CN111628399A - 电激励非链式脉冲hf激光器被动脉宽压缩方法及激光器 - Google Patents

电激励非链式脉冲hf激光器被动脉宽压缩方法及激光器 Download PDF

Info

Publication number
CN111628399A
CN111628399A CN202010373001.6A CN202010373001A CN111628399A CN 111628399 A CN111628399 A CN 111628399A CN 202010373001 A CN202010373001 A CN 202010373001A CN 111628399 A CN111628399 A CN 111628399A
Authority
CN
China
Prior art keywords
laser
pulse
pulse width
saturable absorber
chained
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010373001.6A
Other languages
English (en)
Inventor
陶蒙蒙
黄超
黄珂
朱峰
马连英
李高鹏
沈炎龙
易爱平
冯国斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwest Institute of Nuclear Technology
Original Assignee
Northwest Institute of Nuclear Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwest Institute of Nuclear Technology filed Critical Northwest Institute of Nuclear Technology
Priority to CN202010373001.6A priority Critical patent/CN111628399A/zh
Publication of CN111628399A publication Critical patent/CN111628399A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/106Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/11Mode locking; Q-switching; Other giant-pulse techniques, e.g. cavity dumping

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

本发明涉及一种电激励非链式脉冲HF激光器被动脉宽压缩方法及激光器,针对传统压缩电激励非链式脉冲HF激光器输出脉冲宽度的方法存在的工艺繁杂、设计成本高及实施复杂的问题,通过将可饱和吸收体置于电激励非链式脉冲HF激光器谐振腔内部,实现激光器谐振腔内的激光光斑整形及激光脉宽压缩后输出。激光器包括HF激光器本体及设置在其谐振腔内设置脉宽压缩装置,脉宽压缩装置包括缩束模块和可饱和吸收体。该方法属于被动式的脉冲压缩,对不同脉宽的HF激光器均可适用,可实现自跟踪式的脉宽压缩。

Description

电激励非链式脉冲HF激光器被动脉宽压缩方法及激光器
技术领域
本发明涉及一种基于可饱和吸收体的被动式脉宽压缩方法与装置,尤其涉及一种电激励非链式脉冲HF激光器被动脉宽压缩的方法与该电激励非链式脉冲HF激光器。
背景技术
放电激励的非链式脉冲HF激光器输出光谱覆盖2.6~3.1μm,其输出能量大、峰值功率高、光束质量好,在激光光谱学、激光生物医学、激光雷达、光电对抗等领域具有广泛的应用前景,是倍受关注的一种中红外大能量脉冲激光光源。
正常运转情况下,放电激励的非链式脉冲HF激光器输出脉冲宽度一般在100ns以上(黄超,黄珂,易爱平,等.100Hz重复频率脉冲中红外HF化学激光器.中国激光,2019,46(2):0201002。潘其坤,谢冀江,陈飞,等.中红外室温大能量Fe2+:ZnSe激光器.中国激光,2018,45(11):1101001.柯常军,张阔海,孙科,等.重复频率放电引发的脉冲HF(DF)激光器.红外与激光工程,2007,36:36-38。S D Velikanov,V P Danilov,N G Zakharov,et al.Fe2 +:ZnSe laser pumped by a nonchain electric-discharge HF laser at roomtemperature.Quantum Electronics,2014,44(2):141-144.)。但是,在一些效应研究中,要求更窄的激光脉冲宽度,这时就需要对HF激光器的输出脉冲进行脉宽压缩。
脉宽压缩方法可分为主动和被动两种技术方案。主动的开关器件,如声光开光和电光开关等(巩马理,王涛,柳强,闫平,黄磊,张海涛,刘欢.基于调Q开关台阶式开启的激光脉冲宽度和波形控制方法。中国专利,申请号:201210159255.3;陈培峰,兰信钜.一种调Q激光脉冲波形调整方法.中国专利,申请号:87103899.4),可以实现对激光器输出脉宽的控制,但是在放电激励的非链式脉冲HF激光器中,瞬间的高压放电会对声光和电光开光晶体产生严重的干扰,因此在电激励的非链式脉冲HF激光器中应尽量使用被动式的开关器件,以防止高压放电产生的电磁干扰。根据发明人的技术调研,现有的已公开的被动脉宽压缩技术多基于色散补偿原理,采用的具体方法包括色散光纤(片桐崇史,尾内敏彦,古泽健太郎.光脉冲压缩器;中国专利,申请号:200910009704.4)和光栅(周常河,贾伟.飞秒脉冲压缩装置;中国专利,申请号:200710048185.3)等,但是这种方法只适用于ps、fs等超短脉冲的脉宽压缩,对100ns量级的脉冲无法实现有效压缩。在传统的电激励非链式脉冲HF激光器中,一般都是通过改变激光器的放电电路设计,缩短放电脉冲时间来实现对激光器输出脉冲宽度的压缩。但是,这种方法需要对激光器的整个放电电路、电极和谐振腔参数进行重新设计和加工,牵涉的环节杂多,实施起来特别复杂。
可饱和吸收体是实现激光器脉宽压缩的一种有效方法。但是,可饱和吸收体用于激光器脉宽压缩的报道多集中于其锁模应用以及对ps、fs量级的超短脉冲的脉宽压缩(T.K.Lim and B.K.Garside.Saturable absorber mode-locking and laser pulsecompression.Optics Communications,1974,12(1):8-13;Ronald Müller.Pulsecompression in continuously pumped dye lasers with a slow saturableabsorber.Optics Communications,1979,28(2):259-262.),而在放电激励的长脉宽(100ns量级以上)脉冲气体激光中则鲜有文献报道。1982年,Thomas Varghese报道了使用染料可饱和吸收体实现对5ns脉宽的XeCl激光器进行脉宽调控的研究工作。其采用的是外腔式结构,即激光器输出的光束直接通过染料可饱和吸收体实现脉宽压缩(ThomasVarghese.“Temporal tuning”of XeCl laser pulse width from 5ns to less than500ps using saturable absorber dyes.Applied Physics Letters,1982,41(8):684-686.)。1984年,A.Takahashi等人利用相同的外腔式的脉冲压缩结构对1ns脉宽的XeCl激光器进行了脉宽压缩和放大(A.Takahashi,M.Maeda,and Y.Noda.Short pulse generationand compression in XeCl lasers.IEEE Journal of Quantum Electronic,1984,20(10):1196-1201.)。同样采用这种外腔式的脉冲压缩结构,研究人员还在KrF放大器中也获得了高能量的窄脉宽紫外激光输出(J.Badziak and S.Jablonski.Generation ofultrashort laser pulses in excimer systems with saturable absorber.Proc.SPIE,1995,2202:42-50.)。可以看到,在气体激光器中使用可饱和吸收体实现脉宽压缩的报道均是在ns量级的短脉宽气体激光器中应用的,而在100ns量级的长脉宽压缩中未见报道。另外,相关报道且均采用的外腔结构,但是,这种外腔式的脉宽压缩结构会对激光器的脉冲峰值功率产生较大的损耗。
发明内容
针对传统压缩电激励非链式脉冲HF激光器输出脉冲宽度的方法存在的工艺繁杂、设计成本高及实施复杂的问题,本发明提供一种针对电激励非链式脉冲HF激光器的内腔式被动脉宽压缩方法和装置,不需要改变激光器系统的电路设计和谐振腔参数,即可实现对HF激光器脉冲宽度的压缩。且该方法属于被动式的脉冲压缩,对不同脉宽的HF激光器均可适用,可实现自跟踪式的脉宽压缩;另外,由于可饱和吸收体置于激光器谐振腔内,不仅不会对激光器的脉冲峰值功率产生显著损耗,通过选择合适的可饱和吸收体参数,反而还可以大幅提升激光器的脉冲峰值功率。
本发明的基本思路是利用可饱和吸收体在时域的可饱和吸收特性,通过在非链式脉冲HF激光器谐振腔中放置可饱和吸收体,实现对HF激光器脉冲宽度的压缩。另外,通过调整可饱和吸收体的参数,还可以改变压缩后的HF激光器输出脉冲宽度。
本发明的技术解决方案是提供一种电激励非链式脉冲HF激光器被动脉宽压缩的方法,上述电激励非链式脉冲HF激光器的脉冲激光脉宽为100ns量级,其特殊之处在于:将可饱和吸收体置于电激励非链式脉冲HF激光器谐振腔内部,对激光器谐振腔内的脉冲激光光斑进行整形及激光脉宽进行压缩后输出。
本发明还提供一种能够实现被动脉宽压缩的电激励非链式脉冲HF激光器,其特殊之处在于:包括电激励非链式脉冲HF激光器与脉宽压缩装置;
上述电激励非链式脉冲HF激光器包括气室、高反镜、输出镜与高压放电模块;上述气室内充有工作气体,上述高反镜位于激光脉冲高反端,上述输出镜位于激光脉冲输出端,上述高反镜与输出镜构成激光器的谐振腔,均与气室同轴;上述高压放电模块为泵浦源,用于激发工作气体;
上述脉宽压缩装置包括缩束模块和可饱和吸收体,位于输出镜前的激光脉冲光路中,且与气室同轴;所述缩束模块用于对激光器谐振腔内的脉冲激光光斑进行压缩,所述可饱和吸收体用于对激光器谐振腔内的激光光斑进行整形及激光脉宽进行压缩;
对高压放电模块进行充电、放电,将工作气体泵浦到激发态,激光信号在高反射镜和输出镜构成的谐振腔内产生振荡,输出激光脉冲。振荡过程中,激光光束多次通过缩束模块和可饱和吸收体,从而实现激光脉冲的光斑整形及脉宽压缩。
进一步地,所述脉宽压缩装置位于气室与输出镜之间,脉冲激光通过缩束模块实现光斑压缩,再通过可饱和吸收体实现光斑整形及脉宽压缩,最后通过输出镜输出。
进一步地,所述脉宽压缩装置还可以位于气室与高反镜之间,脉冲激光通过缩束模块实现光斑压缩,以提高功率密度;再通过可饱和吸收体实现光斑整形及脉宽压缩,然后通过高反镜再次反射至气室,后通过输出镜输出。
进一步地,为了实现精确的脉宽压缩,所述可饱和吸收体的尺寸应大于经过缩束模块后的脉冲激光光斑尺寸。
进一步地,可饱和吸收体的结构可根据光斑整形要求进行设计。如需提高输出光斑光束质量,则可饱和吸收体应为中间薄边缘厚的平凹透镜结构或双凹透镜结构;如需输出空心环状光斑,则可饱和吸收体可为中间厚边缘薄的平凸透镜结构或双凸透镜结构。
进一步地,所述可饱和吸收体在2.6~3.1μm波段有明显的可饱和吸收特性。
进一步地,为了提高可饱和吸收体表面的功率密度,增强其可饱和吸收效应,所述缩束模块的缩束范围为1.5:1~5:1。所述工作气体为10kPa的SF6和C2H6气体,SF6和C2H6的气分比为92:8。
进一步地,所述高反镜为镀金反射镜,其在2.6~3.1μm波段的反射率高于95%;所述输出镜为CaF2平面镜,其反射率为7%;所述可饱和吸收体为Fe:ZnSe晶体,其厚度为1.5mm,截面尺寸为7mm*7mm,初始透过率为60%,或所述可饱和吸收体(6)为镀有石墨烯或氧化石墨烯膜层的ZnS、ZnSe或CaF2晶体。
本发明具有以下的有益效果:
1、本发明无需改变电激励非链式脉冲HF激光器的电路结构,只需在激光器谐振腔内插入一个缩束模块和可饱和吸收体即可实现对激光器输出脉冲的脉宽压缩,操作方便,实施快捷。
2、本发明采用被动式脉宽压缩,不受电激励非链式脉冲HF激光器高压放电的干扰。
3、通过改变可饱和吸收体参数,本发明可在一定范围内实现对激光脉冲宽度不同程度的压缩,且通过选择合适的可饱和吸收体参数,本发明会显著提高输出脉冲的峰值功率。
4、通过改变可饱和吸收体的结构,本发明可以提高非链式脉冲HF激光器的输出光斑光束质量。
附图说明
图1是本发明实施例一中装置结构原理示意图。
图2是本发明实施例二中装置结构原理示意图。
图3是理论模拟得到的HF激光器脉宽压缩结果。
图中:1-高压放电模块;2-气室;3-高反镜;4-输出镜;5-缩束模块;6-可饱和吸收体。
具体实施方式
下面结合附图及具体实施例对本发明做进一步地描述。
实施例一
图1所示为本实施例装置的典型结构示意图。本实施例实现被动式脉宽压缩的电激励非链式脉冲HF激光器由高压放电模块1、气室2、高反镜3、输出镜4、缩束模块5和可饱和吸收体6等组成。缩束模块5和可饱和吸收体6置于激光器输出端。
首先,气室2中按一定比例充入一定量的工作气体,将高反镜3和输出镜4分别置于气室的两端,高反镜3位于激光脉冲高反端,输出镜4位于激光脉冲输出端,并调节高反镜3和输出镜4,使其与气室2同轴。这样高压放电模块1、气室2、高反镜3和输出镜4就形成一台电激励非链式脉冲HF激光器。在气室2与输出镜4之间放置缩束模块5和可饱和吸收体6,并调节至激光器光轴位置。可饱和吸收体6的尺寸应大于缩束模块5后的激光光斑尺寸。缩束模块用于对激光器的腔内光斑进行压缩,以提高可饱和吸收体表面的功率密度,增强其可饱和吸收效应。可饱和吸收体6用于对压缩光斑后激光光斑进行整形及脉宽进行压缩。
对高压放电模块1进行充电、放电,将工作气体泵浦到激发态。激光信号在高反射镜3和输出镜4构成的谐振腔内产生振荡,输出激光脉冲。在振荡过程中,激光光束多次通过缩束模块5和可饱和吸收体6,从而实现对激光脉冲的脉宽压缩。压缩后的脉冲宽度明显小于未放置可饱和吸收体6时的激光脉冲宽度。
上述装置中高压放电模块1放电电压约30kV,放电时长约200ns;气室2长度约为2m,截面尺寸为2cm*2cm,其内部充入10kPa的SF6和C2H6气体,SF6和C2H6的气分比为92:8;高反镜3为镀金反射镜,其在2.6~3.1μm波段的反射率高于95%;输出镜4为一片CaF2平面镜,其反射率约为7%;缩束模块5的缩束比约为4:1,可根据不同的需求选取不同的缩束比,一般选取的范围为1.5:1~5:1之间。可饱和吸收体6为一块Fe:ZnSe晶体,其厚度为1.5mm,截面尺寸为7mm*7mm,初始透过率约为60%,在2.6~3.1μm波段有明显的可饱和吸收特性。所述的其缩束范围可为1:1~5:1。
实施例二
图2所示为激光器的另外一种结构,其工作原理与实施例一中的装置相同,使用的大部分器件也与实施例一相同,这里不再赘述。两者区别在于,本实施例的装置中缩束模块5和可饱和吸收体6置于激光器谐振腔高反端,即位于高反镜3与气室2之间。
图3为利用本发明方法理论模拟得到的典型脉冲压缩结果。图中可以看出,在没有可饱和吸收体6的情况下,激光器输出脉冲信号底宽约200ns;在插入1.5mm厚的可饱和吸收体6后,激光器输出脉冲信号底宽降低到约150ns,脉宽压缩比达25%,且峰值功率增长到原来的120%;在插入3mm厚的可饱和吸收体6后,激光器输出脉冲信号底宽降低到约120ns,脉宽压缩比达40%,且峰值功率增长到原来的140%。
本发明不局限于上述具体实施方式,还可做适当延伸。比如,可将可饱和吸收体设计为中间薄边缘厚的平凹式或凹透镜式结构,以提高非链式脉冲HF激光器的输出光斑光束质量。另外,还可使用镀有石墨烯或氧化石墨烯膜层的ZnS、ZnSe、CaF2等晶体作为可饱和吸收体。对于本发明所属技术领域来说,在本发明构思的前提下,可做出若干简单的替换和变化,这些都属于本发明的保护范围。

Claims (9)

1.电激励非链式脉冲HF激光器脉宽被动压缩方法,所述电激励非链式脉冲HF激光器的脉冲激光脉宽为100ns量级,其特征在于:将可饱和吸收体置于电激励非链式脉冲HF激光器谐振腔内部,对激光器谐振腔内的激光光斑进行整形及激光脉宽进行压缩后输出。
2.实现被动式脉宽压缩的电激励非链式脉冲HF激光器,其特征在于:包括电激励非链式脉冲HF激光器与脉宽压缩装置;
所述电激励非链式脉冲HF激光器包括气室(2)、高反镜(3)、输出镜(4)与高压放电模块(1);所述气室(2)内充有工作气体,所述高反镜(3)位于激光脉冲高反端,所述输出镜(4)位于激光脉冲输出端,所述高反镜(3)与输出镜(4)构成谐振腔,均与气室(2)同轴;所述高压放电模块(1)为泵浦源,用于激发工作气体;
所述脉宽压缩装置包括缩束模块(5)和可饱和吸收体(6),位于输出镜(4)前的激光脉冲光路中,且与气室(2)同轴;所述缩束模块(5)用于对激光器谐振腔内的脉冲激光光斑进行压缩,所述可饱和吸收体(6)用于对激光器谐振腔内的激光光斑进行整形及激光脉宽进行压缩;
对高压放电模块(1)进行充电、放电,将工作气体泵浦到激发态产生激光信号,激光信号在高反射镜(3)和输出镜(4)构成的谐振腔内产生振荡,输出激光脉冲;振荡过程中,激光光束多次通过缩束模块(5)和可饱和吸收体(6),实现激光脉冲的光斑整形及脉宽压缩。
3.根据权利要求2所述的实现被动式脉宽压缩的电激励非链式脉冲HF激光器,其特征在于:所述脉宽压缩装置位于气室(2)与输出镜(4)之间,脉冲激光通过缩束模块(5)实现光斑压缩;再通过可饱和吸收体(6)实现光斑整形及脉宽压缩,最后通过输出镜(4)输出。
4.根据权利要求2所述的实现被动式脉宽压缩的电激励非链式脉冲HF激光器,其特征在于:所述脉宽压缩装置位于气室(2)与高反镜(3)之间,脉冲激光通过缩束模块(5)实现光斑压缩;再通过可饱和吸收体(6)实现光斑整形及脉宽压缩,然后通过高反镜(3)再次反射至气室(2),后通过输出镜(4)输出。
5.根据权利要求3或4所述的实现被动式脉宽压缩的电激励非链式脉冲HF激光器,其特征在于:所述可饱和吸收体(6)的尺寸大于经过缩束模块(5)后的脉冲激光光斑尺寸。
6.根据权利要求5所述的实现被动式脉宽压缩的电激励非链式脉冲HF激光器,其特征在于:所述可饱和吸收体(6)为中间薄边缘厚的平凹透镜结构或双凹透镜结构;或为中间厚边缘薄的平凸透镜结构或双凸透镜结构。
7.根据权利要求5所述的实现被动式脉宽压缩的电激励非链式脉冲HF激光器,其特征在于:所述可饱和吸收体(6)在2.6~3.1μm波段有可饱和吸收特性。
8.根据权利要求7所述的实现被动式脉宽压缩的电激励非链式脉冲HF激光器,其特征在于:所述缩束模块(5)的缩束范围为1.5:1~5:1;所述工作气体为10kPa的SF6和C2H6气体,SF6和C2H6的气分比为92:8。
9.根据权利要求8所述的实现被动式脉宽压缩的电激励非链式脉冲HF激光器,其特征在于:所述高反镜(3)为镀金反射镜,其在2.6~3.1μm波段的反射率高于95%;所述输出镜(4)为CaF2平面镜,其反射率为7%;所述可饱和吸收体(6)为Fe:ZnSe晶体,其厚度为1.5mm,截面尺寸为7mm*7mm,初始透过率为60%,或所述可饱和吸收体(6)为镀有石墨烯或氧化石墨烯膜层的ZnS、ZnSe或CaF2晶体。
CN202010373001.6A 2020-05-06 2020-05-06 电激励非链式脉冲hf激光器被动脉宽压缩方法及激光器 Pending CN111628399A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010373001.6A CN111628399A (zh) 2020-05-06 2020-05-06 电激励非链式脉冲hf激光器被动脉宽压缩方法及激光器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010373001.6A CN111628399A (zh) 2020-05-06 2020-05-06 电激励非链式脉冲hf激光器被动脉宽压缩方法及激光器

Publications (1)

Publication Number Publication Date
CN111628399A true CN111628399A (zh) 2020-09-04

Family

ID=72272499

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010373001.6A Pending CN111628399A (zh) 2020-05-06 2020-05-06 电激励非链式脉冲hf激光器被动脉宽压缩方法及激光器

Country Status (1)

Country Link
CN (1) CN111628399A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114039262A (zh) * 2021-10-22 2022-02-11 中国科学院长春光学精密机械与物理研究所 小型化非链式脉冲df/hf激光装置及其激发方法
CN115473116A (zh) * 2022-08-19 2022-12-13 山西大学 基于非均匀可饱和吸收体的脉冲激光空间整形装置及方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3803512A (en) * 1972-09-29 1974-04-09 Atomic Energy Commission Hydrogen-fluoride chemical laser oscillator
US3928821A (en) * 1971-05-26 1975-12-23 Us Energy High energy chemical laser system
US4760582A (en) * 1985-02-11 1988-07-26 Jeffers William O Scalable overtone HF chemical laser
CN104283098A (zh) * 2013-07-11 2015-01-14 中国科学院大连化学物理研究所 一种横流气体机械调q脉冲激光器
CN104617474A (zh) * 2013-11-05 2015-05-13 中国科学院大连化学物理研究所 一种用于气流氟化氢激光器脉冲选线输出的谐振腔
CN104659645A (zh) * 2013-11-18 2015-05-27 中国科学院大连化学物理研究所 Rtp电光调q气流氟化氢激光器
CN109687266A (zh) * 2018-12-19 2019-04-26 山东大学 一种高峰值功率2.79微米铒激光器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3928821A (en) * 1971-05-26 1975-12-23 Us Energy High energy chemical laser system
US3803512A (en) * 1972-09-29 1974-04-09 Atomic Energy Commission Hydrogen-fluoride chemical laser oscillator
US4760582A (en) * 1985-02-11 1988-07-26 Jeffers William O Scalable overtone HF chemical laser
CN104283098A (zh) * 2013-07-11 2015-01-14 中国科学院大连化学物理研究所 一种横流气体机械调q脉冲激光器
CN104617474A (zh) * 2013-11-05 2015-05-13 中国科学院大连化学物理研究所 一种用于气流氟化氢激光器脉冲选线输出的谐振腔
CN104659645A (zh) * 2013-11-18 2015-05-27 中国科学院大连化学物理研究所 Rtp电光调q气流氟化氢激光器
CN109687266A (zh) * 2018-12-19 2019-04-26 山东大学 一种高峰值功率2.79微米铒激光器

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
J.BADZIAK ET AL.: "Generation of picoseconds pulses by fast periodic Q-switching in KrF excimer laser with saturable absorber", 《OPTICS COMMUNICATIONS》 *
黄珂等: "非链式电激励脉冲HF 激光器", 《红外与激光工程》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114039262A (zh) * 2021-10-22 2022-02-11 中国科学院长春光学精密机械与物理研究所 小型化非链式脉冲df/hf激光装置及其激发方法
CN114039262B (zh) * 2021-10-22 2023-10-20 中国科学院长春光学精密机械与物理研究所 小型化非链式脉冲df/hf激光装置及其激发方法
CN115473116A (zh) * 2022-08-19 2022-12-13 山西大学 基于非均匀可饱和吸收体的脉冲激光空间整形装置及方法

Similar Documents

Publication Publication Date Title
Wang et al. Space-time profiles of an ultrashort pulsed Gaussian beam
RU2642892C9 (ru) Лазер с самозапуском синхронизации мод
CN111628399A (zh) 电激励非链式脉冲hf激光器被动脉宽压缩方法及激光器
EP1236249B1 (en) Mode-locked thin-disk laser
CN103022863A (zh) 环形腔锁模光纤激光器
CN104112975A (zh) 一种增强飞秒激光脉冲产生太赫兹波辐射的方法
Panchenko et al. Efficient N2 laser pumped by nanosecond diffuse discharge
CN115764533B (zh) 一种高重频高能量的飞秒激光产生系统及方法
CN108767639B (zh) 一种可输出单纵模激光束的激光器及其出光控制方法
Mullen Multiple-short-pulse stimulated Brillouin scattering for trains of 200 ps pulses at 1.06 mu m
Milam et al. Production of intense subnanosecond pulses by cavity dumping
Donin et al. Q-switching and mode-locking in a diode-pumped frequency-doubled Nd: YAG laser
Uchiki et al. Pulse shortening in dye laser side-pumped by TEA N 2 laser
Larionov et al. 50 W thin-disk laser with variable pulse duration
Xiao et al. Optical Parametric Amplification at 10.6 pm in GaSe Pumped by a 2.75-pm Parametric Source
CN213460459U (zh) 一种基于Ho:SSO可饱和吸收体的被动调Q激光器
Arsen'ev et al. Nanosecond and microsecond pulse generation in solid-state lasers
Hey Multi-pass post-compression of ultrashort laser pulses at extreme parameter scales
Grasyuk et al. Long-pulse XeCl laser operating under active mode-locking conditions
Watanabe et al. A Picosecond High Power KrF Laser System
JP7488480B2 (ja) Qスイッチ共振器、及びパルス発生器
Casperson et al. Properties of a radial mode CO 2 laser
James Pulsed CO2 laser technology
CN115882322A (zh) 一种平凹多通腔非线性脉冲压缩系统、方法及应用
Kagawa et al. A high-power polarised coherent TE N2 laser

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20200904

WD01 Invention patent application deemed withdrawn after publication