CN111621500B - 一种基于myl4基因编辑的心房颤动/心房心肌病大鼠模型及其构建方法 - Google Patents

一种基于myl4基因编辑的心房颤动/心房心肌病大鼠模型及其构建方法 Download PDF

Info

Publication number
CN111621500B
CN111621500B CN202010479394.9A CN202010479394A CN111621500B CN 111621500 B CN111621500 B CN 111621500B CN 202010479394 A CN202010479394 A CN 202010479394A CN 111621500 B CN111621500 B CN 111621500B
Authority
CN
China
Prior art keywords
sgrna
atrial
sequence
dna
rat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010479394.9A
Other languages
English (en)
Other versions
CN111621500A (zh
Inventor
李海玲
彭文辉
徐亚伟
李大力
唐恺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Tenth Peoples Hospital
Original Assignee
Shanghai Tenth Peoples Hospital
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Tenth Peoples Hospital filed Critical Shanghai Tenth Peoples Hospital
Priority to CN202010479394.9A priority Critical patent/CN111621500B/zh
Publication of CN111621500A publication Critical patent/CN111621500A/zh
Application granted granted Critical
Publication of CN111621500B publication Critical patent/CN111621500B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
    • A01K67/027New or modified breeds of vertebrates
    • A01K67/0275Genetically modified vertebrates, e.g. transgenic
    • A01K67/0276Knock-out vertebrates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/89Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation using microinjection
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/90Stable introduction of foreign DNA into chromosome
    • C12N15/902Stable introduction of foreign DNA into chromosome using homologous recombination
    • C12N15/907Stable introduction of foreign DNA into chromosome using homologous recombination in mammalian cells
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2207/00Modified animals
    • A01K2207/15Humanized animals
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/07Animals genetically altered by homologous recombination
    • A01K2217/075Animals genetically altered by homologous recombination inducing loss of function, i.e. knock out
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2227/00Animals characterised by species
    • A01K2227/10Mammal
    • A01K2227/105Murine
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2267/00Animals characterised by purpose
    • A01K2267/03Animal model, e.g. for test or diseases
    • A01K2267/035Animal model for multifactorial diseases
    • A01K2267/0375Animal model for cardiovascular diseases
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/20Type of nucleic acid involving clustered regularly interspaced short palindromic repeats [CRISPRs]

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Environmental Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Animal Husbandry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Cell Biology (AREA)
  • Mycology (AREA)
  • Toxicology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

本发明提供了一种基于MYL4基因编辑的心房颤动/心房心肌病大鼠模型及其构建方法,该方法包括如下步骤:设计靶向野生型MYL4进行基因编辑相关的序列;体外制备sgRNA;体外制备Cas9 mRNA;体外制备显微注射混合物;显微注射和胚胎移植;基因鉴定和筛选。本发明提供的基于MYL4基因编辑的心房颤动/心房心肌病大鼠模型未见明显发育缺陷和成长缺陷,表型非常稳定,重复性高,是非常好的心房特异性心房心肌病动物模型,对房颤及心房心肌病的病理研究和新型治疗方案的评估具有十分积极的意义。

Description

一种基于MYL4基因编辑的心房颤动/心房心肌病大鼠模型及 其构建方法
技术领域
本发明涉及一种医学动物模型领域,尤其涉及一种基于MYL4基因编辑的心房颤动/心房心肌病大鼠模型及其构建方法。
背景技术
心房颤动(简称房颤,Atrial fibrillation,AF)是临床上最常见的快速性心律失常,近年发病率持续增高,具有很高的致死性和致残性。有相当多的证据表明,心房心肌病的最新定义和分类可能是了解心房疾病和房颤病理生理机制的关键,也是推进心律失常管理和预防主要并发症的重要概念。故建立稳定可靠的AF/心房心肌病动物模型,有助于深入研究AF及心房纤维化的发病机制,有助于寻求更好的上游治疗策略及优化AF的治疗方案,也有助于药物筛选及预防并发症,具有特别重要的科学价值及社会经济意义。
目前认为AF发病主要涉及2个方面的机制,AF的触发因素及AF发生和维持的基质。快速心房起搏模型是基于AF的触发机制,所采用的物种种类、刺激方案及评价标准不尽相同,使得AF模型的稳定性和可靠性难以保证。其他AF动物模型还包括无菌性心包炎模型,二尖瓣反流致慢性心房扩大模型、迷走神经丛刺激+心房快速起搏模型、快速心室起搏致慢性充血性心力衰竭模型等,分别从迷走神经刺激、心房病理改变、心力衰竭等不同角度探讨AF的发病机制。但由于这些模型受瓣膜病、心力衰竭等基础心脏疾病的干扰,对于研究持续性AF的发病机制,尤其是电重构及结构重构机制并不理想。许多动物模型已经被开发用来研究心房疾病,但主要是在房颤的背景下,然而,很少有模型是独立于原发性心室病变或房性快速性心律失常的。
临床研究指出,心房结构重构和电重构是房颤触发和维持的重要因素,但房颤的具体发病机制复杂,容易被体重年龄等因素和其他心血管疾病所诱发。遗传学的最新进展使人们对房颤的发病原因有了新的认识。遗传性房颤的并发症可以出现在任何年龄,尽管有些病人从未经历过任何心律失常相关的健康问题。越来越多的基因学研究揭示房颤的发生发展是基因作用下的病理和生理过程。基因在房颤发病、心房重构及房颤的维持均发挥重要作用。
近年来得益于基因打靶技术的快速发展,基因修饰动物模型的制作周期缩短、成本大大降低。CRISPR/Cas9基因编辑技术已经成为构建基因修饰动物作为疾病模型的最常见工具。根据特定基因信息对动物受精卵进行编辑,可提供长期稳定的动物模型,且重复性好。Ⅱ型CRISPR/Cas9系统目前是最广泛应用于构建基因修饰动物模型的基因编辑技术。该系统仅需要针对不同靶点的sgRNA序列和通用的Cas9蛋白。和传统基因打靶技术ZFN和TALEN相比,Ⅱ型CRISPR/Cas9技术操作简便,实验周期更短。另一方面,大小鼠作为实验中最常用的啮齿类模式动物,具有繁殖周期短、动物品系化程度高、与人类基因同源性高等优点。而大鼠和小鼠相比体型更大,心脏能承受更多的电生理改变和结构改变,因而能更好的模拟人类对于药物治疗的反映,是理想的研究心血管疾病治疗的模式动物。
目前未有基于MYL4基因编辑技术构建心房颤动/心房心肌病大鼠模型的报告。
发明内容
针对现有技术的缺陷,本发明提供一种基于MYL4基因编辑的心房颤动/心房心肌病大鼠模型及其构建方法。发明人在在临床家系诊断的基础上发现新的心房心肌病致病位点MYL4p.E11K,并使用CRISPR/Cas9技术成功构建了MYL4p.E11K突变大鼠及MYL4基因敲除大鼠心房心肌病动物模型。
本发明为解决上述技术问题采用以下技术方案:
本发明的第一方面是提供一种基于MYL4基因编辑的心房颤动/心房心肌病大鼠模型的构建方法,包括如下步骤:
步骤一,设计靶向野生型MYL4进行基因编辑相关的序列:在大鼠MYL4基因的第1号外显子设计靶向于与人类MYL4点突变同源位点的sgRNA、ssODN(单链寡核苷酸)、sgRNA骨架(Scaffold)序列的引物和前体sgRNA序列;
步骤二,体外制备sgRNA:PCR反应得到sgRNA scaffold产物;将获得的sgRNAscaffold产物与前体sgRNA进行重叠PCR反应以获得sgRNA转录前体产物;然后将该sgRNA转录前体产物进行体外转录,并纯化得到sgRNA产物;
步骤三,体外制备Cas9mRNA:使用限制性内切酶NotⅠ线性化SP6-Cas9质粒;纯化线性化的SP6-Cas9产物,并对其进行转录得到Cas9mRNA;
步骤四,体外制备显微注射混合物:冰上将sgRNA、Cas9mRNA和ssODN混匀,制成显微注射混合物;
步骤五,显微注射和胚胎移植:将上述显微注射混合物注入受精卵,培养后,将注射后的受精卵移植到假孕母鼠的输卵管中;
步骤六,基因鉴定和筛选:将上述假孕母鼠饲养一段时间后,待其子代出生,采用PCR反应进行基因鉴定并筛选结果为基因型为阳性的子代;该基因型为阳性的子代与野生型大鼠交配,待其子代出生后,进行基因鉴定并筛选,获得心房颤动/心房心肌病大鼠模型。
进一步地,上述靶向野生型MYL4进行基因编辑相关的序列还包括T7启动子的引物,其序列为GATCACTAATACGACTCAC(SEQ ID NO:10)。
进一步地,上述sgRNA序列包括方向为5’-3’的CCTTGGCAGTCTCCTTCTG(SEQ ID NO:1)和AGAAGCCTGAGCCCAAGAG(SEQ ID NO:2)。
进一步地,上述前体sgRNA序列包括方向为5’-3’的GATCACTAATACGACTCACTATAGGCCTTGGCAGTCTCCTTCTGTTTTAGAGCTAGAAAT(SEQ ID NO:3)和GATCACTAATACGACTCACTATAGGAGAAGCCTGAGCCCAAGAGTTTTAGAGCTAGAAAT(SEQ ID NO:4)。
进一步地,上述sgRNA Scaffold序列的引物包括方向为5’-3’的GTTTTAGAGCTAGAAATAGC(SEQ ID NO:5)和AAAAAAGCACCGACTCGGTGCC(SEQ ID NO:6)。
进一步地,上述ssODN序列为方向为5’-3’的TCCCACGTCCACTGGAGATCCTAAGGCAGCATGCCTCCCAAGAAGCCTGAGCCCAAGAAGAAGACTGCCAAGGCAGCCGCAGCCCCTGCCCCAGCTCCTGCCCCAGCTCCCGAGCCCCTC(SEQ ID NO:7)。
进一步地,步骤三中线性化的反应体系的体积为50μL包括2.5μg SP6-Cas9质粒、1.5μL限制性内切酶NotⅠ、余量为水。
进一步地,步骤四中sgRNA的浓度为25ng/μL,Cas9mRNA的浓度为50ng/μL,ssODN的浓度为10ng/μL。
进一步地,步骤五中所述PCR反应采用的引物包括:
Rat MYL4E11K_Identify2_F(5’-3’):GGAGGACGAACTGGTGACAATA(SEQ ID NO:8);
Rat MYL4E11K_Identify2_R(5’-3’):GGCTATAGGTCATGGCTCTCAT(SEQID NO:9)。
进一步地,上述PCR反应的参数为:95℃5min;95℃30sec、50℃30sec、68℃25sec,29个循环;68℃5min。
本发明的第二方面是提供上述构建方法构建的基于MYL4基因编辑的心房颤动/心房心肌病大鼠模型。
本发明采用以上技术方案,与现有技术相比,具有如下技术效果:
本发明提供的基于MYL4基因编辑的心房颤动/心房心肌病大鼠模型完全重现了临床疾病表型:随着年龄的增加,突变大鼠心电图可见PR间期逐渐延长和P波逐渐减小至消失,左心房逐渐增大,并伴随明显的心房肌纤维化,且病程中可见自发房颤。该模型未见明显发育缺陷和成长缺陷,表型非常稳定,重复性高,是非常好的心房特异性心房心肌病动物模型,对房颤及心房心肌病的病理研究和新型治疗方案的评估具有十分积极的意义。
附图说明
图1为本发明一实施例中MYL4p.E11K点突变大鼠设计示意图;其中深灰色选中的为PAM位点;在模板ssODN中,目标位置鸟嘌呤被替换成腺嘌呤(Adenine,A),浅灰色中的为sgRNA序列;浅灰色矩形框代表非编码区域,浅灰色矩形框代表编码区域;
图2为本发明一实施例中阳性F0代MYL4p.E11K点突变大鼠鉴定结果图;其中,黑色框中为目标氨基酸;“MYL4WT”表示野生型大鼠,“MYL4E11k”表示MYL4p.E11K点突变大鼠;
图3为本发明一实施例中用于构建点突变大鼠sgRNA的脱靶分析的结果图;其中,图A为sgRNA1的前十位高评分脱靶位点(上为野生型,下为突变型)的T7EⅠ酶切分析结果;图B为sgRNA1的前十位高评分脱靶位点(上为野生型,下为突变型)的T7EⅠ酶切分析结果;符号“-”和“+”分别代表未经过T7EⅠ酶处理的对照组和经过T7EⅠ酶处理过的实验组;
图4为本发明一实施例中大鼠模型心电图;其中,图A为野生型大鼠的心电图;图B为MYL4p.E11k点突变大鼠的心电图;图C为MYL4基因敲除大鼠的心电图;
图5为本发明一实施例中大鼠模型中心脏的超声造影结果及其统计图;其中,图A为MYL4p.E11k点突变大鼠及其对照组,图B为MYL4基因敲除大鼠及其对照组;
图6为本发明一实施例中大鼠模型的心脏外观图;其中,虚线圈中区域标出的代表左心房,竖比例尺每小格代表0.5mm,横比例尺每小格代表1mm;“control”表示为对照组;
图7为本发明一实施例中MYL4p.E11K点突变大鼠及其对照组大鼠心房肌纤维化染色的结果图;
图8为本发明一实施例中MYL4基因敲除大鼠及其对照组大鼠心房肌纤维化染色的结果图;
图9为本发明一实施例中大鼠心室肌纤维化染色的结果图。
具体实施方式
本发明提供一种基于MYL4基因编辑的心房颤动/心房心肌病大鼠模型及其构建方法,首先选择野生型大鼠MYL4基因第1号外显子第11个氨基酸谷氨酸(Glu/E)为靶点,设计靶向与该靶点的sgRNA和包含MYL4p.E11K点突变大鼠的单链核苷酸模板(ssODN)。向大鼠一细胞期受精卵显微共注射sgRNA,ssODN和Cas9mRNA,将注射后的受精卵移植到假孕母鼠体内。待F0代大鼠出生7天后,剪取大鼠脚趾提取基因组。在靶点上下游设计PCR扩增引物,使得靶点序列包含在PCR扩增产物内,通过与野生型大鼠基因组比对进行基于鉴定。选取鉴定为阳性的MYL4p.E11K点突变大鼠进行繁殖,最终获得纯合MYL4p.E11K点突变大鼠模型。取纯合大鼠进行Ⅱ导联心电图测定,以验证模拟病人点突变MYL4p.E11K的大鼠模型是否具有房颤的电生理表型。
下面通过具体实施例对本发明进行详细和具体的介绍,以使更好的理解本发明,但是下述实施例并不限制本发明范围。
以下实施例所采用的实验动物、器材和试剂如下:
1.实验动物
SPF级SD品系大鼠。饲养于同济大学动物中心。所进行的实验符合同济大学附属第十人民医院伦理委员会和上海市动物实验管理规范的相关规定(动物实验伦理审查编号:SHDSYY-0098)。
2.主要实验试剂配制及仪器设备
(1)10×PBS缓冲液
Figure BDA0002516806290000061
将试剂溶于800mL的ddH2O,用HCl(1M)调节pH至7.2-7.4,定容至1L。高温高压灭菌后,保存于室温。使用时,使用灭菌后的ddH2O将10×PBS按照1:10比例稀释成1×PBS。
(2)50×TAE缓冲液
Tris-base 242g
Acetic acid 57.1mL
EDTA 37.2g
将试剂溶于800mL的ddH2O,定容至1L,常温保存。
(3)5×TBE缓冲液
Tris-base 27g
EDTA 1.86g
硼酸 13.75g
将试剂溶于500mL的ddH2O。
(4)液体LB培养基
Tryptone 10g
Yeastextract 5g
NaCl 10g
将试剂溶于1L的ddH2O,高温高压灭菌,待培养基温度降至40℃后,加入终浓度为0.05mg/mL的氨苄青霉素或者卡纳霉素,混匀。4℃保存。
(5)固体LB培养皿
Figure BDA0002516806290000071
将试剂溶于1L的ddH2O,高温高压灭菌,待培养基温度降至40℃后,加入终浓度为0.05mg/mL的氨苄青霉素或者卡纳霉素。混匀。均匀导入10cm培养皿中,待培养基完全凝固后4℃保存。
(6)TE显微注射缓冲液
Trizma hydrochloride solution 100μL
EDTA 20μL
将试剂溶于10mL的ddH2O,0.22μm滤膜过滤,4℃C保存。
(7)1M Tris缓冲液
Tris-base 121g
将试剂溶于800mL的ddH2O,调节pH至8.0,定容至1L。常温保存。
(8)0.5M EDTA缓冲液
EDTA 186g
将试剂溶于800mL的ddH2O,调节pH至8.0,定容至1L。常温保存。
(9)10%SDS缓冲液
SDS 10g
将试剂溶于80mL的ddH2O,定容至100mL。常温保存。
(10)组织消化液
Figure BDA0002516806290000072
Figure BDA0002516806290000081
将试剂溶于80mL的ddH2O,定容至100mL,4℃保存。使用前按照1:1000比例加入蛋白酶K(proteinase K)。
(11)蛋白酶K(proteinase K)工作液
蛋白酶K 20mg
将试剂溶于1mL的ddH2O,-20℃C保存。
(12)PMSG储存液
PMSG 500IU
将试剂溶于DPBS至1mL,分装后-20℃C保存。使用前按照1:10比例稀释。
(13)hCG储存液
hCG 500IU
将试剂溶于DPBS至1mL,分装后-20℃C保存。使用前按照1:10比例稀释。
(14)10%APS工作液
APS 1g
将试剂溶于1mL的ddH2O,4℃C避光保存。
(15)DNA用PAGE凝胶
Figure BDA0002516806290000082
DNA用PAGE凝胶需要现配现用。
(16)RIPA裂解液
Figure BDA0002516806290000083
将试剂溶于50mL的ddH2O,4℃避光保存。
(17)10×凝胶电泳缓冲液
Tris-base 30.3g
甘氨酸 188g
SDS 10g
将试剂溶于1L的ddH2O,室温保存。使用前用ddH2O按照1:10的比例稀释。
(18)10×转膜缓冲液
Tris-base 58g
甘氨酸 29g
SDS 3.7g
将试剂溶于1L的ddH2O,室温保存。使用时将100mL缓冲液与700mL的ddH2O混匀,再加入200mL甲醇混匀,4℃充分预冷。
(19)1.25%w/v阿弗丁工作液
三溴乙醇 0.625g
叔戊醇 1.2mL
将试剂溶于50mL的ddH2O,避光放置于45℃水浴锅使三溴乙醇充分溶解。溶解后4℃避光保存。
(20)聚丙烯酰胺凝胶–分离胶缓冲液
Tris-base 181.71g
10%SDS缓冲液 40mL
将试剂混匀于800mL的ddH2O,使用1M HCl调节pH至8.8后,定容至1L。常温保存。
(21)聚丙烯酰胺凝胶–浓缩胶缓冲液
Tris-base 60g
10%SDS缓冲液 40mL
将试剂混匀于800mL的ddH2O,使用1M HCl调节pH至6.8后,定容至1L。常温保存。
(22)12%聚丙烯酰胺凝胶–分离胶
Figure BDA0002516806290000091
Figure BDA0002516806290000101
聚丙烯酰胺凝胶–分离胶现配现用。
(23)聚丙烯酰胺凝胶–浓缩胶
Figure BDA0002516806290000102
(24)10×柠檬酸钠抗原修复液
柠檬酸三钠 14.7g
Tween20 2.5mL
将试剂混匀于400mL的ddH2O,调节pH至6.0后,定容至500mL。4℃保存。使用前按照1:10比例稀释。
(25)10×EDTA抗原修复液
Tris-base 30.27g
EDTA 1.46g
将试剂混匀于400mL的ddH2O,调节pH至9.0后,定容至500mL。4℃保存。使用前按照1:10比例稀释。
(26)1μg/μL PEI工作液
PEIMAX 0.05g
精确称量试剂,溶于20mL的ddH2O,调节pH至7.0后,定容至50mL。分装后于-20℃保存。现取现用。不可反复冻融。
(27)4%多聚甲醛
多聚甲醛 4mL
1×PBS 96mL
将试剂混匀后4℃避光保存。
2.实验仪器
Figure BDA0002516806290000111
Figure BDA0002516806290000121
实施例一
本实施例提供一种基于MYL4基因编辑的心房颤动/心房心肌病大鼠模型,其构建方法包括如下步骤:
1.1靶向野生型MYL4基因的单链同源模板ssODN与sgRNA
(1)通过与人源序列进行对比,确认人的第11位谷氨酸与大鼠的第11位谷氨酸对应,通过在NCBI数据库(https://www.ncbi.nlm.nih.gov)对比,在NCBI数据库中查询大鼠MYL4基因(GeneID:688228)得知:该基因位于大鼠10号常染色体q32.1处,共有7个外显子,编码193个氨基酸。确认大鼠第11位谷氨酸位于大鼠MYL4基因的第1号外显子。参考图1,在1号外显子上设计靶向于与人类MYL4点突变同源位点的sgRNA靶点,进行精确点突变。
(2)在野生型MYL4靶点位点附近以所要突变的位点为中心,左右各设计50-60bp的同源臂,形成全长为120bp的G→A ssODN。序列详细信息见下:靶点sgRNA序列标记为灰色,sgRNA序列上游部分为与T7启动子重叠部分,sgRNA序列上游部分为与sgRNA scaffold重叠部分。
Figure BDA0002516806290000122
Figure BDA0002516806290000131
(3)通过https://benchling.com/,设计靶向于大鼠MYL4基因第1号外显子的sgRNA。为提高基因打靶效率,正、反义链各选取一sgRNA进行共同注射,序列为CCTTGGCAGTCTCCTTCTG(5’-3’)(SEQ ID NO:1)和AGAAGCCTGAGCCCAAGAG(5’-3’)(SEQ IDNO:2)。向sgRNA两端添加scaffold序列,得到前体sgRNA序列:GATCACTAATACGACTCACTATAGGCCTTGGCAGTCTCCTTCTGTTTTAGAGCTAGAAAT(5’-3’)(SEQ ID NO:3)和GATCACTAATACGACTCACTATAGGAGAAGCCTGAGCCCAAGAGTTTTAGAGCTAGAAAT(5’-3’)(SEQ ID NO:4)。同时根据sgRNAscaffold序列设计Scaffold_F和Scaffold_R引物用于从PX330质粒扩增骨架部分,形成双链产物。所采用的引物信息如下:
ID Sequence(5’-3’)
Scaffold_F GTTTTAGAGCTAGAAATAGC(SEQ ID NO:5)
Scaffold_R AAAAAAGCACCGACTCGGTGCC(SEQ ID NO:6)
T7_F GATCACTAATACGACTCAC(SEQ ID NO:10)
1.2体外制备sgRNA
(1)进行如下PCR反应以获得sgRNA scaffold产物:
PCR反应体系如下:
Figure BDA0002516806290000132
Figure BDA0002516806290000141
PCR循环程序如下:
Figure BDA0002516806290000142
反应结束后取6μL产物进行电泳鉴定,若获得单一条带,则将剩余产物用PCR产物纯化试剂盒纯化并进行浓度测定。
(2)将上一步获得的sgRNA scaffold产物与合成的前体sgRNA进行如下重叠PCR反应以获得sgRNA转录前体产物:
试剂 用量
10×KOD缓冲液 5μL
25mM,MgSO4 3μL
2mM,dNTP 5μL
sgRNA scaffold产物 100ng
10μM,前体sgRNA 1.5μL
10μM,T7_F 2μL
10μM,Scaffold_R 2μL
KOD-Plus-Neo聚合酶 1μL
ddH2O 补至50μL
PCR循环程序如下:
Figure BDA0002516806290000151
反应结束后取6μL产物进行电泳鉴定,若获得单一条带,则将剩余产物通过酚氯仿抽提和异丙醇沉淀纯化,用RNase-free ddH2O进行重悬,测量浓度。
(3)在RNase-free条件下,使用T7体外转录试剂盒将上一步获得的产物进行体外转录,体系如下:
试剂 用量
10×转录缓冲液 2μL
40U,RNase抑制剂 0.5μL
50mM,ATP 2μL
50mM,UTP 2μL
50mM,CTP 2μL
50mM,GTP 2μL
sgRNA转录前体产物 1μg
50U,RNA聚合酶 2μL
RNase-free ddH2O 补至20μL
均匀混合上述体系,42℃下反应2小时,后加入3μL RNAse-free DNaseⅠ,42℃下反应30min,以去除未反应的DNA模板。反应结束后加入77μL的
RNase-free ddH2O终止转录。
(4)在RNase-free条件下,用酚氯仿抽提和异丙醇沉淀对转录所得sgRNA产物进行纯化。取2μL RNA产物进行琼脂糖电泳鉴定,若获得清晰单一条带则表明sgRNA质量高,可测浓度后存储于-80℃,用于之后的显微注射。
1.3体外制备Cas9mRNA
(1)使用限制性内切酶NotⅠ线性化SP6-Cas9质粒,50μL体系反应中,加入2.5μgSP6-Cas9质粒,1.5μL NotⅠ,剩余体积用ddH2O不足。共线性化5μgSP6-Cas9质粒,将体系置于37℃反应6小时。
(2)反应结束后,取6μL产物进行琼脂糖凝胶电泳鉴定,若获得单一线性化条带(约10kb大小),则将剩余线性化SP6-Cas9用酚氯仿抽提和异丙醇沉淀纯化,用RNase-freeddH2O进行重悬,测量浓度,置于-20℃待用。
(3)在RNase-free条件下,使用SP6mMESSAGE mMACHINE kit将上一步获得的线性化质粒进行体外转录,体系如下:
试剂 用量
10×转录缓冲液 2μL
2×,SP6NTP/CAP 10μL
线性化SP6-Cas9 1μg
SP6酶混合物 2μL
RNase-free ddH2O 补至20μL
均匀混合上述体系,37℃下反应2hr。后加入1μL TURBO DNase,37℃下反应15min,以去除未反应的DNA模板。反应结束后加入30μL的RNase-free ddH2O和30μL的LiCl终止转录并且沉淀RNA,-20℃放置35min。
(4)4℃条件下14000g离心10min,尽量弃净上清,用RNAse-free 70%乙醇漂洗后晾干,使用20μL RNAse-free ddH2O溶解沉淀。取2μL RNA产物进行琼脂糖电泳鉴定后,测浓度后存储于-80℃,用于之后的显微注射。
1.4体外制备显微注射混合物
(1)用显微注射TE缓冲液将sgRNA和Cas9mRNA分别稀释为25ng/μL和50ng/μL。
(2)用显微注射TE缓冲液将G→A ssODN稀释为10ng/μL。
(3)在显微注射前,在冰上将10μL sgRNA,10μL Cas9mRNA和20μLssODN混匀,制成显微注射混合物。
1.5收集一细胞期胚胎
(1)供体母鼠与假孕母鼠的准备:使用孕马血清促性腺激素PMSG工作液(100μL,5IU,腹腔注射)预处理8周龄供体母鼠。48小时后再向供体母鼠注射人绒毛膜促性腺激素hCG工作液(100μL,5IU,腹腔注射)。将激素处理后的供体母鼠与10周龄公鼠1:1合笼。同时,将未经过激素处理的受体母鼠与结扎后公鼠1:1合笼以获得假孕母鼠。
(2)合笼18hr后检查供体母鼠是否有孕栓。二氧化碳窒息法处死有孕栓的母鼠,解刨出输卵管置于装有预热的M2培养基培养皿中。将M2培养基与透明质酸以9:1体积比例混合。体式显微镜下取出受精卵并转移至混合培养基中孵育。观察到卵丘细胞脱落后,将受精卵转移至M2培养基中,用培养基反复冲洗掉剩余卵丘细胞和透明质酸。
(3)将受精卵转移至滴加过矿物油的KSOM培养基中进行漂洗。在显微注射前,取出受精卵在M2培养基中孵育。
1.6显微注射与胚胎移植
(1)显微注射:向硅化载玻片上滴加M2培养基并用矿物油覆盖培养基。使用注射针吸入显微注射混合物,将注射针固定于显微注射仪上。将受精卵转移至载玻片上,使用固定针固定受精卵。使用注射针注射混合物至细胞核内。注射完毕后将注射后的受精卵转移至KOSM培养基中。
(2)胚胎移植:使用700μL阿弗丁(1.25%w/v三溴乙醇)麻醉假孕母鼠,剔除背毛,通过转移针将注射后的受精卵移植至假孕母鼠的输卵管内。手术后将母鼠置于37℃保温台上,待动物苏醒后转移至干净饲养笼饲养。
1.7阳性F0代大鼠鉴定与F1代大鼠繁殖
(1)一般说来,胚胎移植三周后子代出生。大鼠出生后七天剪取脚趾,每个脚趾加入300μL含有1‰蛋白酶K的组织消化液,55℃水浴锅消化过夜。
(2)提取大鼠基因组:加入等体积的酚氯仿混匀,室温静置5min后,12000rpm离心5min。转移上清至新的ep管,加入等体积的三氯甲烷混匀,室温静置5min。12000rpm离心5min。转移上清至新的ep管,加入2.5倍体积的无水乙醇和0.1倍体积的醋酸钠来沉淀基因组。-20℃放置0.5小时帮助基因组析出。4℃条件下,12000rpm离心10min,获得基因组沉淀。弃上清,用80μL纯水溶解沉淀得到基因组DNA。
(3)大鼠鉴定:合成扩增引物E11K_Identify2_F和E11K_Identify2_R(引物序列见附录),使用以下PCR体系扩增包含靶点在内的500bp序列:
鉴定使用的引物如下:
Figure BDA0002516806290000181
PCR反应体系如下:
试剂 用量
10×EasyTaq缓冲液 5μL
2.5mM,dNTP 5μL
基因组DNA 1μL
10μM,E11K_ID2_F 1.5μL
10μM,E11K_ID2_R 1.5μL
Easy Taq聚合酶 1μL
ddH2O 补至50μL
PCR循环程序如下:
Figure BDA0002516806290000182
反应结束后取6μL产物进行琼脂糖凝胶电泳鉴定,获得单一条带的PCR产物送至测序公司进行一代测序。
(4)与野生型大鼠基因组对比,比对测序结果。将鉴定结果为阳性的具有正确G→A点突变的F0代大鼠与野生型大鼠交配。重复步骤(1)-(3),对新生F1代大鼠进行基因鉴定(图2)。
由图2可知,基于MYL4基因编辑的心房颤动/心房心肌病大鼠模型构建成功。
实施例二
本实施例筛选构建点突变大鼠所用sgRNA的潜在脱靶位点,具体的实验步骤如下:
(1)通过https://benchling.com/,筛选构建点突变大鼠所用sgRNA的潜在脱靶位点。每个sgRNA各选择评分最高的前十个位点。在大鼠基因组信息中查找到每个位点对应序列的位置。针对这二十个潜在脱靶位点,设计扩增基因上下游300-500bp的特异性引物并通过PCR扩增,详细脱靶位点信息见下:将sgRNA1的前十位高评分脱靶位点命名为OT1-10;sgRNA2的前十位高评分脱靶位点命名为OT11-20。
Figure DA00025168062959100381
Figure BDA0002516806290000191
Figure BDA0002516806290000201
构建MYL4p.E11K点突变大鼠所用sgRNA的潜在脱靶位点扩增引物如下:
Figure BDA0002516806290000202
Figure BDA0002516806290000211
Figure DA00025168062959166477
以F0代大鼠基因组为模板,通过PCR反应扩增对应片段,PCR反应体系如下:
试剂 用量
10×KOD缓冲液 5μL
25mM,MgSO4 3μL
2mM,dNTP 5μL
基因组DNA 100ng
10μM,Primer_F 1.5μL
10μM,Primer_R 1.5μL
KOD-Plus-Neo聚合酶 1μL
ddH2O 补至50μL
PCR循环程序如下,为获得单一扩增片段,退火温度根据使用引物的不同有所更改:
Figure BDA0002516806290000221
通过琼脂糖凝胶电泳检测是否获得单一条带。若获得单一条带则切胶回收,纯化PCR扩增产物。
(2)将纯化后的PCR产物退火以获得双链DNA片段:95℃反应5min后,95℃降至35℃,每分钟降低1℃。
(3)使用T7EⅠ内切酶处理退火后的PCR产物,酶切体系如下:
试剂 用量
Buffer 3.1 2μL
退火PCR产物 500ng
T7EⅠ内切酶 0.3μL
ddH2O 补至20μL
同时准备不经T7EⅠ处理的阴性对照组,两组均置于37℃反应1小时。
(4)反应结束后,向实验组和对照组均加入5μL 5×DNA上样缓冲液。同时制备聚丙烯酰胺凝胶,将反应产物通过凝胶电泳分析是否有产生小片段插入或者缺失(indel)而被T7EⅠ切割的情况。纯化PCR产物并且将产物退火后,用T7EⅠ酶切实验检查是否有不完全匹配DNA双链位点。如图3所示,位点OT6、OT13和OT14可观察到经酶切产生的条带。与未经T7EⅠ酶处理的对照组相比,同样的酶切条带在对照组中同样存在,证明该条带是由T7EⅠ酶非特异性切割造成的。其余脱靶位点均未观察到T7EⅠ酶切条带掉落情况,因此检测的二十个靶点均未见脱靶现象。
实施例三
本实施例通过以下四个方面来验证实施例一构建的模型的稳定性和特异性,包括如下方法和结果:
(1)采用异氟烷进行气体麻醉大鼠,待大鼠达到稳定麻醉状态后,将大鼠固定至操作台。等待5min,确认大鼠达到稳定麻醉状态后,将电极刺入大鼠皮下。大鼠的左上肢(心脏一侧)接生物电仪器红色电极(正极),右上肢接绿色电极(负极),左下肢接黑色电极(参考极)。连接电极时需避免刺入肌肉或者毛发,导致生物电采集受扰。电极确认正确连接后,开启多通道生理信号采集处理器BL-420S生物机能实验系统,设定心电图测定参数,检测并记录标准Ⅱ导联心电图。如图4可知,MYL4p.E11K大鼠及基因敲除大鼠可见明确的房颤发作、及心房静止。
(2)超声检测前使用脱毛膏脱净大鼠颈部至胸腔下部毛发,避免多余毛发对超声影像采集造成干扰。将大鼠固定至操作台。在左胸前涂抹适量超声耦合剂,找到大鼠左心室长短轴切面。使用Vevo2100小动物活体成像系统,测量并且计算左心室射血分数和左心房直径等指标。由图5可知,MYL4p.E11K大鼠及基因敲除大鼠可见明确的心房扩大。
(3)心脏大体外观。肉眼对大鼠大体进行观察,以直观地研究MYL4p.E11K点突变对心脏外观形态造成的影响。对二氧化碳窒息法处死大鼠后,剃除大鼠前胸毛发,开胸暴露心脏,肉眼对心脏外观进行观察。观察显示,各组大鼠心脏组织颜色、外观均正常。未见心脏组织与心包组织产生明显广泛粘连。未见明显病理性水肿、渗出和萎缩。肉眼观察到野生型大鼠中,心房/心室比随着年龄增长略微增加,但变化并不明显。点突变大鼠心房/心室比较野生型大鼠明显增大,这一差异在12月龄大鼠中更为明显。该发现提示点突变对心脏结构产生影响(图6)。
(4)使用剪刀和镊子剪下完整心脏组织,用于组织包埋等实验。石蜡包埋切片:二氧化碳窒息法处死大鼠后,解刨取除完整大鼠心房组织。避光条件下,于4%多聚甲醛溶液固定过夜。第二天,将大鼠心房组织修剪小块,一般情况下,一个完整大鼠心房可得到两小块适合包埋的组织块。进行脱水、石蜡包埋、脱蜡、复水等步骤后。进行masson三色染色验证大鼠心房肌组织学变化。由图7-9可知,MYL4p.E11K大鼠及基因敲除大鼠可见明确的心房纤维化。
综上所述,本发明提供的方法成功构建了稳定的、心房特异性的心房颤动/心房心肌病大鼠模型,对房颤及心房心肌病的病理研究和新型治疗方案的评估具有十分积极的意义。
以上对本发明的具体实施例进行了详细描述,但其只作为范例,本发明并不限制于以上描述的具体实施例。对于本领域技术人员而言,任何对该实用进行的等同修改和替代也都在本发明的范畴之中。因此,在不脱离本发明的精神和范围下所作的均等变换和修改,都应涵盖在本发明的范围内。
序列表
<110> 上海市第十人民医院
<120> 一种基于MYL4基因编辑的心房颤动/心房心肌病大鼠模型及其构建方法
<160> 70
<170> SIPOSequenceListing 1.0
<210> 1
<211> 19
<212> DNA
<213> Artificial Sequence
<400> 1
ccttggcagt ctccttctg 19
<210> 2
<211> 19
<212> DNA
<213> Artificial Sequence
<400> 2
agaagcctga gcccaagag 19
<210> 3
<211> 60
<212> DNA
<213> Artificial Sequence
<400> 3
gatcactaat acgactcact ataggccttg gcagtctcct tctgttttag agctagaaat 60
<210> 4
<211> 60
<212> DNA
<213> Artificial Sequence
<400> 4
gatcactaat acgactcact ataggagaag cctgagccca agagttttag agctagaaat 60
<210> 5
<211> 20
<212> DNA
<213> Artificial Sequence
<400> 5
gttttagagc tagaaatagc 20
<210> 6
<211> 22
<212> DNA
<213> Artificial Sequence
<400> 6
aaaaaagcac cgactcggtg cc 22
<210> 7
<211> 120
<212> DNA
<213> Artificial Sequence
<400> 7
tcccacgtcc actggagatc ctaaggcagc atgcctccca agaagcctga gcccaagaag 60
aagactgcca aggcagccgc agcccctgcc ccagctcctg ccccagctcc cgagcccctc 120
<210> 8
<211> 22
<212> DNA
<213> Artificial Sequence
<400> 8
ggaggacgaa ctggtgacaa ta 22
<210> 9
<211> 22
<212> DNA
<213> Artificial Sequence
<400> 9
ggctataggt catggctctc at 22
<210> 10
<211> 19
<212> DNA
<213> Artificial Sequence
<400> 10
gatcactaat acgactcac 19
<210> 11
<211> 18
<212> DNA
<213> Artificial Sequence
<400> 11
ccttggctgt ctccttct 18
<210> 12
<211> 18
<212> DNA
<213> Artificial Sequence
<400> 12
cattggcagt ctccttct 18
<210> 13
<211> 18
<212> DNA
<213> Artificial Sequence
<400> 13
ccttggaagt ctccttct 18
<210> 14
<211> 18
<212> DNA
<213> Artificial Sequence
<400> 14
ccttggcagt ctcctttt 18
<210> 15
<211> 18
<212> DNA
<213> Artificial Sequence
<400> 15
tcttggctgt ctccttct 18
<210> 16
<211> 18
<212> DNA
<213> Artificial Sequence
<400> 16
actttgcagt ctccttct 18
<210> 17
<211> 18
<212> DNA
<213> Artificial Sequence
<400> 17
ctttagcagt ctccttct 18
<210> 18
<211> 18
<212> DNA
<213> Artificial Sequence
<400> 18
cctctgcagt ctccttct 18
<210> 19
<211> 18
<212> DNA
<213> Artificial Sequence
<400> 19
ccatggcagt caccttct 18
<210> 20
<211> 18
<212> DNA
<213> Artificial Sequence
<400> 20
cctgggcaat ctccttct 18
<210> 21
<211> 18
<212> DNA
<213> Artificial Sequence
<400> 21
acaagcctgt gcccaaga 18
<210> 22
<211> 18
<212> DNA
<213> Artificial Sequence
<400> 22
aaaagccaga gcccaaga 18
<210> 23
<211> 18
<212> DNA
<213> Artificial Sequence
<400> 23
agaggcccga gcccaaga 18
<210> 24
<211> 18
<212> DNA
<213> Artificial Sequence
<400> 24
ggaagcctga gcccaaca 18
<210> 25
<211> 18
<212> DNA
<213> Artificial Sequence
<400> 25
agaaaccaga gcccaaga 18
<210> 26
<211> 18
<212> DNA
<213> Artificial Sequence
<400> 26
agatccctga gcccaaga 18
<210> 27
<211> 18
<212> DNA
<213> Artificial Sequence
<400> 27
acaagcctga tcccaaga 18
<210> 28
<211> 18
<212> DNA
<213> Artificial Sequence
<400> 28
aggagcctga ccccaaga 18
<210> 29
<211> 18
<212> DNA
<213> Artificial Sequence
<400> 29
agtagcctga acccaaga 18
<210> 30
<211> 18
<212> DNA
<213> Artificial Sequence
<400> 30
agaagcccaa gcccaaga 18
<210> 31
<211> 20
<212> DNA
<213> Artificial Sequence
<400> 31
ttaacttgct ggcaagcagc 20
<210> 32
<211> 22
<212> DNA
<213> Artificial Sequence
<400> 32
ggtttgctgt atgatgggtg ag 22
<210> 33
<211> 19
<212> DNA
<213> Artificial Sequence
<400> 33
ttgctgttga acgcacacc 19
<210> 34
<211> 20
<212> DNA
<213> Artificial Sequence
<400> 34
gcaatggttg ctgcttccta 20
<210> 35
<211> 20
<212> DNA
<213> Artificial Sequence
<400> 35
caggaaaggt ggccatgatg 20
<210> 36
<211> 21
<212> DNA
<213> Artificial Sequence
<400> 36
ccaggcgtgg taaatagtgt g 21
<210> 37
<211> 18
<212> DNA
<213> Artificial Sequence
<400> 37
agcacaccct gcctatgg 18
<210> 38
<211> 25
<212> DNA
<213> Artificial Sequence
<400> 38
tacaggttac actcctacct ctacc 25
<210> 39
<211> 21
<212> DNA
<213> Artificial Sequence
<400> 39
cggcacttca ctatgtgggt a 21
<210> 40
<211> 21
<212> DNA
<213> Artificial Sequence
<400> 40
cccagcagaa aagctgcatt c 21
<210> 41
<211> 20
<212> DNA
<213> Artificial Sequence
<400> 41
acagaactcc agcaagcacc 20
<210> 42
<211> 17
<212> DNA
<213> Artificial Sequence
<400> 42
tgcctcccct gcttgga 17
<210> 43
<211> 20
<212> DNA
<213> Artificial Sequence
<400> 43
tcctctgttg tgacgggaag 20
<210> 44
<211> 21
<212> DNA
<213> Artificial Sequence
<400> 44
ccttggctcc atcactctag c 21
<210> 45
<211> 20
<212> DNA
<213> Artificial Sequence
<400> 45
gcacccttcc acatagagcc 20
<210> 46
<211> 20
<212> DNA
<213> Artificial Sequence
<400> 46
aacctgggga catcacagtc 20
<210> 47
<211> 20
<212> DNA
<213> Artificial Sequence
<400> 47
ctacggaaga gctggtggac 20
<210> 48
<211> 20
<212> DNA
<213> Artificial Sequence
<400> 48
aggcccgaac aactcaaact 20
<210> 49
<211> 21
<212> DNA
<213> Artificial Sequence
<400> 49
gtaagacccc gtctcggaaa c 21
<210> 50
<211> 21
<212> DNA
<213> Artificial Sequence
<400> 50
tctgcctcag ggatagacca a 21
<210> 51
<211> 20
<212> DNA
<213> Artificial Sequence
<400> 51
aaaggaaggc cacaaatgcc 20
<210> 52
<211> 20
<212> DNA
<213> Artificial Sequence
<400> 52
ttggagtcac gccatcactg 20
<210> 53
<211> 20
<212> DNA
<213> Artificial Sequence
<400> 53
tgccctttta tggccctgtc 20
<210> 54
<211> 19
<212> DNA
<213> Artificial Sequence
<400> 54
ctctacgtat gtgggcccc 19
<210> 55
<211> 20
<212> DNA
<213> Artificial Sequence
<400> 55
ctcttctggg tgagcagcaa 20
<210> 56
<211> 20
<212> DNA
<213> Artificial Sequence
<400> 56
caggctctga acttccccag 20
<210> 57
<211> 20
<212> DNA
<213> Artificial Sequence
<400> 57
cactgggaaa ctgccaaagc 20
<210> 58
<211> 20
<212> DNA
<213> Artificial Sequence
<400> 58
ctgcgtttcc ggtgctattc 20
<210> 59
<211> 19
<212> DNA
<213> Artificial Sequence
<400> 59
tttcagaggg cagttcggc 19
<210> 60
<211> 20
<212> DNA
<213> Artificial Sequence
<400> 60
gaagcagcga tggaactgga 20
<210> 61
<211> 20
<212> DNA
<213> Artificial Sequence
<400> 61
catcaggaag gtgtcccctg 20
<210> 62
<211> 22
<212> DNA
<213> Artificial Sequence
<400> 62
ggttcgtgcc tttgtaagag ag 22
<210> 63
<211> 23
<212> DNA
<213> Artificial Sequence
<400> 63
agcagaagtg tgagtgaccc taa 23
<210> 64
<211> 22
<212> DNA
<213> Artificial Sequence
<400> 64
tgatggccat caatgtgcag ag 22
<210> 65
<211> 19
<212> DNA
<213> Artificial Sequence
<400> 65
cactgggctc tccgtcttc 19
<210> 66
<211> 21
<212> DNA
<213> Artificial Sequence
<400> 66
ccctaggttc taggtgaggc t 21
<210> 67
<211> 21
<212> DNA
<213> Artificial Sequence
<400> 67
tcagctttat ggagagaggg c 21
<210> 68
<211> 20
<212> DNA
<213> Artificial Sequence
<400> 68
tccatgctct ccgaagcaaa 20
<210> 69
<211> 19
<212> DNA
<213> Artificial Sequence
<400> 69
aaggagggca aaggtgcag 19
<210> 70
<211> 20
<212> DNA
<213> Artificial Sequence
<400> 70
tccaggccaa ggagagagtg 20

Claims (8)

1.一种基于MYL4基因编辑的心房颤动/心房心肌病大鼠模型的构建方法,其特征在于,包括如下步骤:
步骤一,设计靶向野生型MYL4进行基因编辑相关的序列:在大鼠MYL4基因的第1号外显子设计靶向于与人类MYL4点突变同源位点的sgRNA、ssODN单链寡核苷酸、sgRNA Scaffold序列的引物和前体sgRNA序列;
步骤二,体外制备sgRNA:PCR反应得到sgRNA scaffold产物;将获得的所述sgRNAscaffold产物与所述前体sgRNA进行重叠PCR反应以获得sgRNA转录前体产物;然后将所述sgRNA转录前体产物进行体外转录,并纯化得到sgRNA产物;
步骤三,体外制备Cas9 mRNA:使用限制性内切酶Not Ⅰ线性化SP6-Cas9质粒;纯化线性化的SP6-Cas9产物,并对其进行转录得到所述Cas9 mRNA;
步骤四,体外制备显微注射混合物:冰上将所述sgRNA、Cas9 mRNA和ssODN混匀,制成显微注射混合物;
步骤五,显微注射和胚胎移植:将所述显微注射混合物注入受精卵,培养后,将注射后的受精卵移植到假孕母鼠的输卵管中;
步骤六,基因鉴定和筛选:将所述假孕母鼠饲养一段时间后,待其子代出生,采用PCR反应进行基因鉴定并筛选结果为基因型为阳性的子代;所述基因型为阳性的子代与野生型大鼠交配,待其子代出生后,进行基因鉴定并筛选,获得心房颤动/心房心肌病大鼠模型;
所述sgRNA序列包括方向为5’-3’的SEQ ID NO:1和SEQ ID NO:2。
2.根据权利要求1所述的构建方法,其特征在于,所述靶向野生型MYL4进行基因编辑相关的序列还包括T7启动子的引物,其序列为SEQ ID NO:10。
3.根据权利要求1所述的构建方法,其特征在于,所述前体sgRNA序列包括方向为5’-3’的SEQ ID NO:3和SEQ ID NO:4。
4.根据权利要求1所述的构建方法,其特征在于,所述sgRNA Scaffold序列的引物包括序列方向为5’-3’的SEQ ID NO:5和SEQ ID NO:6。
5.根据权利要求1所述的构建方法,其特征在于,步骤三中所述线性化的反应体系的体积为50μL包括2.5 μg SP6-Cas9质粒、1.5μL 限制性内切酶Not Ⅰ、余量为水。
6.根据权利要求1所述的构建方法,其特征在于,步骤四中所述sgRNA的浓度为25ng/μL,所述Cas9 mRNA的浓度为50ng/μL,所述ssODN的浓度为10ng/μL。
7.根据权利要求1所述的构建方法,其特征在于,步骤六中所述PCR反应采用的引物包括序列方向为5’-3’的SEQ ID NO:8和SEQ ID NO:9。
8.根据权利要求1所述的构建方法,其特征在于,所述PCR反应的参数为:95˚C 5min;95˚C 30 sec、50˚C 30 sec、68˚C 25 sec,29个循环;68˚C 5 min。
CN202010479394.9A 2020-05-29 2020-05-29 一种基于myl4基因编辑的心房颤动/心房心肌病大鼠模型及其构建方法 Active CN111621500B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010479394.9A CN111621500B (zh) 2020-05-29 2020-05-29 一种基于myl4基因编辑的心房颤动/心房心肌病大鼠模型及其构建方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010479394.9A CN111621500B (zh) 2020-05-29 2020-05-29 一种基于myl4基因编辑的心房颤动/心房心肌病大鼠模型及其构建方法

Publications (2)

Publication Number Publication Date
CN111621500A CN111621500A (zh) 2020-09-04
CN111621500B true CN111621500B (zh) 2023-03-31

Family

ID=72269718

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010479394.9A Active CN111621500B (zh) 2020-05-29 2020-05-29 一种基于myl4基因编辑的心房颤动/心房心肌病大鼠模型及其构建方法

Country Status (1)

Country Link
CN (1) CN111621500B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104561015A (zh) * 2013-10-25 2015-04-29 深圳华大基因科技有限公司 Myl4基因突变体及其应用
CN107326046A (zh) * 2016-04-28 2017-11-07 上海邦耀生物科技有限公司 一种提高外源基因同源重组效率的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104561015A (zh) * 2013-10-25 2015-04-29 深圳华大基因科技有限公司 Myl4基因突变体及其应用
CN107326046A (zh) * 2016-04-28 2017-11-07 上海邦耀生物科技有限公司 一种提高外源基因同源重组效率的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Wenhui Peng等."Dysfunction of Myosin Light‐Chain 4 (MYL4) Leads to Heritable Atrial Cardiomyopathy With Electrical, Contractile, and Structural Components: Evidence From Genetically‐Engineered Rats".《J Am Heart Assoc》.2017,第6卷第1-14页. *
Yuan Zhong等."Rs4968309 in Myosin Light Chain 4 (MYL4) Associated With Atrial Fibrillation Onset and Predicts Clinical Outcomes After Catheter Ablation in Atrial Fibrillation Patients Without Structural Heart Disease".《Circulation Journal Circ J》.2019,第83卷第1994-2001页. *
肖庆颖."心房心肌病的研究现状及进展".《中国学位论文全文数据库》.2018,摘要. *

Also Published As

Publication number Publication date
CN111621500A (zh) 2020-09-04

Similar Documents

Publication Publication Date Title
WO2018177351A1 (zh) 基于CRISPR/Cas9技术的制备无嵌合基因敲除动物的方法
CN110951787B (zh) 一种免疫缺陷小鼠、其制备方法及应用
EP3381278B1 (en) Method for preparing a canine model of atherosclerosis
CN109706184B (zh) 自闭症模型犬的建立方法
CN109943593B (zh) Mir3061基因Rosa26定点敲入杂合子小鼠模型构建方法与应用
CN107475412B (zh) 一种与鸡产蛋性状相关的分子标记及其在鸡育种中的应用
CN111304258B (zh) Ndufs2基因条件性点突变小鼠模型及其构建方法和应用
CN110951745A (zh) Cd163突变基因及其在抑制或阻断猪产生抗体的方法和应用
CN113088521A (zh) 一种基于CRISPR/Cas9技术的Ahnak2基因敲除动物模型的构建方法
EP4036242A1 (en) Method for establishing diabetes disease model dog
CN113234756A (zh) 一种基于CRISPR/Cas9技术的LAMA3基因敲除动物模型的构建方法
CN110250108B (zh) Rprm基因敲除小鼠模型及其构建方法与应用
CN111621500B (zh) 一种基于myl4基因编辑的心房颤动/心房心肌病大鼠模型及其构建方法
CN113549637B (zh) 一种小鼠phex基因snp位点及其应用
CN113444722B (zh) 单碱基编辑介导的剪接修复在制备治疗脊髓性肌萎缩症中的应用
US11246299B2 (en) Disease model pig exhibiting stable phenotype, and production method thereof
CN111778288A (zh) 构建hbv转基因小鼠模型的方法、组合物和应用
CN110846321B (zh) 一种突变基因及其用于构建斑色鱼鳞癣小型猪模型的用途
CN113388639B (zh) 一种基因敲入选育斑马鱼vmhcEGFP-KI品系的方法
CN113774128B (zh) Gja8基因突变位点在制备诊断白内障疾病的制品中的应用
CN118460624B (zh) 一种制备基因编辑鸡的方法
CN115058456B (zh) Hprt基因敲除的动物模型的构建方法和应用
CN116769779A (zh) 一种Mybpc3基因移码突变的小鼠模型的构建方法及其应用
CN116004641A (zh) 一种构建Lrp5 A241T基因点突变高骨量小鼠模型的方法
CN117887717A (zh) 一种Danon病小鼠疾病模型的构建方法及应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant