CN111627563B - 一种交通运输对covid-19传播影响的评估方法 - Google Patents

一种交通运输对covid-19传播影响的评估方法 Download PDF

Info

Publication number
CN111627563B
CN111627563B CN202010439027.6A CN202010439027A CN111627563B CN 111627563 B CN111627563 B CN 111627563B CN 202010439027 A CN202010439027 A CN 202010439027A CN 111627563 B CN111627563 B CN 111627563B
Authority
CN
China
Prior art keywords
individuals
area
epidemic
susceptible
latent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010439027.6A
Other languages
English (en)
Other versions
CN111627563A (zh
Inventor
种鹏云
尹惠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN202010439027.6A priority Critical patent/CN111627563B/zh
Publication of CN111627563A publication Critical patent/CN111627563A/zh
Application granted granted Critical
Publication of CN111627563B publication Critical patent/CN111627563B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/80ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for detecting, monitoring or modelling epidemics or pandemics, e.g. flu
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services
    • G06Q50/26Government or public services
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Landscapes

  • Health & Medical Sciences (AREA)
  • Business, Economics & Management (AREA)
  • Public Health (AREA)
  • Engineering & Computer Science (AREA)
  • Primary Health Care (AREA)
  • Medical Informatics (AREA)
  • Tourism & Hospitality (AREA)
  • General Health & Medical Sciences (AREA)
  • General Business, Economics & Management (AREA)
  • Biomedical Technology (AREA)
  • Strategic Management (AREA)
  • Physics & Mathematics (AREA)
  • Human Resources & Organizations (AREA)
  • General Physics & Mathematics (AREA)
  • Economics (AREA)
  • Theoretical Computer Science (AREA)
  • Educational Administration (AREA)
  • Marketing (AREA)
  • Data Mining & Analysis (AREA)
  • Databases & Information Systems (AREA)
  • Development Economics (AREA)
  • Pathology (AREA)
  • Epidemiology (AREA)
  • Traffic Control Systems (AREA)
  • Financial Or Insurance-Related Operations Such As Payment And Settlement (AREA)

Abstract

本发明公开了一种交通运输对COVID‑19传播影响的评估方法,包含的步骤有:步骤1基本数据调查;步骤2构建交通运输影响下COVID‑19修正SEIR和SI传播动力学方程;步骤3建立交通运输传播COVID‑19系统动力学模型;步骤4模型检验确认;步骤5对传播影响进行评估。本发明根据COVID‑19传播特点,构建了交通运输传播COVID‑19系统动力学模型,并通过控制模型参数的变化,评估交通运输对传播COVID‑19的影响。本发明可为交通运输防范COVID‑19扩散、疫情发展趋势研判等提供理论依据。通过本发明的评估方法,能够得到减少人们出行需求、降低公共交通出行比例、加大对公共交通车船/港站的病毒消杀工作等,能有效减缓COVID‑19的传播。

Description

一种交通运输对COVID-19传播影响的评估方法
技术领域
本发明涉及一种交通运输对呼吸系统传染病传播影响的评估方法,尤其涉及一种交通运输对COVID-19传播影响的评估方法,属于疾病传播及防疫技术领域。
背景技术
(一)产业背景
自2003年严重性呼吸系统综合症(SARS)事件发生以来,关于疾病传播,特别是交通运输对传染疾病的影响问题引起国内外众多学者关注。
Olse等研究发现SARS潜伏期患者乘坐飞机是造成SARS在世界范围内迅速蔓延的主要原因,乘客的感染与潜伏期患者的身体接近程度密切相关。杨华等通过建立沿交通线的SARS“飞点”传播模型,研究了交通工具内SARS传播的主要影响因子。张殿业等研究发现在疫情发生时应阻断交通运输通道传播途径,可大大降低不同区域之间的传播。郭寒英等在考虑交通运输传播疫情的基础上,研究了交通运输突发疫情扩散概率模型。孙根年等结合本底趋势线理论研究了SARS对铁路客运量等的影响。Fang等和曹春香等通过分析高致病性禽流感疫情的时空相关性发现高速公路是影响高致病性禽流感(HPAI)爆发和传播的关键因子。Khan等和常超一等研究发现,在没有采取防控措施的情况下,国际航空旅行是引发全球流感大流行的主要原因。
(二)意义
自新型冠状病毒肺炎(COVID-19)发生以来,其传播及影响引起世界各国高度重视。
交通运输是国民经济发展的基本要素和先决条件,但在COVID-19在爆发初期,人们对病毒的认知有一定过程,防控措施的时效性和有效性往往导致COVID-19通过交通运输加速蔓延。
因此,研究交通运输传播COVID-19规律,对防范和控制COVID-19具有重要理论意义。
发明内容
本发明要解决的技术问题是:
现实中,交通运输影响下的疫情大多由孤立的点状扩散转变为“点-线-点”传播,而现有研究大多未考虑该因素,且COVID-19的流行特征与SARS、HPAI、综合征冠状病毒(MERS)等存在较大差异,现有研究成果无法直接应用。
本发明的一种交通运输对COVID-19传播影响的评估方法主要包含模型假设、交通运输影响下COVID-19修正SEIR和SEI传播动力学方程和建立交通运输传播COVID-19系统动力学模型。
本发明的评估方法的相应步骤主要有:
1.基本数据调查
将公共交通出行比例、总人口(关联地区)、总人口(疫区)、移除比例、感染率、转化率、等参数输入交通运输传播COVID-19系统动力学模型,预测疫情发展,即求解预测疫区和关联地区的易感个体量、潜伏个体量、感染个体量和移除个体量。其中,
疫情统计数据包括:公共交通出行比例、总人口(关联地区)、总人口(疫区)、感染个体量(关联地区)、感染个体量(港站)、感染个体量(疫区)、感染个体量(车船)、易感个体量(关联地区)、易感个体量(港站)、易感个体量(疫区)、易感个体量(车船)。
传染病基本参数包括:感染率、感染个体接触率(关联地区)、感染个体接触率(港站)、感染个体接触率(疫区)、感染个体接触率(车船)、潜伏个体接触率(关联地区)、潜伏个体接触率(港站)、潜伏个体接触率(疫区)、潜伏个体接触率(车船)、转化率。
疫情控制基本参数包括:移除比例、移除比例(关联地区)、移除个体迁出比例(公共交通)、移除个体迁出比例(私人交通)。
2.模型假设
本发明做如下几点假设:
1)实行交通管制前,疫区人群可通过交通运输向未发生疫情的关联地区迁出;
2)仅考虑疫区向关联地区的单向迁出;
3)不考虑研究期内人口的出生率及死亡率;
4)COVID-19初期,交通港站及车船内未采取针对COVID-19的防范措施。
3.构建交通运输影响下COVID-19修正SEIR和SEI传播动力学方程
交通运输对COVID-19传播的影响是一个典型的复杂巨系统,经典SEIR模型将系统中的人群划分为四类:
1)易感个体S。未被感染的个体,但与感染者接触后容易受到感染;
2)潜伏个体E。个体已被感染,但未出现感染症状;
3)感染个体I。个体已表现出感染症状;
4)移除个体R。因治愈或死亡不会影响其他个体或被其他个体影响的人。
鉴于COVID-19具有无症状感染和潜伏期特性,原人群中的易感个体S在接触潜伏个体E和感染个体I后均以一定概率转变为潜伏个体E。基于此,本发明将人群转化关系分为区域传播转化和交通车船场站传播转化两种方式。
记Si(t)、Ei(t)、Ii(t)、Ri(t)分别为i区域t时刻易感个体、潜伏个体、感染个体和移除个体的数量,则易感个体数量控制方程为:
Figure GDA0004094355200000031
式中:N表示疫区人口数量;N′表示关联地区人口数量;Si表示i区域易感个体数量,i=1,2,3,4,分别代表疫区、港站、车船和关联地区;Ei表示i区域潜伏个体数量;Ii表示i区域感染个体数量;
Figure GDA0004094355200000041
表示i区域每个潜伏个体每天接触的平均人数;
Figure GDA0004094355200000042
表示i区域每个感染个体每天接触的平均人数;
Figure GDA0004094355200000043
表示i区域易感个体接触潜伏个体后被传染的概率;l表示疫区易每天通过私人交通迁出的比例;l′表示疫区易每天通过公共交通迁出的比例。
结合上述分析,本发明分别构建交通运输影响下COVID-19修正SEIR和SEI传播动力学方程,疫区修正SEIR传播动力学方程为:
Figure GDA0004094355200000044
港站修正SEI传播动力学方程为:
Figure GDA0004094355200000045
车船修正SEI传播动力学方程为:
Figure GDA0004094355200000046
关联地区修正SEIR传播动力学方程为:
Figure GDA0004094355200000051
式中:αi表示i区域潜伏个体转化为感染个体的比例;βi表示i区域感染个体转化为移除个体的比例,i=1,2,3,4,分别代表疫区、港站、车船和关联地区。
基于此,本发明对交通运输传播COVID-19问题描述为:
在COVID-19爆发初期,由于制定了发热筛查、病例就诊等基本防控措施,随着COVID-19疫情的发展,在通过公共交通迁出过程中,易感个体在交通车船和港站内以一定概率接触潜伏个体和感染个体,并转化为潜伏个体到达目的地。关联地区易感个体在接触疫区迁出的潜伏个体、感染个体后转化为潜伏个体,关联地区发生COVID-19疫情传播。
4.建立交通运输传播COVID-19系统动力学模型
4.1构建交通运输传播COVID-19因果回路图
根据式(1)-(5)和对系统边界分析的结果,本发明构建交通运输传播COVID-19系统动力学模型因果回路图。
该因果回路图中主要有十个反馈回路,包括两个正反馈回路八个负反馈回路,具体如下:
(1)正反馈回路:易感个体量(疫区)→(+)潜伏个体量(疫区)→(+)感染个体量(疫区)→(+)移除个体量(疫区)→(-)接触率(疫区)→(-)易感个体量(疫区)。
(2)正反馈回路:易感个体量(关联地区)→(+)潜伏个体量(关联地区)→(+)感染个体量(关联地区)→(+)移除个体量(关联地区)→(-)接触率(关联地区)→(-)易感个体量(关联地区)。
(3)负反馈回路:易感个体量(疫区)→(+)潜伏个体量(疫区)→(-)易感个体量(疫区)。
(4)负反馈回路:易感个体量(疫区)→(+)潜伏个体量(疫区)→(+)感染个体量(疫区)→(-)易感个体量(疫区)。
(5)负反馈回路:易感个体量(港站)→(+)潜伏个体量(港站)→(-)易感个体量(港站)。
(6)负反馈回路:易感个体量(港站)→(+)潜伏个体量(港站)→(+)感染个体量(港站)→(-)易感个体量(港站)。
(7)负反馈回路:易感个体量(车船)→(+)潜伏个体量(车船)→(-)易感个体量(车船)。
(8)负反馈回路:易感个体量(车船)→(+)潜伏个体量(车船)→(+)感染个体量(车船)→(-)易感个体量(车船)。
(9)负反馈回路:易感个体量(关联地区)→(+)潜伏个体量(关联地区)→(-)易感个体量(关联地区)。
(10)负反馈回路:易感个体量(关联地区)→(+)潜伏个体量(关联地区)→(+)感染个体量(关联地区)→(-)易感个体量(关联地区)。
4.2存量流量图
根据因果回路图,构建交通运输传播COVID-19系统动力学模型存量流量图,图中主要变量包括:易感个体量(疫区)、潜伏个体量(疫区)、感染个体量(疫区)、移除个体量(疫区)、接触率(疫区)、易感个体量(关联地区)、潜伏个体量(关联地区)、感染个体量(关联地区)、移除个体量(关联地区)、接触率(关联地区)、易感个体量(港站)、潜伏个体量(港站)、易感个体量(车船)、潜伏个体量(车船)等变量。
4.3主要变量数学模型
在模型构建过程中,本发明设置A市为COVID-19传播疫区,A市以外为关联地区,数据主要来源于统计年鉴、《新型冠状病毒肺炎诊疗方案(试行第六版)》、卫生健康管理部门网站及相关参考文献等,例如,感染个体接触率(疫区)、感染率参考SARS方面文献换算;转化率取自《新型冠状病毒肺炎诊疗方案(试行第六版)》公布数据,移除比例、移除比例(关联地区)通过数据拟合方法获得。
5.模型检验确认
系统动力学模型检验确认包括:量纲一致性、机械错误、模型有效性和极端条件检验确认。本发明所建立的交通运输传播COVID-19系统动力学模型通过了Vensim量纲一致性检验确认和机械错误检验确认。
分别设定转化率=1/7,1/10,1/14,仿真以验证模型有效性。
分别设定感染率、转化率为0进行模型极端测试。
6.交通运输对COVID-19传播影响的评估
由交通运输传播COVID-19系统动力学模型可知,参与COVID-19传播的易感个体、潜伏个体、感染个体和移除个体除了在疫区、港站、车船和关联地区发生横向传播外,还在交通运输的影响下发生纵向传播,其中潜伏个体、感染个体和移除个体的大小直接反映了COVID-19的传播强度。在横向传播中,感染个体接触率、潜伏个体接触率、转化率和移除比例直接影响潜伏个体量、感染个体量和移除个体量的大小,而在纵向传播中,主要由各个群体的迁出比例影响,而各群体的迁出比例由公共交通出行比例决定。
本发明的有益效果
本发明根据COVID-19传播特点,构建了交通运输传播COVID-19系统动力学模型,并通过控制模型参数的变化,研究了交通运输对传播COVID-19的影响,主要得出以下结论:
(1)通过模型检验确认和实证分析,本发明建立的基于系统动力学的交通运输传播COVID-19模型是合理的,可为交通运输防范COVID-19扩散、疫情发展趋势研判等提供理论依据。
(2)交通运输对COVID-19的传播起到正反馈作用,交通运输影响下的COVID-19感染个体量峰值和移除个体量峰值分别是无交通运输参与下的18.62倍、10.99倍。因此,实施交通管控措施,对控制疫情发展、防范疫情扩散具有积极作用。
(3)A市COVID-19有望在疫情发生后第32天后达到峰值,累计感染人数达77726人。非疫情地区有望在疫情发生后第30天达到峰值,累计感染人数达28084人。
(4)公共交通出行比例的增加将进一步加快COVID-19的传播。因此,减少人们出行需求,降低公共交通出行比例,加大对公共交通车船、港站的病毒消杀工作,能有效减缓COVID-19的传播。
附图说明
图1是COVID-19区域传播转化图。
图2是COVID-19交通车船场站传播转化图。
图3是模型框架图。
图4是交通运输传播COVID-19系统动力学模型因果图。
图5是交通运输传播COVID-19系统动力学模型存量流量图。
图6是模型有效性检验确认图。
图7是模型极端条件检验确认图。
图8是COVID-19系统动力学模型存量流量图
图9是交通运输对COVID-19传播影响的评估。
图10是现行政策下的COVID-19传播仿真仿真。
图11是公共交通出行比例对COVID-19传播的影响(疫区)。
图12是公共交通出行比例对COVID-19传播的影响(关联地区)。
具体实施方式
本发明的评估方法的具体实施时的相应步骤主要有:
1.基本数据调查
将公共交通出行比例、总人口(关联地区)、总人口(疫区)、移除比例、感染率、转化率、等参数输入交通运输传播COVID-19系统动力学模型,预测疫情发展,即求解预测疫区和关联地区的易感个体量、潜伏个体量、感染个体量和移除个体量。其中,
疫情统计数据包括:公共交通出行比例、总人口(关联地区)、总人口(疫区)、感染个体量(关联地区)、感染个体量(港站)、感染个体量(疫区)、感染个体量(车船)、易感个体量(关联地区)、易感个体量(港站)、易感个体量(疫区)、易感个体量(车船)。
传染病基本参数包括:感染率、感染个体接触率(关联地区)、感染个体接触率(港站)、感染个体接触率(疫区)、感染个体接触率(车船)、潜伏个体接触率(关联地区)、潜伏个体接触率(港站)、潜伏个体接触率(疫区)、潜伏个体接触率(车船)、转化率。
疫情控制基本参数包括:移除比例、移除比例(关联地区)、移除个体迁出比例(公共交通)、移除个体迁出比例(私人交通)。
2.模型假设
本发明做如下几点假设:
1)实行交通管制前,疫区人群可通过交通运输向未发生疫情的关联地区迁出;
2)仅考虑疫区向关联地区的单向迁出;
3)不考虑研究期内人口的出生率及死亡率;
4)COVID-19初期,交通港站及车船内未采取针对COVID-19的防范措施。
3.构建交通运输影响下COVID-19修正SEIR和SEI传播动力学方程
交通运输对COVID-19传播的影响是一个典型的复杂巨系统,经典SEIR模型将系统中的人群划分为四类:
1)易感个体S。未被感染的个体,但与感染者接触后容易受到感染;
2)潜伏个体E。个体已被感染,但未出现感染症状;
3)感染个体I。个体已表现出感染症状;
4)移除个体R。因治愈或死亡不会影响其他个体或被其他个体影响的人。
鉴于COVID-19具有无症状感染和潜伏期特性,原人群中的易感个体S在接触潜伏个体E和感染个体I后均以一定概率转变为潜伏个体E。基于此,本发明将人群转化关系分为区域传播转化和交通车船场站传播转化两种方式,转化关系如图1、2所示。
记Si(t)、Ei(t)、Ii(t)、Ri(t)分别为i区域t时刻易感个体、潜伏个体、感染个体和移除个体的数量,则易感个体数量控制方程为:
Figure GDA0004094355200000101
式中:N表示疫区人口数量;N′表示关联地区人口数量;Si表示i区域易感个体数量,i=1,2,3,4,分别代表疫区、港站、车船和关联地区;Ei表示i区域潜伏个体数量;Ii表示i区域感染个体数量;
Figure GDA0004094355200000102
表示i区域每个潜伏个体每天接触的平均人数;
Figure GDA0004094355200000103
表示i区域每个感染个体每天接触的平均人数;
Figure GDA0004094355200000104
表示i区域易感个体接触潜伏个体后被传染的概率;l表示疫区易每天通过私人交通迁出的比例;l′表示疫区易每天通过公共交通迁出的比例。
结合上述分析,本发明分别构建交通运输影响下COVID-19修正SEIR和SEI传播动力学方程,疫区修正SEIR传播动力学方程为:
Figure GDA0004094355200000105
港站修正SEI传播动力学方程为:
Figure GDA0004094355200000106
车船修正SEI传播动力学方程为:
Figure GDA0004094355200000111
关联地区修正SEIR传播动力学方程为:
Figure GDA0004094355200000112
式中:αi表示i区域潜伏个体转化为感染个体的比例;βi表示i区域感染个体转化为移除个体的比例,i=1,2,3,4,分别代表疫区、港站、车船和关联地区。
基于此,本发明对交通运输传播COVID-19问题描述为:
在COVID-19爆发初期,由于制定了发热筛查、病例就诊等基本防控措施,随着COVID-19疫情的发展,在通过公共交通迁出过程中,易感个体在交通车船和港站内以一定概率接触潜伏个体和感染个体,并转化为潜伏个体到达目的地。关联地区易感个体在接触疫区迁出的潜伏个体、感染个体后转化为潜伏个体,关联地区发生COVID-19疫情传播。具体的,模型框架图如图3所示。
4.建立交通运输传播COVID-19系统动力学模型
4.1构建交通运输传播COVID-19因果回路图
根据图1-3、式(1)-(5)和对系统边界分析的结果,本发明构建交通运输传播COVID-19系统动力学模型因果回路图,具体如图4所示。
由图4可知,该因果回路图中主要有十个反馈回路,包括两个正反馈回路八个负反馈回路,具体如下:
(1)正反馈回路:易感个体量(疫区)→(+)潜伏个体量(疫区)→(+)感染个体量(疫区)→(+)移除个体量(疫区)→(-)接触率(疫区)→(-)易感个体量(疫区)。
(2)正反馈回路:易感个体量(关联地区)→(+)潜伏个体量(关联地区)→(+)感染个体量(关联地区)→(+)移除个体量(关联地区)→(-)接触率(关联地区)→(-)易感个体量(关联地区)。
(3)负反馈回路:易感个体量(疫区)→(+)潜伏个体量(疫区)→(-)易感个体量(疫区)。
(4)负反馈回路:易感个体量(疫区)→(+)潜伏个体量(疫区)→(+)感染个体量(疫区)→(-)易感个体量(疫区)。
(5)负反馈回路:易感个体量(港站)→(+)潜伏个体量(港站)→(-)易感个体量(港站)。
(6)负反馈回路:易感个体量(港站)→(+)潜伏个体量(港站)→(+)感染个体量(港站)→(-)易感个体量(港站)。
(7)负反馈回路:易感个体量(车船)→(+)潜伏个体量(车船)→(-)易感个体量(车船)。
(8)负反馈回路:易感个体量(车船)→(+)潜伏个体量(车船)→(+)感染个体量(车船)→(-)易感个体量(车船)。
(9)负反馈回路:易感个体量(关联地区)→(+)潜伏个体量(关联地区)→(-)易感个体量(关联地区)。
(10)负反馈回路:易感个体量(关联地区)→(+)潜伏个体量(关联地区)→(+)感染个体量(关联地区)→(-)易感个体量(关联地区)。
4.2存量流量图
根据因果回路图,构建交通运输传播COVID-19系统动力学模型存量流量图,图中主要变量包括:易感个体量(疫区)、潜伏个体量(疫区)、感染个体量(疫区)、移除个体量(疫区)、接触率(疫区)、易感个体量(关联地区)、潜伏个体量(关联地区)、感染个体量(关联地区)、移除个体量(关联地区)、接触率(关联地区)、易感个体量(港站)、潜伏个体量(港站)、易感个体量(车船)、潜伏个体量(车船)等变量,具体如图5所示。
4.3主要变量数学模型
在模型构建过程中,本发明设置A市为COVID-19传播疫区,A市以外为关联地区。
各主要变量、参数及表达式如表1所示。
表1主要变量及表达式
Figure GDA0004094355200000131
Figure GDA0004094355200000141
Figure GDA0004094355200000151
5.模型检验确认
系统动力学模型检验确认包括:量纲一致性、机械错误、模型有效性和极端条件检验确认。本发明所建立的交通运输传播COVID-19系统动力学模型通过了Vensim量纲一致性检验确认和机械错误检验确认。
分别设定转化率=1/7,1/10,1/14,以验证模型有效性,Vensim仿真结果如图6所示。图6结果表明随着转化率的降低,病毒潜伏期变长,导致同一日期下的感染个体量和移除个体量增加,这与实际相符。因此,本发明模型通过有效性检验确认。
模型有效性检验确认如图6所示。
分别设定感染率、转化率为0进行模型极端测试,Vensim仿真结果如图7所示。结果表明:疫区感染个体量、潜伏个体量随时间呈指数分布,移除个体量随时间呈对数分布,新增潜伏个体、新增感染个体均为0,且不随时间变化。因此,本发明模型通过极端条件检验确认。
模型的极端条件检验确认图如图7所示。
6.交通运输对COVID-19传播影响的评估仿真
为研究交通运输对COVID-19传播的影响,本发明建立无交通运输参与的COVID-19系统动力学模型存量流量图,如图8所示。
图9展示了交通运输对全国COVID-19感染个体量和移除个体量的影响。
仿真结果表明:交通运输影响下的COVID-19感染个体量峰值和移除个体量峰值分别是无交通运输参与下的18.62倍、10.99倍。
具体实施案例1:利用本发明的评估方法的具体实施的相应步骤在现行政策下的COVID-19传播仿真
图10展示了在现行政策下,A市及关联地区的潜伏个体量、感染个体量和移除个体量随时间变化的情况,仿真主要变量、参数及表达式如表1所示。
具体实施案例2:利用本发明的评估方法的具体实施的相应步骤进行交通出行比例对COVID-19传播的影响进行评估
图11、12展示了交通出行比例变化的情况下,疫区及关联地区感染个体量和移除个体量随时间的变化情况。分别设置公共交通出行比例为0.3、0.6、0.8,其他仿真主要变量参数及表达式参见表1。
结果表明:随着公共交通出行比例的增加,疫区的感染个体量和移除个体量未出现明显波动,但关联地区的感染个体量和移除个体量均出现大幅增加,这是由于车船和港站空间的密闭性特点更容易导致易感个体被感染。

Claims (3)

1.一种交通运输对COVID-19传播影响的评估方法,其特征在于包含以下步骤:
步骤1基本数据调查,包括:
收集疫情统计数据:公共交通出行比例、关联地区总人口、疫区总人口、关联地区感染个体量、港站感染个体量、疫区感染个体量、车船感染个体量、关联地区易感个体量、港站易感个体量、疫区易感个体量以及车船易感个体量;
收集传染病基本参数:感染率、感关联地区染个体接触率、港站感染个体接触率、疫区感染个体接触率、车船感染个体接触率、关联地区潜伏个体接触率、港站潜伏个体接触率、疫区潜伏个体接触率、潜伏个体接触率以及转化率;
收集疫情控制基本参数:移除比例、关联地区移除比例、公共交通移除个体迁出比例以及私人交通移除个体迁出比例;
步骤2构建交通运输影响下COVID-19修正SEIR和SEI传播动力学方程;
步骤3建立交通运输传播COVID-19系统动力学模型;
步骤4对所述的动力学模型进行检验确认;
步骤5对传播影响进行评估,包括:
将公共交通出行比例、关联地区总人口、疫区总人口、移除比例、感染率、转化率参数输入所述的动力学模型,预测疫情发展,即求解预测疫区和关联地区的易感个体量、潜伏个体量、感染个体量和移除个体量;所述步骤2构建交通运输影响下COVID-19修正SEIR和SEI传播动力学方程包括:
记Si(t)、Ei(t)、Ii(t)、Ri(t)分别为i区域t时刻易感个体、潜伏个体、感染个体和移除个体的数量,则易感个体数量控制方程为:
Figure FDA0004094355190000011
式中:N表示疫区人口数量;N′表示关联地区人口数量;Si表示i区域易感个体数量,i=1,2,3,4,分别代表疫区、港站、车船和关联地区;Ei表示i区域潜伏个体数量;Ii表示i区域感染个体数量;
Figure FDA0004094355190000021
表示i区域每个潜伏个体每天接触的平均人数;
Figure FDA0004094355190000022
表示i区域每个感染个体每天接触的平均人数;
Figure FDA0004094355190000023
表示i区域易感个体接触潜伏个体后被传染的概率;l表示疫区易每天通过私人交通迁出的比例;l′表示疫区易每天通过公共交通迁出的比例;
修正SEIR传播动力学方程为:
Figure FDA0004094355190000024
港站修正SEI传播动力学方程为:
Figure FDA0004094355190000025
车船修正SEI传播动力学方程为:
Figure FDA0004094355190000026
关联地区修正SEIR传播动力学方程为:
Figure FDA0004094355190000027
式中:αi表示i区域潜伏个体转化为感染个体的比例;βi表示i区域感染个体转化为移除个体的比例,i=1,2,3,4,分别代表疫区、港站、车船和关联地区。
2.根据权利要求1所述的交通运输对COVID-19传播影响的评估方法,其特征在于所述步骤3建立交通运输传播COVID-19系统动力学模型包括:
步骤3.1构建交通运输传播COVID-19因果回路图
根据所述步骤2构建交通运输影响下COVID-19修正SEIR和SEI传播动力学方程中的式(1)至式(5)和对系统边界分析的结果,构建交通运输传播COVID-19系统动力学模型因果回路图,该因果回路图中主要有十个反馈回路,包括两个正反馈回路八个负反馈回路,具体如下:
(1)正反馈回路:疫区易感个体量→(+)疫区潜伏个体量→(+)疫区感染个体量→(+)疫区移除个体量→(-)疫区接触率→(-)疫区易感个体量;
(2)正反馈回路:关联地区易感个体量→(+)关联地区潜伏个体量→(+)关联地区感染个体量→(+)关联地区移除个体量→(-)关联地区接触率→(-)关联地区易感个体量;
(3)负反馈回路:疫区易感个体量→(+)潜疫区伏个体量→(-)疫区易感个体量;
(4)负反馈回路:疫区易感个体量→(+)疫区潜伏个体量→(+)疫区感染个体量→(-)疫区易感个体量;
(5)负反馈回路:港站易感个体量→(+)港站潜伏个体量→(-)港站易感个体量;
(6)负反馈回路:港站易感个体量→(+)港站潜伏个体量→(+)港站感染个体量→(-)港站易感个体量;
(7)负反馈回路:车船易感个体量→(+)车船潜伏个体量→(-)车船易感个体量;
(8)负反馈回路:车船易感个体量→(+)车船潜伏个体量→(+)车船感染个体量→(-)车船易感个体量;
(9)负反馈回路:关联地区易感个体量→(+)关联地区潜伏个体量→(-)关联地区易感个体量;
(10)负反馈回路:关联地区易感个体量→(+)关联地区潜伏个体量→(+)关联地区感染个体量→(-)关联地区易感个体量;
步骤3.2构建交通运输传播COVID-19系统动力学模型存量流量图
根据所述的因果回路图,构建交通运输传播COVID-19系统动力学模型存量流量图,其主要变量包括:疫区易感个体量、疫区潜伏个体量、疫区感染个体量、疫区移除个体量、疫区接触率、关联地区易感个体量、关联地区潜伏个体量、关联地区感染个体量、关联地区移除个体量、关联地区接触率、港站易感个体量、港站潜伏个体量、车船易感个体量邮件车船潜伏个体量变量;
步骤3.3获得变量数学模型
设置A市为COVID-19传播疫区,A市以外为关联地区。
3.根据权利要求1所述的交通运输对COVID-19传播影响的评估方法,其特征在于所述步骤5模型检验确认包括:
系统动力学模型检验确认:量纲一致性、机械错误、模型有效性和极端条件检验确认;
分别设定转化率=1/7,1/10,1/14,仿真以验证模型有效性;
分别设定感染率、转化率为0进行模型极端测试。
CN202010439027.6A 2020-05-22 2020-05-22 一种交通运输对covid-19传播影响的评估方法 Active CN111627563B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010439027.6A CN111627563B (zh) 2020-05-22 2020-05-22 一种交通运输对covid-19传播影响的评估方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010439027.6A CN111627563B (zh) 2020-05-22 2020-05-22 一种交通运输对covid-19传播影响的评估方法

Publications (2)

Publication Number Publication Date
CN111627563A CN111627563A (zh) 2020-09-04
CN111627563B true CN111627563B (zh) 2023-04-11

Family

ID=72272349

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010439027.6A Active CN111627563B (zh) 2020-05-22 2020-05-22 一种交通运输对covid-19传播影响的评估方法

Country Status (1)

Country Link
CN (1) CN111627563B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112382403A (zh) * 2020-09-30 2021-02-19 哈尔滨工业大学 一种基于人员聚集度的seiqr传染病模型的构建方法
CN114496265A (zh) * 2020-10-23 2022-05-13 中国科学院深圳先进技术研究院 城市内部传染病时空扩散建模方法及系统
CN113611407B (zh) * 2021-08-16 2023-03-21 西南交通大学 一种针对公交车辆内部的新型冠状病毒感染情况评估方法
CN114898893A (zh) * 2022-05-09 2022-08-12 中南大学 一种降低铁路疫情传播风险的席位分配方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101681490A (zh) * 2007-04-02 2010-03-24 卡姆兰·卡恩 传染性病原体经商用航空旅行的全球扩散预测系统和方法
CN103390091A (zh) * 2012-05-08 2013-11-13 中国人民解放军防化学院 一种传染病疫情优化控制方法
JP2015038708A (ja) * 2013-08-19 2015-02-26 国立大学法人 東京大学 感染症対策プログラム、感染症対策装置および感染症対策方法
CN110993119A (zh) * 2020-03-04 2020-04-10 同盾控股有限公司 基于人口迁移的疫情预测方法、装置、电子设备及介质

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170103172A1 (en) * 2015-10-07 2017-04-13 The Arizona Board Of Regents On Behalf Of The University Of Arizona System And Method To Geospatially And Temporally Predict A Propagation Event

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101681490A (zh) * 2007-04-02 2010-03-24 卡姆兰·卡恩 传染性病原体经商用航空旅行的全球扩散预测系统和方法
CN103390091A (zh) * 2012-05-08 2013-11-13 中国人民解放军防化学院 一种传染病疫情优化控制方法
JP2015038708A (ja) * 2013-08-19 2015-02-26 国立大学法人 東京大学 感染症対策プログラム、感染症対策装置および感染症対策方法
CN110993119A (zh) * 2020-03-04 2020-04-10 同盾控股有限公司 基于人口迁移的疫情预测方法、装置、电子设备及介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
杨华,李小文,施宏,赵开广,韩丽娟.SARS沿交通线的"飞点"传播模型.遥感学报.2003,(04),全文. *

Also Published As

Publication number Publication date
CN111627563A (zh) 2020-09-04

Similar Documents

Publication Publication Date Title
CN111627563B (zh) 一种交通运输对covid-19传播影响的评估方法
Clay et al. What explains cross-city variation in mortality during the 1918 influenza pandemic? Evidence from 438 US cities
Kain et al. Chopping the tail: how preventing superspreading can help to maintain COVID-19 control
Fu et al. Propagation dynamics on complex networks: models, methods and stability analysis
Hethcote The basic epidemiology models: models, expressions for R0, parameter estimation, and applications
Hethcote et al. Gonorrhea modeling: a comparison of control methods
Bertaglia et al. Hyperbolic compartmental models for epidemic spread on networks with uncertain data: application to the emergence of Covid-19 in Italy
Rosenstrom et al. High-quality masks reduce COVID-19 infections and death in the US
Liu et al. Role of railway transportation in the spread of the coronavirus: evidence from wuhan-beijing railway corridor
Mushanyu et al. Modelling the potential role of super spreaders on COVID-19 transmission dynamics
Zhang et al. Temporal factors in school closure policy for mitigating the spread of influenza
Duives et al. The multi-dimensional challenges of controlling SARS-CoV-2 transmission in indoor spaces: Insights from the linkage of a microscopic pedestrian simulation and virus transmission models
Kabir et al. Epidemic size, trend and spatiotemporal mapping of SARS-CoV-2 using geographical information system in Alborz Province, Iran
Sun et al. Quantifying the influence of inter-county mobility patterns on the COVID-19 outbreak in the United States
Yoo et al. Socioeconomic inequalities in COVID-19 incidence during different epidemic phases in South Korea
Mohammadia et al. Compartment model of COVID-19 epidemic process in Ukraine
Yarmand et al. Cost-effectiveness analysis of vaccination and self-isolation in case of H1N1
Edeki et al. Mathematical analysis of the global COVID-19 spread in Nigeria and Spain based on SEIRD model
Lyu et al. Spatial Interaction Analysis of Infectious Disease Import and Export between Regions
Liao et al. Understanding influenza virus-specific epidemiological properties by analysis of experimental human infections
Kuhe et al. A time series model on the occurrence of COVID-19 pandemic in Nigeria
Pacheco et al. A Novel use of Direct Simulation Monte-Carlo to Model Dynamics of COVID-19 Pandemic Spread
Mulyadi et al. Managing Medical Waste during COVID-19 Outbreak: A Simulation Approach
Liu et al. Optimization of cabin seating arrangement strategies based on the Wells–Riley risk theory
Nwafor et al. Transfer function modelling of COVID-19 pandemic in Nigeria

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant