CN111629571A - 一种高功率密度机柜的整体高效散热系统 - Google Patents

一种高功率密度机柜的整体高效散热系统 Download PDF

Info

Publication number
CN111629571A
CN111629571A CN202010622753.1A CN202010622753A CN111629571A CN 111629571 A CN111629571 A CN 111629571A CN 202010622753 A CN202010622753 A CN 202010622753A CN 111629571 A CN111629571 A CN 111629571A
Authority
CN
China
Prior art keywords
air
refrigerant
phase
way valve
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010622753.1A
Other languages
English (en)
Other versions
CN111629571B (zh
Inventor
袁卫星
杨通智
任柯先
苗泽
杨波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beihang University
Original Assignee
Beihang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beihang University filed Critical Beihang University
Priority to CN202010622753.1A priority Critical patent/CN111629571B/zh
Publication of CN111629571A publication Critical patent/CN111629571A/zh
Application granted granted Critical
Publication of CN111629571B publication Critical patent/CN111629571B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20709Modifications to facilitate cooling, ventilating, or heating for server racks or cabinets; for data centers, e.g. 19-inch computer racks
    • H05K7/208Liquid cooling with phase change
    • H05K7/20818Liquid cooling with phase change within cabinets for removing heat from server blades
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20709Modifications to facilitate cooling, ventilating, or heating for server racks or cabinets; for data centers, e.g. 19-inch computer racks
    • H05K7/20754Air circulating in closed loop within cabinets
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20709Modifications to facilitate cooling, ventilating, or heating for server racks or cabinets; for data centers, e.g. 19-inch computer racks
    • H05K7/208Liquid cooling with phase change
    • H05K7/20809Liquid cooling with phase change within server blades for removing heat from heat source

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

本发明公开了一种高功率密度机柜的整体高效散热系统。高功率密度机柜的整体高效散热系统包括泵驱两相环路高功率芯片直接散热系统和机柜风冷系统。机柜风冷系统包括制冷剂循环回路和机柜内空气循环回路。为应对不同循环工况,制冷剂循环回路可分为两路,一路为泵驱两相循环回路,一路为蒸汽压缩循环回路。泵驱两相环路高功率芯片直接散热系统可以对服务器中的主要发热元件CPU、GPU等进行定点散热,机柜风冷系统可以对服务器其它发热元件进行风冷散热。高功率密度芯片定点散热和低功率密度元器件的风冷散热两者结合,一方面可以对大功率芯片直接定点散热,另一方面可以摆脱服务器机柜对空调降温的依赖,高效解决服务器机柜整体散热的问题。

Description

一种高功率密度机柜的整体高效散热系统
技术领域
本发明涉及一种高功率密度机柜的整体高效散热系统。
背景技术
随着信息技术的突飞猛进,对运算速度更快、功能更强的服务器需求猛增,由此导致单个机柜功率密度显著提升。其中主板上的主要发热元件为CPU、GPU等,其发热功率占到总发热功率的60%~70%,主板上的其他发热元件占到总发热功率的30%~40%。通过泵驱两相环路高功率芯片散热系统,主板上主要发热元件的散热得到了很好的解决,但主板上其他发热元件的散热问题仍然需要解决。
目前在评估数据中心能源效率时,通常采用PUE(Power Usage Effectiveness)值作为评价指标,PUE是数据中心消耗的所有能耗与IT负载使用的能耗之比。由于主板上其他发热元件分布比较分散,并且每个发热元件所产生的热量比较小,风冷技术更加适合解决其散热问题。传统方法是利用机房空调对主板上其它发热元件进行风冷,但通常机房的占地面积较大,空调与发热元件距离远,空调制冷很难精准地将主板上其它发热元件产生的热量带走。同时,在机房空调制冷的空气循环回路中,冷热空气相互掺混,空气与发热元件的温差减小,换热效果严重降低。在这种情况下,无论是提高风量还是降低载冷空气自身温度从而加大温差的方法,都将显著增加机房散热设备的能耗,导致PUE值更大,大大提高了机房的运行运行成本。
发明内容
针对上述现有技术的缺陷,本发明提供了一种高功率密度机柜的整体高效散热系统,其中,泵驱两相环路高功率芯片散热系统可以对服务器中的主要发热元件CPU、GPU等进行散热,机柜风冷系统可以对服务器除CPU、GPU等主要发热元件之外的其它发热元件进行散热,高功率密度芯片定点散热和低功率密度元器件的风冷散热两者结合,一方面,可以彻底摆脱服务器机柜对房间空调降温的依赖,另一方面可以升高机柜内循环空气的温度,在更加节能的前提下,有效解决高功率密度机柜整体散热的问题。
根据本发明的一方面,提供了一种高功率密度机柜的整体高效散热系统,其特征在于包括:
制冷剂循环回路,和
空气循环回路,
其中:
制冷剂循环回路包括:
泵驱两相循环回路,其包括制冷剂储液罐、液体泵、第一三通阀、节流装置、风冷蒸发器、第二三通阀、第三三通阀、Y型三通阀、冷凝器,
蒸汽压缩循环回路,其包括制冷剂储液罐、液体泵、第一三通阀、节流装置、风冷蒸发器、第二三通阀、蒸汽压缩机、第三三通阀、Y型三通阀、冷凝器,
空气循环回路包括风扇风冷蒸发器、密闭机柜形成的循环风道,
其中:
当使用泵驱两相循环回路时,分别利用第二三通阀、第三三通阀将风冷蒸发器至压缩机、压缩机至Y型三通阀之间的通道关闭,将风冷蒸发器至Y型三通阀之间的通道打开,制冷剂储液罐中的液相制冷剂在液体泵的驱动下,通过第一三通阀进入节流装置,在节流装置中进行膨胀,压力降低的同时温度也降低,低温的制冷剂沿着管路进入风冷蒸发器,制冷剂在风冷蒸发器中通过相变吸收热空气携带的热量,制冷剂流过风冷蒸发器之后成为气液两相,气液两相的制冷剂通过管路,流经Y型三通阀,之后进入冷凝器冷凝成液相,最后液相制冷剂回到储液罐,制冷剂在上述部件中依次循环流动,形成了机柜风冷系统中的泵驱两相循环回路,通过循环持续散热;
当使用蒸汽压缩循环回路时,利用第二三通阀、第三三通阀将风冷蒸发器至Y型三通阀之间的通道关闭,分别将风冷蒸发器至压缩机、压缩机至Y型三通阀之间的通道打开,制冷剂储液罐中的液相制冷剂在液体泵的驱动下,通过第一三通阀进入节流装置,在节流装置中进行膨胀,压力降低的同时温度也降低,低温的制冷剂沿着管路进入风冷蒸发器,制冷剂在风冷蒸发器中通过相变吸收热空气携带的热量,制冷剂流过风冷蒸发器之后成为气液两相,气液两相的制冷剂通过管路到达压缩机的入口,在压缩机的入口处经过气液分离处理器,使制冷剂变为气相制冷剂,气相制冷剂进入压缩机被压缩,之后被压缩的制冷剂流经Y型三通阀,进入冷凝器冷凝成液相,然后液相制冷剂回到储液罐,这样,制冷剂通过机柜风冷系统中的蒸汽压缩循环管路形成循环,持续散热。
所述三通位于液体泵出口之后、泵驱两相环路高功率芯片散热系统内外循环热交换器入口之前,通过管路连接着液体泵出口、泵驱两相环路高功率芯片散热系统内外循环热交换器入口、节流装置入口,
所述三通阀位于风冷蒸发器出口之后,压缩机之前,通过管路连接着风冷蒸发器、压缩机、Y型三通,
所述风冷蒸发器位于密闭机柜柜内,所述风扇位于密闭机柜柜内并位于所述风冷蒸发器之前或之后,促使密闭机柜内的空气循环流动并与风冷蒸发器中的制冷剂交换热量。
在一些实施例中,所述三通、所述液体泵可以设置于机柜底部的抽屉式方舱,所述方舱通过自锁接头与所述制冷剂储液罐和冷凝器连接,
在一些实施例中,所述Y型三通可以设置于机柜底部的抽屉式方舱,也可以设置于冷凝器中的其他位置,
在一些实施例中,所述风冷蒸发器、所述风扇可以设置于机柜底部的抽屉式方舱中,也可以设置于由密闭机柜形成的风道中的其它位置,
在一些实施例中,所述三通、Y型三通、三通阀可以为不锈钢快拧三通,
在一些实施例中,风扇可以为吹气式风扇,放在风冷蒸发器之前,也可以为吸气式风扇,放在蒸发器之后,驱动所述密闭机柜内部的热空气流过风冷蒸发器,冷却成为冷空气,
在一些实施例中,所述制冷剂储液罐在重力方向的位置可以低于冷凝器,所述液体泵可以在重力方向的位置低于制冷剂储液罐,
在一些实施例中,所述的风冷蒸发器可以为翅片管式换热器,所述制冷剂可以为常温低压制冷剂。
在一些实施例中,可以将所述制冷剂循环回路中的所述蒸汽压缩循环回路去掉,只保留所述泵驱两相循环回路。
本发明的有益效果:
1)通过泵驱两相环路高功率芯片散热系统中的服务器散热单元对服务器中主要发热元件(如CPU,GPU芯片)进行散热,有效解决了机柜局部热点问题;
2)通过基于泵驱两相环路高功率芯片散热系统的机柜风冷系统,可以对服务器除CPU、GPU等主要发热元件之外的其他发热元件进行散热;
3)通过将泵驱两相环路高功率芯片散热系统与机柜风冷系统结合,对机柜内的主要发热元件和非主要发热元件采取不同的散热方法,一方面,可以彻底摆脱服务器机柜对房间空调降温的依赖,另一方面可以升高机柜内循环空气的温度,在更加节能的前提下,有效解决高功率密度机柜整体散热的问题,有利于边缘数据中心的建设;
4)根据室外环境温度情况,可以利用三通阀的开闭选择机柜风冷系统的制冷剂循环回路,在满足散热要求的基础上达到系统最节能的目的;
4)主要部件安装在抽屉式方舱,并且方舱与外界通过自锁接头形式连接,从而便于安装、维护和拆卸;
5)采用密闭式机柜,可以有效屏蔽外界环境对电子设备的影响,减小柜体内部元件的故障率;
6)实现了单个机柜和机房的完全隔离,可以降低数据中心机房的环境要求,拓宽了数据中心选址的范围,进而减小机房的运维成本;
8)通过以密闭式机柜为风道,减小了空气循环路径,最大程度减小冷热空气混合问题,从而提高换热效率,进而减小机房散热所需能耗;
9)制冷剂本身是绝缘介质,即使泄露也会瞬间气化,不会对服务器运行造成危害,并且制冷剂属于常温低压制冷剂,沸点高于室温(例如25℃),系统可以运行在很低的正压状态,其各部件不需要额外的耐压要求;
附图说明
图1为根据本发明的一个实施例的高功率密度机柜的整体高效散热系统的整体结构示意图。
图2为根据本发明的一个第一实施例的高功率密度机柜的整体高效散热系统的机柜风冷系统局部结构的示意侧视图。
图3为本发明的一个第二实施例的高功率密度机柜的整体高效散热系统的机柜风冷系统局部结构的示意侧视图。
图4为本发明的一个第三实施例的高功率密度机柜的整体高效散热系统的机柜风冷系统局部结构的示意侧视图。
具体实施方式
现在结合附图和实施例进一步描述本发明。
如图1至图4所示,根据本发明的高功率密度机柜的整体高效散热系统是在泵驱两相环路高功率芯片散热系统的基础上改进而得,其整体结构包括泵驱两相环路高功率芯片散热系统和机柜风冷系统。
如图1、图2、图3所示,根据本发明的高功率密度机柜的整体高效散热系统的机柜风冷系统包括制冷剂循环回路和空气循环回路。为应对不同循环工况,制冷剂循环回路分为两路:
一路为泵驱两相循环回路,包括制冷剂储液罐1、液体泵2、第一三通3、节流装置4、风冷蒸发器5、第二三通阀6、第三三通阀8、Y型三通9、冷凝器10;
另一路为蒸汽压缩循环回路,包括制冷剂储液罐1、液体泵2、第一三通3、节流装置4、风冷蒸发器5、第二三通阀6、蒸汽压缩机7、第三三通阀8、Y型三通9、冷凝器10。
机柜内空气循环回路包括风扇11、风冷蒸发器5。密闭机柜构成循环风道13。
在如图1、图2所示的第一实施例中,制冷剂储液罐1沿重力方向的位置低于冷凝器10,液体泵2沿重力方向的位置低于制冷剂储液罐1,以下结合本发明的散热系统的具体散热过程来进一步说明本发明。
在如图1、图2所示的第一实施例中,制冷剂选择为R-141b,常压沸点32℃;热交换器12选为板式换热器,所用机柜为标准42U机柜,包含30个1U服务器,服务器从上到下连续布置,服务器内部有两颗需要散热的CPU芯片。具体过程包括:
-在高功率密度机柜的整体高效散热系统的泵驱两相环路高功率芯片散热系统中,液相R-141b制冷剂通过在微小通道换热器中的相变对机柜中的主要发热元件CPU进行冷却;
-在高功率密度机柜的整体高效散热系统的机柜风冷系统所包含的制冷剂循环回路中,其中:
当使用泵驱两相循环回路时,分别利用第二三通阀6、第三三通阀8将风冷蒸发器5至压缩机7、压缩机7至Y型三通9之间的通道关闭,将风冷蒸发器5至Y型三通9之间的通道打开,制冷剂储液罐1中的液相R-141b制冷剂在液体泵2的驱动下,通过第一三通3进入节流装置4,在节流装置4中进行膨胀,压力降低的同时温度也降低,低温的制冷剂沿着管路进入风冷蒸发器5,制冷剂在风冷蒸发器5中通过相变吸收热空气携带的热量,制冷剂流过风冷蒸发器5之后成为气液两相,气液两相的制冷剂通过管路,流经Y型三通9,之后进入冷凝器10冷凝成液相,最后液相制冷剂回到储液罐1,制冷剂在上述部件中依次循环流动,形成了机柜风冷系统中的泵驱两相循环回路,通过循环持续散热;
当使用蒸汽压缩循环回路时,利用第二三通阀6、第三三通阀8将风冷蒸发器5至Y型三通9之间的通道关闭,分别将风冷蒸发器5至压缩机7、压缩机7至Y型三通9之间的通道打开,制冷剂储液罐1中的液相R-141b制冷剂在液体泵2的驱动下,通过第一三通3进入节流装置4,在节流装置4中进行膨胀,压力降低的同时温度也降低,低温的制冷剂沿着管路进入风冷蒸发器5,制冷剂在风冷蒸发器5中通过相变吸收热空气携带的热量,制冷剂流过风冷蒸发器5之后成为气液两相,气液两相的制冷剂通过管路到达压缩机7的入口,在压缩机7的入口处经过气液分离处理器,使制冷剂变为气相制冷剂,气相制冷剂进入压缩机7被压缩,之后被压缩的制冷剂流经Y型三通9,进入冷凝器10冷凝成液相,然后液相制冷剂回到储液罐1,这样,制冷剂通过机柜风冷系统中的蒸汽压缩循环管路形成循环,持续散热。
-如图2所示,在高功率密度机柜的整体高效散热系统的机柜风冷系统所包含的空气循环回路中,热空气3-3在风扇11的驱动下经过风冷蒸发器5,在风冷蒸发器5处,热空气3-3所携带的热量被制冷剂吸收,热空气3-3被冷却为冷空气3-1,冷空气3-1通过密闭机柜13的引导流向各层3-2主板,相对于热空气,冷空气的密度较高,冷空气在向上流动的过程中,可以在各层水平方向上起到均流的作用,在流经各层3-2主板的过程中,冷空气吸收各层3-2主板上非主要发热元件的热量,变成热空气3-3,热空气3-3通过密闭机柜13的引导流向风扇,空气在循环回路中形成循环,持续散热。
在如图3所示的第二实施例中,风冷蒸发器5和风扇11位于机柜顶部。
在第二实施例的一个具体实例中,制冷剂选择为R-141b,常压沸点32℃;热交换器12选为板式换热器,所用机柜为标准42U机柜,包含30个1U服务器,服务器从上到下连续布置,服务器内部有两颗需要散热的CPU芯片。具体过程如下:
-在高功率密度机柜的整体高效散热系统的泵驱两相环路高功率芯片散热系统中,液相R-141b制冷剂通过在微小通道换热器中的相变对机柜中的主要发热元件CPU进行冷却;
-在如图3所示的第二实施例中,在高功率密度机柜的整体高效散热系统的机柜风冷系统所包含的制冷剂循环回路中,其中:
使用泵驱两相循环回路时,分别利用第二三通阀6、第三三通阀8将风冷蒸发器5至压缩机7、压缩机7至Y型三通9之间的通道关闭,将风冷蒸发器5至Y型三通9之间的通道打开,制冷剂储液罐1中的液相R-141b制冷剂在液体泵2的驱动下,通过三通3进入节流装置4,在节流装置4中进行膨胀,压力降低的同时温度也降低,低温的制冷剂沿着管路进入风冷蒸发器5,制冷剂在风冷蒸发器5中通过相变吸收热空气携带的热量,制冷剂流过风冷蒸发器5之后成为气液两相,气液两相的制冷剂通过管路,流经Y型三通9,之后进入冷凝器10冷凝成液相,最后液相制冷剂回到储液罐1,制冷剂在上述部件中依次循环流动,形成了机柜风冷系统中的泵驱两相循环回路,通过循环持续散热。
在某一工况下,使用蒸汽压缩循环回路时,利用第二三通阀6、第三三通阀8将风冷蒸发器5至Y型三通9之间的通道关闭,分别将风冷蒸发器5至压缩机7、压缩机7至Y型三通9之间的通道打开,制冷剂储液罐1中的液相R-141b制冷剂在液体泵2的驱动下,通过第一三通3进入节流装置4,在节流装置4中进行膨胀,压力降低的同时温度也降低,低温的制冷剂沿着管路进入风冷蒸发器5,制冷剂在风冷蒸发器5中通过相变吸收热空气携带的热量,制冷剂流过风冷蒸发器5之后成为气液两相,气液两相的制冷剂通过管路到达压缩机7的入口,在压缩机7的入口处经过气液分离处理器,使制冷剂全部变为气相制冷剂,气相制冷剂进入压缩机7进行压缩,之后被压缩的制冷剂流经Y型三通9,进入冷凝器10冷凝成液相,然后液相制冷剂回到储液罐1,这样,制冷剂通过机柜风冷系统中的蒸汽压缩循环管路形成循环,持续散热。
-如图3所示,在高功率密度机柜的整体高效散热系统的机柜风冷系统所包含的空气循环回路中,热空气3-3在风扇11的驱动下经过风冷蒸发器5,在风冷蒸发器5处,热空气3-3所携带的热量被被制冷剂吸收,热空气3-3被冷却为冷空气3-1,冷空气3-1通过密闭机柜13的引导流向各层3-2主板,在流经各层3-2主板的过程中,冷空气吸收各层3-2主板上非主要发热元件的热量,变成热空气3-3,相对于冷空气,热空气的密度较低,这样热空气3-3就会在压力差的作用下,通过密闭机柜13的引导流向风扇,空气在循环回路中形成循环,持续散热。
如图4所示,在第三实施例中,制冷剂循环回路只保留了泵驱两相循环回路,去掉了蒸汽压缩循环回路。如图4所示,制冷剂循环回路包括制冷剂储液罐1、液体泵2、三通3、节流装置4、风冷蒸发器5、Y型三通6、冷凝器7;空气循环回路包括风扇8、风冷冷凝器5、密闭机柜10构成循环风道。
在如图4所示的第三实施例中,制冷剂选择为R-141b,常压沸点32℃;热交换器12选为板式换热器,所用机柜为标准42U机柜,包含30个1U服务器,服务器从上到下连续布置,服务器内部有两颗需要散热的CPU芯片。具体过程如下:
-在高功率密度机柜的整体高效散热系统的泵驱两相环路高功率芯片散热系统中,液相R-141b制冷剂通过在微小通道换热器中的相变对机柜中的主要发热元件CPU进行冷却;
-在高功率密度机柜的整体高效散热系统的机柜风冷系统所包含的制冷剂循环回路中,制冷剂储液罐1中的液相R-141b制冷剂在液体泵2的驱动下,通过三通3进入节流装置4,在节流装置4中进行膨胀,压力降低的同时温度也降低,低温的制冷剂沿着管路进入风冷蒸发器5,制冷剂在风冷蒸发器5中通过相变吸收热空气携带的热量,制冷剂流过风冷蒸发器5之后成为气液两相,气液两相的制冷剂通过管路,流经Y型三通6,之后进入冷凝器7冷凝成液相,最后液相制冷剂回到储液罐1,制冷剂在循环回路中形成循环,持续散热。
如图4所示,在高功率密度机柜的整体高效散热系统的机柜风冷系统所包含的空气循环回路中,热空气3-3在风扇8的驱动下经过风冷蒸发器5,在风冷蒸发器5处,热空气3-3所携带的热量被被制冷剂吸收,热空气3-3被冷却为冷空气3-1,冷空气3-1通过密闭机柜10的引导流向各层3-2主板,在流经各层3-2主板的过程中,冷空气吸收各层3-2主板上非主要发热元件的热量,变成热空气3-3,相对于冷空气,热空气的密度较低,这样热空气3-3就会在压力差的作用下,通过密闭机柜10的引导流向风扇,空气在循环回路中形成循环,持续散热。
对于本领域的普通技术人员来说,在不脱离本申请创造构思的前提下,还可以对本发明的实施例做出若干变型和改进,这些都属于本申请的保护范围。

Claims (7)

1.高功率密度机柜的整体高效散热系统,其特征在于包括:
制冷剂循环回路,和
空气循环回路,
其中:
制冷剂循环回路包括:
泵驱两相循环回路,其包括制冷剂储液罐(1)、液体泵(2)、第一三通阀(3)、节流装置(4)、风冷蒸发器(5)、第二三通阀(6)、第三三通阀(8)、Y型三通阀(9)、冷凝器(10),
蒸汽压缩循环回路,其包括制冷剂储液罐(1)、液体泵(2)、第一三通阀(3)、节流装置(4)、风冷蒸发器(5)、第二三通阀(6)、蒸汽压缩机(7)、第三三通阀(8)、Y型三通阀(9)、冷凝器(10),
空气循环回路包括风扇(11)风冷蒸发器(5)、密闭机柜形成的循环风道(13),
其中:
当使用泵驱两相循环回路时,分别利用第二三通阀(6)、第三三通阀(8)将风冷蒸发器(5)至压缩机(7)、压缩机(7)至Y型三通阀(9)之间的通道关闭,将风冷蒸发器(5)至Y型三通阀(9)之间的通道打开,制冷剂储液罐(1)中的液相制冷剂在液体泵(2)的驱动下,通过第一三通阀(3)进入节流装置(4),在节流装置(4)中进行膨胀,压力降低的同时温度也降低,低温的制冷剂沿着管路进入风冷蒸发器(5),制冷剂在风冷蒸发器(5)中通过相变吸收热空气携带的热量,制冷剂流过风冷蒸发器(5)之后成为气液两相,气液两相的制冷剂通过管路,流经Y型三通阀(9),之后进入冷凝器(10)冷凝成液相,最后液相制冷剂回到制冷剂储液罐,制冷剂在上述部件中依次循环流动,形成了机柜风冷系统中的泵驱两相循环回路,通过循环持续散热;
当使用蒸汽压缩循环回路时,利用第二三通阀、第三三通阀将风冷蒸发器至Y型三通阀之间的通道关闭,分别将风冷蒸发器(5)至压缩机、压缩机至Y型三通阀之间的通道打开,制冷剂储液罐中的液相制冷剂在液体泵的驱动下,通过第一三通阀进入节流装置(4),在节流装置中进行膨胀,压力降低的同时温度也降低,低温的制冷剂沿着管路进入风冷蒸发器,制冷剂在风冷蒸发器中通过相变吸收热空气携带的热量,制冷剂流过风冷蒸发器(5)之后成为气液两相,气液两相的制冷剂通过管路到达压缩机(7)的入口,在压缩机的入口处经过气液分离处理器,使制冷剂变为气相制冷剂,气相制冷剂进入压缩机被压缩,之后被压缩的制冷剂流经Y型三通阀,进入冷凝器冷凝成液相,然后液相制冷剂回到制冷剂储液罐,这样,制冷剂通过机柜风冷系统中的蒸汽压缩循环管路形成循环,持续散热。
2.根据权利要求1所述的整体高效散热系统,其特征在于:
在空气循环回路中,热空气(3-3)在风扇(11)的驱动下经过风冷蒸发器,在风冷蒸发器处,热空气所携带的热量被制冷剂吸收,热空气被冷却为冷空气(3-1),冷空气通过密闭机柜(13)的引导流向(3-2)各层主板,因冷空气的密度比热空气的密度高,冷空气在向上流动的过程中,可以在各层水平方向上起到均流的作用,在流经各层主板的过程中,冷空气吸收各层主板上非主要发热元件的热量,变成热空气(3-3),热空气通过密闭机柜的引导流向风扇,空气在循环回路中形成循环,持续散热。
3.根据权利要求1所述的整体高效散热系统,其特征在于:
制冷剂储液罐沿重力方向的位置低于冷凝器,液体泵沿重力方向的位置低于制冷剂储液罐。
4.根据权利要求1所述的整体高效散热系统,其特征在于:
制冷剂选择为R-141b,常压沸点32℃;热交换器选为板式换热器,所用机柜为标准42U机柜,包含30个1U服务器,服务器从上到下连续布置,服务器内部有两颗需要散热的CPU芯片,具体过程包括:
-在高功率密度机柜的整体高效散热系统的泵驱两相环路高功率芯片散热系统中,液相R-141b制冷剂通过在微小通道换热器中的相变对机柜中的主要发热元件CPU进行冷却;
-在高功率密度机柜的整体高效散热系统的机柜风冷系统所包含的制冷剂循环回路中。
5.根据权利要求2所述的整体高效散热系统,其特征在于:
风冷蒸发器和风扇位于机柜顶部。
6.基于根据权利要求1-5之一所述的整体高效散热系统的高功率密度机柜的整体高效散热方法,其特征在于包括:
当使用泵驱两相循环回路时,分别利用第二三通阀(6)、第三三通阀(8)将风冷蒸发器(5)至压缩机(7)、压缩机至Y型三通(9)之间的通道关闭,将风冷蒸发器至Y型三通之间的通道打开,制冷剂储液罐中的液相制冷剂在液体泵(2)的驱动下,通过第一三通阀(3)进入节流装置(4),在节流装置中进行膨胀,压力降低的同时温度也降低,低温的制冷剂沿着管路进入风冷蒸发器,制冷剂在风冷蒸发器中通过相变吸收热空气携带的热量,制冷剂流过风冷蒸发器之后成为气液两相,气液两相的制冷剂通过管路,流经Y型三通阀,之后进入冷凝器冷凝成液相,最后液相制冷剂回到储液罐,制冷剂在上述部件中依次循环流动,形成了机柜风冷系统中的泵驱两相循环回路,通过循环持续散热;
当使用蒸汽压缩循环回路时,利用第二三通阀(6)、第三三通阀(8)将风冷蒸发器(5)至Y型三通阀(9)之间的通道关闭,分别将风冷蒸发器(5)至压缩机(7)、压缩机(7)至Y型三通阀(9)之间的通道打开,制冷剂储液罐(1)中的液相制冷剂在液体泵(2)的驱动下,通过第一三通阀(3)进入节流装置(4),在节流装置中进行膨胀,压力降低的同时温度也降低,低温的制冷剂沿着管路进入风冷蒸发器(5),制冷剂在风冷蒸发器(5)中通过相变吸收热空气携带的热量,制冷剂流过风冷蒸发器(5)之后成为气液两相,气液两相的制冷剂通过管路到达压缩机7的入口,在压缩机(7)的入口处经过气液分离处理器,使制冷剂变为气相制冷剂,气相制冷剂进入压缩机被压缩,之后被压缩的制冷剂流经Y型三通阀(9),进入冷凝器(10)冷凝成液相,然后液相制冷剂回到储液罐(1),这样,制冷剂通过机柜风冷系统中的蒸汽压缩循环管路形成循环,持续散热。
7.根据权利要求6所述的整体高效散热方法,其特征在于:
在空气循环回路中,热空气(3-3)在风扇(11)的驱动下经过风冷蒸发器(5),在风冷蒸发器处热空气(3-3)所携带的热量被制冷剂吸收,热空气被冷却为冷空气(3-1),冷空气通过密闭机柜(13)的引导流向(3-2)各层主板,
由于冷空气的密度比热空气的密度高,冷空气在向上流动的过程中,可以在各层的水平方向上起到均流的作用,
在流经(3-2)各层主板的过程中,冷空气吸收各层主板上非主要发热元件的热量,变成热空气(3-3),热空气通过密闭机柜(13)的引导流向风扇,空气在循环回路中形成循环,持续散热。
CN202010622753.1A 2020-06-30 2020-06-30 一种高功率密度机柜的整体高效散热系统 Active CN111629571B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010622753.1A CN111629571B (zh) 2020-06-30 2020-06-30 一种高功率密度机柜的整体高效散热系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010622753.1A CN111629571B (zh) 2020-06-30 2020-06-30 一种高功率密度机柜的整体高效散热系统

Publications (2)

Publication Number Publication Date
CN111629571A true CN111629571A (zh) 2020-09-04
CN111629571B CN111629571B (zh) 2021-08-31

Family

ID=72259502

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010622753.1A Active CN111629571B (zh) 2020-06-30 2020-06-30 一种高功率密度机柜的整体高效散热系统

Country Status (1)

Country Link
CN (1) CN111629571B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112752480A (zh) * 2020-12-17 2021-05-04 中国电子科技集团公司第二十研究所 一种通用型舰载铸铝密闭机柜
CN112839490A (zh) * 2021-01-25 2021-05-25 东南大学 一种两相流主被动式多层级数据中心机柜散热装置及方法
CN113631019A (zh) * 2021-08-17 2021-11-09 远景能源有限公司 一种用于高功率变流器的蒸发冷却系统
CN113921948A (zh) * 2021-10-13 2022-01-11 华为数字能源技术有限公司 机柜空调系统、机柜空调装置和机柜
CN114828588A (zh) * 2022-05-23 2022-07-29 杭州电子科技大学 一种两相流双循环多模式数据中心机柜散热系统
CN115038322A (zh) * 2022-08-12 2022-09-09 苏州睿鑫莱机电科技有限公司 一种内置双通路散热系统的机电设备保护装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11108377A (ja) * 1997-09-30 1999-04-23 Sanden Corp 温水暖房システム
CN108106045A (zh) * 2018-01-26 2018-06-01 鲁东大学 一种集中制冷分体供冷的空调冰箱联用系统
US20180356108A1 (en) * 2017-06-12 2018-12-13 Kenneth L. Eiermann Methods and apparatus for latent heat extraction
CN110278691A (zh) * 2019-07-01 2019-09-24 北京航空航天大学 用于高功率密度机柜的泵驱两相环路散热系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11108377A (ja) * 1997-09-30 1999-04-23 Sanden Corp 温水暖房システム
US20180356108A1 (en) * 2017-06-12 2018-12-13 Kenneth L. Eiermann Methods and apparatus for latent heat extraction
CN108106045A (zh) * 2018-01-26 2018-06-01 鲁东大学 一种集中制冷分体供冷的空调冰箱联用系统
CN110278691A (zh) * 2019-07-01 2019-09-24 北京航空航天大学 用于高功率密度机柜的泵驱两相环路散热系统

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112752480A (zh) * 2020-12-17 2021-05-04 中国电子科技集团公司第二十研究所 一种通用型舰载铸铝密闭机柜
CN112839490A (zh) * 2021-01-25 2021-05-25 东南大学 一种两相流主被动式多层级数据中心机柜散热装置及方法
CN113631019A (zh) * 2021-08-17 2021-11-09 远景能源有限公司 一种用于高功率变流器的蒸发冷却系统
CN113921948A (zh) * 2021-10-13 2022-01-11 华为数字能源技术有限公司 机柜空调系统、机柜空调装置和机柜
CN114828588A (zh) * 2022-05-23 2022-07-29 杭州电子科技大学 一种两相流双循环多模式数据中心机柜散热系统
CN114828588B (zh) * 2022-05-23 2024-04-23 杭州电子科技大学 一种两相流双循环多模式数据中心机柜散热系统
CN115038322A (zh) * 2022-08-12 2022-09-09 苏州睿鑫莱机电科技有限公司 一种内置双通路散热系统的机电设备保护装置

Also Published As

Publication number Publication date
CN111629571B (zh) 2021-08-31

Similar Documents

Publication Publication Date Title
CN111629571B (zh) 一种高功率密度机柜的整体高效散热系统
US11528829B2 (en) Overall efficient heat dissipation system for high power density cabinet
US10356949B2 (en) Server rack heat sink system with combination of liquid cooling device and auxiliary heat sink device
US7913506B2 (en) Free cooling cascade arrangement for refrigeration system
WO2023124976A1 (zh) 数据中心冷却系统及数据中心
Ohadi et al. A comparison analysis of air, liquid, and two-phase cooling of data centers
CN104699207A (zh) 风冷自然冷却热管空调和液冷装置结合的服务器散热系统
CN109237844B (zh) 空调系统、空调系统的制冷控制方法和装置
WO2019015407A1 (zh) 一种能够同时实现对cpu芯片和服务器进行散热的系统
CN107809894B (zh) 一种数据中心机柜的冷却装置
CN112236022B (zh) 一种数据中心用节能散热系统及实现方法
CN204425887U (zh) 液冷装置和辅助散热装置结合的服务器散热系统
CN205641216U (zh) 全显热节能型机房/机柜专用精密空气调节器
CN114828588B (zh) 一种两相流双循环多模式数据中心机柜散热系统
CN109539615B (zh) 一种水冷型氟泵冷媒分配机组
CN213586803U (zh) 用于数据中心的冷却系统
CN209445622U (zh) 一种水冷型氟泵冷媒分配机组
CN112867374A (zh) 一种水冷热管双模机房空调
CN114071972A (zh) 一种用于高功率密度机柜的泵驱双环路热管组合散热系统
CN209131072U (zh) 一种高密度单柜式数据中心
CN107062467A (zh) 一种新型热管背板空调系统
CN215121657U (zh) 一种水冷热管双模机房空调
CN213690433U (zh) 一种电脑cpu冷却装置
CN216977293U (zh) 制冷设备
CN217790114U (zh) 一种液气双通道一体化服务器机柜

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant