CN111635552A - 腈菌唑分子印迹反蛋白石光子晶体水凝胶传感器的制备方法及应用 - Google Patents

腈菌唑分子印迹反蛋白石光子晶体水凝胶传感器的制备方法及应用 Download PDF

Info

Publication number
CN111635552A
CN111635552A CN202010434903.6A CN202010434903A CN111635552A CN 111635552 A CN111635552 A CN 111635552A CN 202010434903 A CN202010434903 A CN 202010434903A CN 111635552 A CN111635552 A CN 111635552A
Authority
CN
China
Prior art keywords
myclobutanil
photonic crystal
molecularly imprinted
preparing
methanol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010434903.6A
Other languages
English (en)
Inventor
顾丽莉
李子怡
佟振浩
杜康
刘东辉
彭健
孔光辉
师君丽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kunming University of Science and Technology
Original Assignee
Kunming University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunming University of Science and Technology filed Critical Kunming University of Science and Technology
Priority to CN202010434903.6A priority Critical patent/CN111635552A/zh
Publication of CN111635552A publication Critical patent/CN111635552A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/26Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a solid phase from a macromolecular composition or article, e.g. leaching out
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/268Polymers created by use of a template, e.g. molecularly imprinted polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F292/00Macromolecular compounds obtained by polymerising monomers on to inorganic materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/04Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
    • C08J2201/042Elimination of an organic solid phase
    • C08J2201/0424Elimination of an organic solid phase containing halogen, nitrogen, sulphur or phosphorus atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2351/00Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • C08J2351/10Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers grafted on to inorganic materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本发明公开了一种腈菌唑分子印迹反蛋白石光子晶体水凝胶传感器的制备方法,该方法先制备良好单分散性的SiO2微球、进而得到带有蛋白石结构光子晶体的玻璃片、然后通过热聚合在蛋白石三维网状结构内热聚合形成腈菌唑印迹结构,最后去除SiO2微球、腈菌唑分子,制得分子印迹光子晶体水凝胶薄膜传感器;传感器中的腈菌唑印迹空腔可快速捕捉腈菌唑分子,导致其布拉格衍射峰发生红移,将化学信号转换为光学信号,从而实现对样品中腈菌唑浓度的快速检测;该方法步骤简单,操作方便,并具有高灵敏度和选择性、检测时间短、低检出限等优点,克服了传统分析方法步骤复杂、设备昂贵、耗时长等缺点。

Description

腈菌唑分子印迹反蛋白石光子晶体水凝胶传感器的制备方法 及应用
技术领域
本发明属于材料化学和分析检测领域,涉及一种腈菌唑分子印迹反蛋白石光子晶体水凝胶传感器的制备方法。
背景技术
腈菌唑是一种常用的三唑类杀菌剂,具有高效低毒,内吸性强,持效期长和广谱等特点,其对病原菌中麦角甾醇的生物合成起抑制作用。腈菌唑主要用于预防黑星菌属、核盘菌属和球腔菌属等引发的果树和谷物的病害。腈菌唑杀菌剂可在植物体内残留70天,残留腈菌唑会对人体和动物的内分泌系统进行干扰,影响机体生殖机能,重则导致死亡。口服腈菌唑会导造成肝脏受损、心肌酶谱异常和呼吸衰竭,致多个脏器严重损害。由此,有必要对植物中腈菌唑农残含量加以监管。
目前,腈菌唑杀菌剂的检测主要基于大型仪器,如气相色谱、高效液相色谱、气质联用、生物监测和手性分离检测等方法,大型仪器检测稳定性好,但为了避免基质干扰,样品前处理极为重要,成为影响检测效果的关键,致使整个检测过程复杂。另外,大型仪器的操作要求检测者具备专业技能,且不能实现快速简便检测。
光子晶体水凝胶因其具有敏感性响应的特性,使其可随环境(如,温度、pH值、浓度、光、电和磁场等)的微小变化导致自身体积溶胀或收缩,从而改变晶体间的距离,呈现出人眼可见的视觉信号变化。
目前,尚未见关于腈菌唑杀菌剂分子印迹光子晶体水凝胶的制备的相关报道。
发明内容
针对现有技术存在的问题,本发明提供了一种腈菌唑分子印迹反蛋白石光子晶体水凝胶传感器的制备方法;本发明提供的腈菌唑分子印迹反蛋白石光子晶体水凝胶传感器结构简单,灵敏度高,可满足痕量腈菌唑农残的检测要求,且检测时无需使用高效液相色谱等昂贵仪器。
将光子晶体水凝胶与分子印迹技术结合,可赋予其特异性识别目标分子的能力,分子印迹结构识别目标及其类似物后,改变晶体间的距离,直观的将化学信号转换为视觉信号,二者将优势结合,具有低成本和快检的特性,是大型仪器检测方法的重要补充,可大大节省人力、物力和财力。
本发明腈菌唑分子印迹反蛋白石光子晶体水凝胶传感器的制备方法如下:
(1)将氨水、超纯水和无水乙醇加入反应容器中,在密封、25~55℃条件下高速搅拌(1500~1700r/min),混匀后制得混合物A,将无水乙醇和正硅酸乙酯混合制得混合物B,将搅拌速度调至中速(400~750r/min),将混合物B倒入混合物A中在25~55℃下进行聚合反应4~7h,反应完成后离心去掉上清液,用无水乙醇洗涤2~3次,去掉上清液得到SiO2微球乳液;
所述混合物A中氨水、无水乙醇和超纯水的摩尔比为1:30~50:230~250,混合物B中正硅酸乙酯和无水乙醇的摩尔比为1:30~50;
(2)将步骤(1)的SiO2微球乳液用无水乙醇稀释后混匀,将经亲水性处理过的玻璃片垂直插入稀释液中,在恒湿恒温条件下进行处理,待稀释液挥发完全后,制得带有蛋白石结构光子晶体的玻璃片;
所述SiO2微球乳液与无水乙醇的体积比为1:15~25,恒湿恒温条件为温度40~60℃、湿度50~80%;
所述亲水性处理是将石英玻璃片用食人鱼洗液浸泡24h,再用超纯水冲洗后,放入无水乙醇中超声20~30min,最后用氮气吹干制得;
(3)预聚合反应制备腈菌唑前驱液,在腈菌唑前驱液中加入引发剂偶氮二异丁腈,完全溶解后通入氮除氧,将一片或多片两侧带有蛋白石结构光子晶体的玻璃片放置在两片或多片干净的玻璃片(经超纯水洗涤)之间并重叠固定,然后垂直插入除氧后的腈菌唑前驱液中进行浸润,至玻片变为透明后,将其置于50~80℃下热聚合3~8h,在两两玻璃片之间制得水凝胶薄膜;
其中腈菌唑前驱液是将腈菌唑、功能单体、乙二醇二甲基丙烯酸酯、无水甲醇混匀后,置于-5~45℃下预聚合12h而制得,其中腈菌唑与功能单体的摩尔比为1:3~8.2,腈菌唑与乙二醇二甲基丙烯酸酯的摩尔比为1~2:1,每1mL无水甲醇中添加0.3~1.65g的腈菌唑;
所述功能单体为甲基丙烯酸二乙胺乙酯、丙烯酰胺、丙烯酸、甲基丙烯酸、甲基丙烯酸甲酯、三氟甲基丙烯酸、2-乙烯基吡啶、4-乙烯基吡啶中的一种或任意比几种;
所述偶氮二异丁腈的添加量为功能单体和乙二醇二甲基丙烯酸酯总质量的1~5%;
(4)将步骤(3)制得的水凝胶薄膜置于氢氟酸中浸泡至自然分离,然后经超纯水冲洗3次后,将其浸入超纯水-甲醇-乙酸盐洗脱液中浸泡除去腈菌唑分子,最后将其浸入甲醇-磷酸缓冲液后,即得分子印迹光子晶体水凝胶薄膜;
所述氢氟酸的质量浓度为1~5%;
所述超纯水-甲醇-乙酸盐洗脱液是按超纯水、甲醇和乙酸盐体积比为6:2.5~3.7:0.3~1.5的比例将超纯水、甲醇和乙酸盐混匀制得,其中乙酸盐为强碱弱酸盐,即为乙酸钠、乙酸钾、乙酸钙、乙酸锌、乙酸镁中的一种或任意比几种;
所述甲醇-磷酸缓冲液是由甲醇和pH=7.8的磷酸缓冲液按体积比为0.5~1:9的比例混合制得。
本发明另一目的是将上述方法制得的腈菌唑分子印迹反蛋白石光子晶体水凝胶传感器应用在痕量腈菌唑农残检测中。
本发明将分子印迹与光子晶体水凝胶技术联用,通过热聚合法制出腈菌唑分子印迹反蛋白光子晶体水凝胶传感器;水凝胶的网状结构中存在大量腈菌唑分子印迹结合位点,当水凝胶吸附腈菌唑分子后,水凝胶结构吸附膨胀,导致晶格发生改变,布拉格衍射峰发生红移,将一系列的化学信号转换为裸眼可见的光学信号,可特异性识别目标分子,从而进行定性定量分析,该方法步骤简单,操作方便,并具有高灵敏度和选择性、检测时间短、低检出限等优点,克服了已有分析方法步骤复杂、设备昂贵、耗时长等缺点;本发明腈菌唑分子印迹反蛋白石光子晶体水凝胶传感器可以作为一种农残检测传感器,用于农产品中腈菌唑分子的快速痕量定性定量检测中。
附图说明
图1为实施例1中清洗后的SiO2微球的红外光谱图;
图2为实施例1中生成的光子晶体模板的扫描电子显微镜图;
图3为实施例1中反蛋白石分子印迹光子晶体水凝胶的扫描电镜图;
图4为实施例1中腈菌唑分子印迹光子晶体水凝胶传感器在甲醇-磷酸缓冲溶液(a)和10-4mol/L MDT缓冲液(b)中的对比图;
图5为实施例3的腈菌唑分子印迹光子晶体水凝胶传感器识别相同浓度不同三唑类杀菌剂的紫外-可见光谱图。
具体实施方式
下面通过实施例对本发明作进一步详细说明,但本发明保护范围不局限于所述内容。
实施例1:本腈菌唑分子印迹反蛋白石光子晶体水凝胶薄膜的制备方法及应用如下:
(1)将恒温水槽预热至40℃后,把两口烧瓶固定在恒温水槽上方后,向瓶中加入氨水、超纯水和无水乙醇并密封,设置搅拌速度为1700r/min,充分搅拌6min后,将搅拌速度变为400r/min后,将无水乙醇和正硅酸乙酯混合物加入两口烧瓶中在40℃下进行聚合反应5h,反应完成后离心去掉上清液,用无水乙醇洗涤2次,去掉上清液得到SiO2微球乳液;其中氨水、无水乙醇和超纯水的摩尔比为1:40:248,正硅酸乙酯和无水乙醇的摩尔比为1:47;清洗后的SiO2微球的红外光谱图如图1所示;
(2)将在食人鱼洗液中浸泡了24h的石英玻璃(75 mm×14 mm×1.1mm)取出,用超纯水冲洗两次后,放入无水乙醇超声30min,结束后用氮气吹干制得亲水性处理过的玻璃片;同时按体积比为1:15的比例,在步骤(1)SiO2微球乳液添加无水乙醇稀释并置于超声下混合30min,将亲水性处理过的玻璃片垂直插入稀释液中,固定好后将其放入恒湿恒温培养箱中(温度50℃,湿度70%)进行自组装,待稀释液挥发完全后,制得带有蛋白石结构光子晶体的玻璃片;生成的光子晶体模板的扫描电子显微镜图如图2所示;
(3)将腈菌唑、三氟甲基丙烯酸和乙二醇二甲基丙烯酸酯溶于无水甲醇中,超声处理5min后,在35℃下自组装12h制得腈菌唑前驱液,其中腈菌唑与三氟甲基丙烯酸的摩尔比为1:5,腈菌唑与乙二醇二甲基丙烯酸酯的摩尔比为1:1,每1mL无水甲醇中添加0.5g的腈菌唑;
(4)在腈菌唑前驱液中加入偶氮二异丁腈,偶氮二异丁腈完全溶解后,通氮除氧5min,将一片两侧带有蛋白石结构光子晶体的玻璃片放置在两块超纯水洗涤的玻璃片间重叠用夹子夹住一侧,垂直插入除氧后的腈菌唑前驱液中进行浸润,溶液因毛细管力进入三块玻璃片之间,当带有蛋白石结构光子晶体的玻璃片变为透明后,将其置于65℃恒温箱中热聚合5h,在玻璃片之间的薄膜即为水凝胶薄膜,其中偶氮二异丁腈的添加量为三氟甲基丙烯酸和乙二醇二甲基丙烯酸酯总质量的2.8%;
(5)将步骤(4)制得的水凝胶薄膜放置于质量浓度4%的氢氟酸溶液中浸泡至自热分离,除去SiO2微球结构,形成反蛋白石结构的薄膜;然后经超纯水冲洗3次后,将其浸入超纯水-甲醇-乙酸钠洗脱液(超纯水、甲醇和乙酸钠体积比为6:2.5:1.5)中浸泡8h除去腈菌唑分子,最后将其浸入甲醇-磷酸缓冲液(甲醇和pH=7.8磷酸缓冲液按体积比为1:9)后,即得分子印迹反蛋白光子晶体水凝胶薄膜,反蛋白石光子晶体水凝胶薄膜的扫描电子显微镜图如图3所示;
(6)配置6个浓度的腈菌唑甲醇-磷酸检测液(0、10-8、10-7、10-6、10-5和10-4mol/L),将上述薄膜浸泡在检测溶液中30min,并用紫外-可见分光光度计对浸泡后的薄膜进行布拉格衍射峰检测;图4为传感器在甲醇-磷酸缓冲溶液(a)和10-4mol/L 腈菌唑-甲醇-磷酸缓冲溶液(b)中的对比图,传感器颜色由淡蓝绿色变为绿红色,随着腈菌唑浓度的增加,布拉格衍射峰偏移越大,说明本发明的传感器具有准确识别能力。
实施例2:本腈菌唑分子印迹反蛋白石光子晶体水凝胶薄膜的制备方法及应用如下:
(1)将恒温水槽预热至35℃后,把两口烧瓶固定在恒温水槽上方后,向瓶中加入氨水、超纯水和无水乙醇并密封,设置搅拌速度为1600r/min,充分搅拌7min后,将搅拌速度变为500r/min后,将无水乙醇和正硅酸乙酯混合物加入两口烧瓶中在35℃下进行聚合反应6h,反应完成后离心去掉上清液,用无水乙醇洗涤3次,去掉上清液得到SiO2微球乳液;其中氨水、无水乙醇和超纯水的摩尔比为1:35:235,正硅酸乙酯和无水乙醇的摩尔比为1:35;
(2)将在食人鱼洗液中浸泡了24h的石英玻璃(75 mm×14 mm×1.1mm)取出,用超纯水冲洗两次后,放入无水乙醇超声30min,结束后用氮气吹干制得亲水性处理过的玻璃片;同时按体积比为1:20的比例,在步骤(1)SiO2微球乳液添加无水乙醇稀释并置于超声下混合30min,将亲水性处理过的玻璃片垂直插入稀释液中,固定好后将其放入恒湿恒温培养箱中(温度45℃,湿度60%)进行自组装,待稀释液挥发完全后,制得带有蛋白石结构光子晶体的玻璃片;
(3)将腈菌唑、甲基丙烯酸和乙二醇二甲基丙烯酸酯溶于无水甲醇中,超声处理5min后,在20℃下自组装12h制得腈菌唑前驱液,其中腈菌唑与甲基丙烯酸的摩尔比为1:3,腈菌唑与乙二醇二甲基丙烯酸酯的摩尔比为1.5:1,每1mL无水甲醇中添加1.0g的腈菌唑;
(4)在腈菌唑前驱液中加入偶氮二异丁腈,偶氮二异丁腈完全溶解后,通氮除氧5min,将一片两侧带有蛋白石结构光子晶体的玻璃片放置在两块超纯水洗涤的玻璃片间重叠用夹子夹住一侧,垂直插入除氧后的腈菌唑前驱液中进行浸润,溶液因毛细管力进入三块玻璃片之间,当带有蛋白石结构光子晶体的玻璃片变为透明后,将其置于55℃恒温箱中热聚合7h,在玻璃片中间的薄膜即为水凝胶薄膜,其中偶氮二异丁腈的质量为甲基丙烯酸和乙二醇二甲基丙烯酸酯总质量的1%;
(5)将步骤(4)制得的水凝胶薄膜放置于质量浓度2%氢氟酸溶液中浸泡至自热分离,除去SiO2微球结构,形成反蛋白石结构的薄膜;然后经超纯水冲洗3次后,将其浸入超纯水-甲醇-乙酸钾洗脱液(超纯水、甲醇和乙酸钾体积比为6:3.7:0.3)中浸泡6h除去腈菌唑分子,最后将其浸入甲醇-磷酸缓冲液(甲醇和pH=7.8磷酸缓冲液按体积比为0.5:9)后,即得分子印迹反蛋白光子晶体水凝胶薄膜;
(6)配置6种浓度的腈菌唑甲醇-磷酸检测液(0、10-8、10-7、10-6、10-5和10-4mol/L),将上述薄膜浸泡在检测溶液中30min,并用紫外-可见分光光度计对浸泡后的薄膜进行布拉格衍射峰检测,实验结果表明,随着腈菌唑浓度的增加,布拉格衍射峰偏移越大,说明本发明的传感器具有准确识别和定量分析腈菌唑的能力。
实施例3:本腈菌唑分子印迹反蛋白石光子晶体水凝胶薄膜的制备方法及应用如下:
(1)将恒温水槽预热至30℃后,把两口烧瓶固定在恒温水槽上方后,向瓶中加入氨水、超纯水和无水乙醇并密封,设置搅拌速度为1500r/min,充分搅拌8min后,将搅拌速度变为700r/min,并将无水乙醇和正硅酸乙酯混合物加入两口烧瓶中在30℃下进行聚合反应7h,反应完成后离心去掉上清液,用无水乙醇洗涤2次,去掉上清液得到干净的SiO2微球乳液;其中氨水、无水乙醇和超纯水的摩尔比为1:50:250,正硅酸乙酯和无水乙醇的摩尔比为1:40;
(2)将在食人鱼洗液中浸泡了24h的石英玻璃(75 mm×14 mm×1.1mm)取出,用超纯水冲洗两次后,放入无水乙醇超声30min,结束后用氮气吹干制得亲水性处理过的玻璃片;同时按体积比为1:25的比例,在步骤(1)SiO2微球乳液添加无水乙醇稀释并置于超声下混合30min,将亲水性处理过的玻璃片垂直插入稀释液中,固定好后将其放入恒湿恒温培养箱中(温度60℃,湿度80%)进行自组装,待稀释液挥发完全后,制得带有蛋白石结构光子晶体的玻璃片;
(3)将腈菌唑、2-乙烯基吡啶和乙二醇二甲基丙烯酸酯溶于无水甲醇中,超声处理5min后,在0℃下自组装12h制得腈菌唑前驱液,其中腈菌唑与2-乙烯基吡啶的摩尔比为1:7,腈菌唑与乙二醇二甲基丙烯酸酯的摩尔比为2:1,每1mL无水甲醇中添加1.6g的腈菌唑;
(4)在腈菌唑前驱液中加入偶氮二异丁腈,偶氮二异丁腈完全溶解后,通氮除氧5min,将一片两侧带有蛋白石结构光子晶体的玻璃片放置在两块超纯水洗涤的玻璃片间重叠用夹子夹住一侧,垂直插入除氧后的腈菌唑前驱液中进行浸润,溶液因毛细管力进入三块玻璃片之间,当带有蛋白石结构光子晶体的玻璃片变为透明后,将其置于75℃恒温箱中热聚合3h,在玻璃片中间的薄膜即为水凝胶薄膜,其中偶氮二异丁腈的质量为甲基丙烯酸和乙二醇二甲基丙烯酸酯总质量的5%;
(5)将步骤(4)制得的水凝胶薄膜放置于质量浓度5%的氢氟酸溶液中浸泡至自热分离,除去SiO2微球结构,形成反蛋白石结构的薄膜;然后经超纯水冲洗3次后,将其浸入超纯水-甲醇-乙酸钠洗脱液(超纯水、甲醇和乙酸钠体积比为6:3:1)中浸泡6h除去腈菌唑分子,最后将其浸入甲醇-磷酸缓冲液(甲醇和pH=7.8磷酸缓冲液按体积比为0.8:9)后,即得分子印迹反蛋白光子晶体水凝胶薄膜;
(6)选取4种结构相似的三唑类杀菌剂:腈菌唑(MDT)、三唑酮(TDM)、三唑醇(TDF)、戊唑醇(TEB),分别配置成浓度10-4mol/L的甲醇-磷酸检测液;将薄膜分别浸入4种检测液中,再采用紫外-可见吸收光谱对其布拉格衍射峰(图5),实验结果表明薄膜对腈菌唑分子具有较强的选择特异性,其红移量远大于其他三种三唑类杀菌剂。
由以上实施例可以看出,本发明首次采用热聚合法制备腈菌唑分子印迹反蛋白石光子晶体水凝胶传感器,提高了传感器的完整性;洗脱过程中,采用强碱弱酸盐可降低洗脱液的酸性,避免对传感器的过度腐蚀;该传感器制备工艺简单,方便操作,可在半小时内对痕量腈菌唑进行检测,其对腈菌唑具有专一识别性,并具有高灵敏度和高准确性,克服了传统方法步骤复杂、设备昂贵、耗时长等缺点。同时其对腈菌唑进行检测时能提供肉眼可见的颜色变化响应,并且该材料由化学方法制备,具有较强的稳定性,方便快捷,是大型仪器检测方法的重要补充,可大大节省人力、物力和财力。

Claims (10)

1.一种腈菌唑分子印迹反蛋白石光子晶体水凝胶传感器的制备方法,其特征在于,包括以下步骤:
(1)将氨水、超纯水和无水乙醇加入反应容器中,在密封、25~55℃条件下高速搅拌,混匀后制得混合物A,将无水乙醇和正硅酸乙酯混合制得混合物B,将搅拌速度调至中速,将混合物B倒入混合物A中在25~55℃下进行聚合反应,反应完成后离心去掉上清液,用无水乙醇洗涤,去掉上清液得到SiO2微球乳液;
(2)将步骤(1)的SiO2微球乳液用无水乙醇稀释后混匀,将经亲水性处理过的玻璃片垂直插入稀释液中,在恒湿恒温条件下进行处理,待稀释液挥发完全后,制得带有蛋白石结构光子晶体的玻璃片;
(3)预聚合反应制备腈菌唑前驱液,在腈菌唑前驱液中加入引发剂偶氮二异丁腈,完全溶解后通入氮除氧,将一片或多片两侧带有蛋白石结构光子晶体的玻璃片放置在两片或多片干净的玻璃片之间并重叠固定,然后垂直插入除氧后的腈菌唑前驱液中进行浸润,至玻片变为透明后,将其置于50~80℃下热聚合3~8h,在两两玻璃片之间制得水凝胶薄膜;
(4)将步骤(3)制得的水凝胶薄膜置于氢氟酸溶液中浸泡至自然分离,然后经超纯水冲洗3次后,将其浸入超纯水-甲醇-乙酸盐洗脱液中浸泡除去腈菌唑分子,最后将其浸入甲醇-磷酸缓冲液后,即得分子印迹光子晶体水凝胶薄膜。
2.根据权利要求1所述的腈菌唑分子印迹反蛋白石光子晶体水凝胶传感器的制备方法,其特征在于:混合物A中氨水、无水乙醇和超纯水的摩尔比为1:30~50:230~250,混合物B中正硅酸乙酯和无水乙醇的摩尔比为1:30~50。
3.根据权利要求1所述的腈菌唑分子印迹反蛋白石光子晶体水凝胶传感器的制备方法,其特征在于:步骤(1)中高速搅拌的搅拌速度为1500~1700r/min,加热温度为25~55℃;
中速的搅拌速度为400~750r/min,聚合反应时间为4~7h。
4.根据权利要求1所述的腈菌唑分子印迹反蛋白石光子晶体水凝胶传感器的制备方法,其特征在于:步骤(2)中SiO2微球乳液与无水乙醇的体积比为1:15~25,恒湿恒温条件为温度40~60℃、湿度50~80%。
5.根据权利要求1所述的腈菌唑分子印迹反蛋白石光子晶体水凝胶传感器的制备方法,其特征在于:腈菌唑前驱液是将腈菌唑、功能单体、乙二醇二甲基丙烯酸酯、无水甲醇混匀后,置于-5~45℃下预聚合12h而制得,其中腈菌唑与功能单体的摩尔比为1:3~8.2,腈菌唑与乙二醇二甲基丙烯酸酯的摩尔比为1~2:1,每1mL无水甲醇中添加0.3~1.65g的腈菌唑。
6.根据权利要求5所述的腈菌唑分子印迹反蛋白石光子晶体水凝胶传感器的制备方法,其特征在于:功能单体为甲基丙烯酸二乙胺乙酯、丙烯酰胺、丙烯酸、甲基丙烯酸、甲基丙烯酸甲酯、三氟甲基丙烯酸、2-乙烯基吡啶、4-乙烯基吡啶中的一种或任意比几种。
7.根据权利要求5所述的腈菌唑分子印迹反蛋白石光子晶体水凝胶传感器的制备方法,其特征在于:步骤(3)中偶氮二异丁腈的添加量为功能单体和乙二醇二甲基丙烯酸酯总质量的1~5%。
8.根据权利要求1所述的腈菌唑分子印迹反蛋白石光子晶体水凝胶传感器的制备方法,其特征在于:步骤(4)中氢氟酸的质量浓度为1~5%,超纯水-甲醇-乙酸盐洗脱液是按超纯水、甲醇和乙酸盐体积比为6:2.5~3.7:0.3~1.5的比例将超纯水、甲醇和乙酸盐混匀制得,其中乙酸盐为乙酸钠、乙酸钾、乙酸钙、乙酸锌、乙酸镁中的一种或任意比几种;甲醇-磷酸缓冲液是由甲醇和pH=7.8的磷酸缓冲液按体积比为0.5~1:9的比例混合制得。
9.根据权利要求8所述的腈菌唑分子印迹反蛋白石光子晶体水凝胶传感器的制备方法,其特征在于:薄膜在超纯水-甲醇-乙酸盐洗脱液中浸泡5~10h。
10.权利要求1-9中任一项所述的腈菌唑分子印迹反蛋白石光子晶体水凝胶传感器的制备方法制得的腈菌唑分子印迹反蛋白石光子晶体水凝胶传感器在腈菌唑农残检测中的应用。
CN202010434903.6A 2020-05-21 2020-05-21 腈菌唑分子印迹反蛋白石光子晶体水凝胶传感器的制备方法及应用 Pending CN111635552A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010434903.6A CN111635552A (zh) 2020-05-21 2020-05-21 腈菌唑分子印迹反蛋白石光子晶体水凝胶传感器的制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010434903.6A CN111635552A (zh) 2020-05-21 2020-05-21 腈菌唑分子印迹反蛋白石光子晶体水凝胶传感器的制备方法及应用

Publications (1)

Publication Number Publication Date
CN111635552A true CN111635552A (zh) 2020-09-08

Family

ID=72329424

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010434903.6A Pending CN111635552A (zh) 2020-05-21 2020-05-21 腈菌唑分子印迹反蛋白石光子晶体水凝胶传感器的制备方法及应用

Country Status (1)

Country Link
CN (1) CN111635552A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112964672A (zh) * 2021-03-18 2021-06-15 天津大学 一种检测磺胺甲噁唑的分子印迹光子晶体的制备方法及其应用
CN113030025A (zh) * 2021-03-18 2021-06-25 天津大学 一种检测磺胺脒的分子印迹光子晶体的制备方法及其应用
TWI755126B (zh) * 2020-10-29 2022-02-11 國立虎尾科技大學 應用於感測食品添加劑的反蛋白石水凝膠感測器及其製法
CN117647493A (zh) * 2023-11-27 2024-03-05 齐鲁工业大学(山东省科学院) 一种快速检测食品中磺胺二甲基嘧啶的分子印迹光子晶体传感器及其制备方法与应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106317325A (zh) * 2016-09-14 2017-01-11 中国农业科学院农业质量标准与检测技术研究所 三唑类农药分子印迹聚合物微球,固相萃取柱及其应用
CN108084375A (zh) * 2017-12-25 2018-05-29 中国农业科学院农业质量标准与检测技术研究所 一种三唑类农药分子印迹磁性微球及其应用
CN109096434A (zh) * 2018-08-07 2018-12-28 昆明理工大学 一种三唑类分子印迹聚合物微球及其制备方法和应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106317325A (zh) * 2016-09-14 2017-01-11 中国农业科学院农业质量标准与检测技术研究所 三唑类农药分子印迹聚合物微球,固相萃取柱及其应用
CN108084375A (zh) * 2017-12-25 2018-05-29 中国农业科学院农业质量标准与检测技术研究所 一种三唑类农药分子印迹磁性微球及其应用
CN109096434A (zh) * 2018-08-07 2018-12-28 昆明理工大学 一种三唑类分子印迹聚合物微球及其制备方法和应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MENGXIAO ZHANG ET AL.: "Comparative analysis of atrazine molecularly imprinted polymers using acetonitrile and toluene as solvents", 《JOURNAL OF APPLIED POLYMER SCIENCE》 *
薛亚峰等: "2,4,6-三氯酚分子印迹光子晶体水凝胶传感器的研究", 《分析化学( FENXI HUAXUE) 研究报告》 *
郑平等主编: "《 分子印迹固相萃取技术及其在食品安全分析中的应用》", 30 November 2011, 合肥工业大学出版社 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI755126B (zh) * 2020-10-29 2022-02-11 國立虎尾科技大學 應用於感測食品添加劑的反蛋白石水凝膠感測器及其製法
CN112964672A (zh) * 2021-03-18 2021-06-15 天津大学 一种检测磺胺甲噁唑的分子印迹光子晶体的制备方法及其应用
CN113030025A (zh) * 2021-03-18 2021-06-25 天津大学 一种检测磺胺脒的分子印迹光子晶体的制备方法及其应用
CN117647493A (zh) * 2023-11-27 2024-03-05 齐鲁工业大学(山东省科学院) 一种快速检测食品中磺胺二甲基嘧啶的分子印迹光子晶体传感器及其制备方法与应用

Similar Documents

Publication Publication Date Title
CN111635552A (zh) 腈菌唑分子印迹反蛋白石光子晶体水凝胶传感器的制备方法及应用
CN109253907B (zh) 一种利用尼罗红染色快速辅助检测水环境样品中微塑料的方法
CN109164100B (zh) 一种快速检测农药的试纸条
CN107084954B (zh) 一种荧光传感器的制备方法、一种检测酪氨酸酶的方法
CN107056981A (zh) 用于检测葡萄糖的光子晶体凝胶材料和葡萄糖检测方法
CN114414514B (zh) 一种锰类普鲁士蓝纳米酶的制备方法及其在酒精浓度检测中的应用
CN107664637A (zh) 一种分子印迹光子晶体检测卡及应用
CN110273182B (zh) 一种三维反蛋白石聚合物光子晶体材料及其制备方法和应用
CN106033086B (zh) 基于lspr检测精子顶体酶活性的方法、试剂盒及其应用
CN114705656A (zh) 一种基于致毒菌株印迹人工抗体结合噬菌体修饰的长周期光纤光栅及其制备方法和应用
CN110044894B (zh) 一种三唑醇的比色检测方法
CN112710644B (zh) 测定水生植物根际磷酸酶活性二维空间分布的酶谱方法
CA1089339A (en) Method of staining micro-organisms
CN105784705A (zh) 一种法医学硅藻检验方法
CN114854403B (zh) 一种橙色荧光碳点及其制备方法和应用
Del Bianco et al. A new kind of oxygen-sensitive transducer based on an immobilized metallo-organic compound
CN107478647A (zh) 一种基于贵金属纳米粒子快速现场检测溴氰菊酯的方法
CN106323723A (zh) 双蓝染色法
CN113667144B (zh) 一种可视化检测金属离子的复合水凝胶阵列及其制备方法和应用
CN107501591B (zh) 一种双酚a分子印迹聚合物膜的制备与应用
CN111024689B (zh) 一种基于变色纳米材料的白酒酒精度检测方法
CN109164098B (zh) 一种乙酰胆碱检测试纸条及其应用
CN114858792B (zh) 一种有机胺类气体响应结构色肉类新鲜度指示标签及其制备方法和应用
CN114965295B (zh) 液晶生物传感器组件以及其在胰岛素检测中的运用
CN113358625B (zh) 一种具有等离子体增强效应的微针贴片及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination