Hu, W., and Wu, M. (2019). CircACC1 Regulates Assembly andActivation of AMPK Complex under Metabolic Stress. Cell metabolism 30, 157-173 e157;
Yu, C.Y., Li, T.C., Wu, Y.Y., Yeh, C.H., Chiang, W., Chuang, C.Y., andKuo, H.C. (2017). The circular RNA circBIRC6 participates in the molecularcircuitry controlling human pluripotency. Nature communications 8, 1149;
本发明对现有技术的改进不在于shRNA表达载体的合成,且本领域技术人员依据现有技术可知晓关于shRNA表达载体的合成方法,故本发明对此不另做限定;
(3)将经过步骤(1)合成的Meo-PEG-b-PDPA溶解在二甲基甲酰胺中,形成10mg/mL的均相溶液;
(4)将经步骤(2)合成的shRNA表达载体溶于去离子水中形成1mg/mL的shRNA表达载体水溶液;同时将经过步骤(1)合成的线粒体靶向肽溶于二甲基亚砜中形成5mg/mL的线粒体靶向肽二甲亚砜溶液;
(5)将经过步骤(4)制得的shRNA表达载体水溶液和线粒体靶向肽二甲亚砜溶液混合后,再与200µL的Meo-PEG-b-PDPA均相溶液混合;混合液经1000rpm强力搅拌均匀,在高速旋涡的作用下最终形成所需要的纳米颗粒,将混合液滴加到去离子水中,最终形成负载shRNA的靶向线粒体纳米颗粒;
(6)将经过步骤(5)形成的负载shRNA的靶向线粒体纳米颗粒转移至超滤装置中,离心去除有机溶剂和游离化合物,然后用超纯水洗涤,最后用超纯水定容至1mL。
将根据本发明提供的制备方法制得的靶向线粒体负载shRNA纳米材料进行性能测试,测试结果如下:
1、粒径和zeta电位测试:
对制得的靶向线粒体负载shRNA纳米材料通过动态光散射测定纳米颗粒的尺寸和Zeta电位,结果显示,靶向线粒体负载shRNA纳米材料的粒径为98.60±2.28nm,Zeta电位为2.96±0.15mv;
2、靶向线粒体负载shRNA纳米材料的释放和表达
将成纤维细胞接种于24孔板中,在含10%胎牛血清的DMEM培养基中培养,24h后,取浓度为200 ng/mL的根据本发明提供的制备方法制得的靶向线粒体负载shRNA纳米颗粒与成纤维细胞共同孵育48~72h,成纤维细胞摄取纳米颗粒后,pH响应聚合物被质子化,从内体中释放出由线粒体靶向肽和shRNA表达载体组成的复合物,复合物靶向运送至线粒体,载体在线粒体内表达shRNA,靶向线粒体负载shRNA纳米材料的释放和表达如图1所示。
本发明还提供根据靶向线粒体负载shRNA的纳米材料的制备方法制得的靶向线粒体负载shRNA的纳米材料应用在细胞实验中进而实现线粒体内特定靶基因的表达沉默。
本发明制得靶向线粒体负载shRNA的纳米材料在细胞实验中应用的方法如下:
将3种shRNA表达载体(针对靶基因的shRNA-1和shRNA-2,以及作为对照的sh-Ctrl)按照上述方法分别负载进纳米颗粒中,然后将成纤维细胞与纳米颗粒共同孵育48~72h,通过逆转录定量PCR(qRT-PCR)分别检测未经处理和负载3种shRNA表达载体的纳米颗粒处理的成纤维细胞内靶基因的mRNA表达水平,结果如图2所示:负载shRNA-1、shRNA-2表达载体的纳米颗粒处理的成纤维细胞内靶基因的mRNA表达量显著低于未经处理组和负载sh-Ctrl表达载体的纳米颗粒处理组;
以上结果说明,根据本发明制得的靶向线粒体负载shRNA的纳米材料在细胞实验中可以高效、特异性地将负载的shRNA表达载体运送到线粒体中,从而实现线粒体内特定靶基因的表达沉默。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。
Claims (6)
1.靶向线粒体负载shRNA的纳米材料,其特征在于:所述纳米材料为线粒体靶向肽和shRNA表达载体通过电荷吸附成为核心的复合物,复合物表面共价连接pH响应聚合物,在高速旋涡的作用下形成的纳米颗粒。
2.如权利要求1所述的靶向线粒体负载shRNA的纳米材料的制备方法,其特征在于,包括如下步骤:
(1)合成pH响应聚合物Meo-PEG-b-PDPA和线粒体靶向肽;
(2)使用pLKO.1-puro载体质粒构建shRNA表达载体;
(3)将经过步骤(1)合成的Meo-PEG-b-PDPA溶解在二甲基甲酰胺中,形成均相溶液;
(4)将经步骤(2)合成的shRNA表达载体溶于去离子水中形成shRNA表达载体水溶液;同时将经过步骤(1)合成的线粒体靶向肽溶于二甲基亚砜中形成线粒体靶向肽二甲亚砜溶液;
(5)将经过步骤(4)制得的shRNA表达载体水溶液和线粒体靶向肽二甲亚砜溶液混合后,再与Meo-PEG-b-PDPA均相溶液混合;混合液经强力搅拌均匀后,在高速涡旋的作用下形成纳米颗粒;将混合液滴加到去离子水中,最终形成负载shRNA的靶向线粒体纳米颗粒;
(6)将经过步骤(5)形成的负载shRNA的靶向线粒体纳米颗粒转移至超滤装置中,离心去除有机溶剂和游离化合物,然后用超纯水洗涤,最后用超纯水定容至1mL。
3.如权利要求2所述的靶向线粒体负载shRNA的纳米材料的制备方法,其特征在于:所述步骤(2)中构建shRNA表达载体包括针对靶基因的shRNA-1、shRNA-2以及作为对照的sh-Ctrl;合成shRNA寡核苷酸序列,将其克隆到pLKO.1-puro载体质粒中,并进行测序验证。
4.如权利要求2所述的靶向线粒体负载shRNA的纳米材料的制备方法,其特征在于:所述步骤(3)中均相溶液的浓度为10mg/mL。
5.如权利要求2所述的靶向线粒体负载shRNA的纳米材料的制备方法,其特征在于:所述步骤(4)中shRNA表达载体水溶液的浓度为1mg/mL;所述线粒体靶向肽二甲亚砜溶液的浓度为5mg/mL。
6.如权利要求1所述的靶向线粒体负载shRNA的纳米材料应用在细胞实验中进而实现线粒体内特定靶基因的表达沉默。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010570215.2A CN111635911A (zh) | 2020-06-21 | 2020-06-21 | 靶向线粒体负载shRNA的纳米材料及其制备方法和应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010570215.2A CN111635911A (zh) | 2020-06-21 | 2020-06-21 | 靶向线粒体负载shRNA的纳米材料及其制备方法和应用 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111635911A true CN111635911A (zh) | 2020-09-08 |
Family
ID=72326473
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010570215.2A Pending CN111635911A (zh) | 2020-06-21 | 2020-06-21 | 靶向线粒体负载shRNA的纳米材料及其制备方法和应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111635911A (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022206788A1 (zh) * | 2021-03-29 | 2022-10-06 | 南京大学 | 核酸递送系统及其应用 |
CN115885987A (zh) * | 2022-09-08 | 2023-04-04 | 河南大学 | 一种靶向纳米载体及其制备方法和应用、靶向载药纳米载体及其制备方法 |
WO2023083315A1 (zh) * | 2021-11-11 | 2023-05-19 | 翁炳焕 | 一种以RBD靶向递送shRNA的nCOVsiRNA药物及合成方法和应用 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108721645A (zh) * | 2018-06-05 | 2018-11-02 | 北京化工大学 | 一种多功能靶向细胞线粒体的复合纳米材料及其制备方法和作为抗肿瘤药物的应用 |
US20190117799A1 (en) * | 2016-04-01 | 2019-04-25 | The Brigham And Women's Hospital, Inc. | Stimuli-responsive nanoparticles for biomedical applications |
US20200061162A1 (en) * | 2016-11-09 | 2020-02-27 | The Brigham And Women`S Hospital, Inc. | Restoration of tumor suppression using mrna-based delivery system |
US20200085758A1 (en) * | 2016-12-16 | 2020-03-19 | The Brigham And Women's Hospital, Inc. | Co-delivery of nucleic acids for simultaneous suppression and expression of target genes |
-
2020
- 2020-06-21 CN CN202010570215.2A patent/CN111635911A/zh active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20190117799A1 (en) * | 2016-04-01 | 2019-04-25 | The Brigham And Women's Hospital, Inc. | Stimuli-responsive nanoparticles for biomedical applications |
US20200061162A1 (en) * | 2016-11-09 | 2020-02-27 | The Brigham And Women`S Hospital, Inc. | Restoration of tumor suppression using mrna-based delivery system |
US20200085758A1 (en) * | 2016-12-16 | 2020-03-19 | The Brigham And Women's Hospital, Inc. | Co-delivery of nucleic acids for simultaneous suppression and expression of target genes |
CN108721645A (zh) * | 2018-06-05 | 2018-11-02 | 北京化工大学 | 一种多功能靶向细胞线粒体的复合纳米材料及其制备方法和作为抗肿瘤药物的应用 |
Non-Patent Citations (1)
Title |
---|
VIVIAN JUANG 等: "pH-Responsive PEG-Shedding and Targeting Peptide-Modified Nanoparticles for Dual-Delivery of Irinotecan and microRNA to Enhance Tumor-Specific Therapy", 《SMALL》 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022206788A1 (zh) * | 2021-03-29 | 2022-10-06 | 南京大学 | 核酸递送系统及其应用 |
WO2023083315A1 (zh) * | 2021-11-11 | 2023-05-19 | 翁炳焕 | 一种以RBD靶向递送shRNA的nCOVsiRNA药物及合成方法和应用 |
CN115885987A (zh) * | 2022-09-08 | 2023-04-04 | 河南大学 | 一种靶向纳米载体及其制备方法和应用、靶向载药纳米载体及其制备方法 |
CN115885987B (zh) * | 2022-09-08 | 2024-06-11 | 河南大学 | 一种靶向纳米载体及其制备方法和应用、靶向载药纳米载体及其制备方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Abbasi et al. | Co-encapsulation of Cas9 mRNA and guide RNA in polyplex micelles enables genome editing in mouse brain | |
CN111635911A (zh) | 靶向线粒体负载shRNA的纳米材料及其制备方法和应用 | |
CN107058101B (zh) | 细胞内传递 | |
Ding et al. | Gold nanoparticles for nucleic acid delivery | |
Yin et al. | Overcoming chemoresistance in cancer via combined microRNA therapeutics with anticancer drugs using multifunctional magnetic core–shell nanoparticles | |
Qian et al. | Protecting microRNAs from RNase degradation with steric DNA nanostructures | |
CN102274521B (zh) | 基于氧化石墨烯的靶向性基因载体材料及制备和应用 | |
Sosa‑Acosta et al. | DNA-iron oxide nanoparticles conjugates: Functional magnetic nanoplatforms in biomedical applications | |
Dey et al. | Efficient gene delivery of primary human cells using peptide linked polyethylenimine polymer hybrid | |
Prow et al. | Construction, gene delivery, and expression of DNA tethered nanoparticles | |
CN111701031B (zh) | 靶向线粒体负载circRNA的纳米材料及其制备方法和应用 | |
CN109288815B (zh) | 一种可实现肿瘤靶向投递核酸药物的多级递送纳米粒子的制备方法和应用 | |
CN106890343B (zh) | 一种靶向型多肽纳米基因载体复合物 | |
Huang et al. | Gold nanoparticles electroporation enhanced polyplex delivery to mammalian cells | |
Tiwari et al. | Biomedical applications based on magnetic nanoparticles: DNA interactions | |
WO2024208377A1 (zh) | 一种ph响应型的肝靶向的药物递送载体及其制备方法和应用 | |
Wu et al. | Delivering siRNA to control osteogenic differentiation and real-time detection of cell differentiation in human mesenchymal stem cells using multifunctional gold nanoparticles | |
Badieyan et al. | Efficient ex vivo delivery of chemically modified messenger RNA using lipofection and magnetofection | |
US11618901B2 (en) | Anti-miRNA carrier conjugated with a peptide binding to a cancer cell surface protein and use thereof | |
Zhang et al. | Upregulating microRNA‐210 to Inhibit Apoptosis of Neural Stem Cells with an MRI–Visible Nanomedicine for Stroke Therapy | |
Rytblat et al. | In vitro studies of polyethyleneimine coated miRNA microspheres as anticancer agents | |
He et al. | A novel gene carrier based on amino-modified silica nanoparticles | |
Huang et al. | Biomimetic nanodecoys deliver cholesterol-modified heteroduplex oligonucleotide to target dopaminergic neurons for the treatment of Parkinson's disease | |
Cao et al. | Linear-branched poly (β-amino esters)/DNA nano-polyplexes for effective gene transfection and neural stem cell differentiation | |
Reina et al. | The importance of molecular structure and functionalization of oxo-graphene sheets for gene silencing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20200908 |
|
RJ01 | Rejection of invention patent application after publication |