CN111614587A - 一种基于自适应集成深度学习模型的sc-fde系统信号检测方法 - Google Patents
一种基于自适应集成深度学习模型的sc-fde系统信号检测方法 Download PDFInfo
- Publication number
- CN111614587A CN111614587A CN202010448707.4A CN202010448707A CN111614587A CN 111614587 A CN111614587 A CN 111614587A CN 202010448707 A CN202010448707 A CN 202010448707A CN 111614587 A CN111614587 A CN 111614587A
- Authority
- CN
- China
- Prior art keywords
- adaptive
- deep learning
- signal detection
- fde
- self
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 29
- 238000013136 deep learning model Methods 0.000 title claims abstract description 23
- 238000004891 communication Methods 0.000 claims abstract description 19
- 238000012549 training Methods 0.000 claims abstract description 14
- 238000010586 diagram Methods 0.000 claims abstract description 11
- 238000004458 analytical method Methods 0.000 claims abstract description 7
- 230000003044 adaptive effect Effects 0.000 claims description 32
- 230000010354 integration Effects 0.000 claims description 13
- 239000011159 matrix material Substances 0.000 claims description 10
- 238000005457 optimization Methods 0.000 claims description 9
- 239000000969 carrier Substances 0.000 claims description 4
- 238000010606 normalization Methods 0.000 claims description 4
- 238000012795 verification Methods 0.000 claims description 4
- 230000008859 change Effects 0.000 claims description 3
- 210000002569 neuron Anatomy 0.000 claims description 3
- 239000003016 pheromone Substances 0.000 claims description 3
- 238000012545 processing Methods 0.000 claims description 3
- 238000012360 testing method Methods 0.000 claims description 3
- 230000006978 adaptation Effects 0.000 claims description 2
- 238000006243 chemical reaction Methods 0.000 claims description 2
- 238000011156 evaluation Methods 0.000 claims 1
- 238000013528 artificial neural network Methods 0.000 abstract description 14
- 238000000034 method Methods 0.000 abstract description 7
- 210000004027 cell Anatomy 0.000 description 9
- 238000005516 engineering process Methods 0.000 description 7
- 230000006870 function Effects 0.000 description 7
- 238000013461 design Methods 0.000 description 3
- 238000013473 artificial intelligence Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000013135 deep learning Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000010801 machine learning Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000005562 fading Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/03—Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
- H04L25/03006—Arrangements for removing intersymbol interference
- H04L25/03159—Arrangements for removing intersymbol interference operating in the frequency domain
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/213—Feature extraction, e.g. by transforming the feature space; Summarisation; Mappings, e.g. subspace methods
- G06F18/2132—Feature extraction, e.g. by transforming the feature space; Summarisation; Mappings, e.g. subspace methods based on discrimination criteria, e.g. discriminant analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/049—Temporal neural networks, e.g. delay elements, oscillating neurons or pulsed inputs
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/30—TPC using constraints in the total amount of available transmission power
- H04W52/34—TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading
- H04W52/346—TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading distributing total power among users or channels
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- Life Sciences & Earth Sciences (AREA)
- Artificial Intelligence (AREA)
- General Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Computing Systems (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Computational Linguistics (AREA)
- Biophysics (AREA)
- Biomedical Technology (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Health & Medical Sciences (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Power Engineering (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Evolutionary Biology (AREA)
- Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
Description
Claims (8)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010448707.4A CN111614587B (zh) | 2020-05-25 | 2020-05-25 | 一种基于自适应集成深度学习模型的sc-fde系统信号检测方法 |
KR1020210066528A KR102294156B1 (ko) | 2020-05-25 | 2021-05-24 | 자기 적응형 집적 딥러닝 모델 기반의 sc-fde 시스템 신호검측방법 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010448707.4A CN111614587B (zh) | 2020-05-25 | 2020-05-25 | 一种基于自适应集成深度学习模型的sc-fde系统信号检测方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111614587A true CN111614587A (zh) | 2020-09-01 |
CN111614587B CN111614587B (zh) | 2021-04-06 |
Family
ID=72201842
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010448707.4A Active CN111614587B (zh) | 2020-05-25 | 2020-05-25 | 一种基于自适应集成深度学习模型的sc-fde系统信号检测方法 |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR102294156B1 (zh) |
CN (1) | CN111614587B (zh) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112235023A (zh) * | 2020-10-09 | 2021-01-15 | 齐鲁工业大学 | 一种基于模型驱动深度学习的mimo-scfde自适应传输方法 |
CN112637093A (zh) * | 2020-12-09 | 2021-04-09 | 齐鲁工业大学 | 一种基于模型驱动深度学习的信号检测方法 |
CN113285902A (zh) * | 2021-05-19 | 2021-08-20 | 南京航空航天大学 | 一种ofdm系统检测器设计方法 |
CN114629763A (zh) * | 2021-09-27 | 2022-06-14 | 亚萨合莱国强(山东)五金科技有限公司 | 一种基于神经网络的ofdm系统iq信号解调方法及装置 |
WO2022151069A1 (zh) * | 2021-01-13 | 2022-07-21 | Oppo广东移动通信有限公司 | 接收信息处理方法、装置、计算机设备及存储介质 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114666236B (zh) * | 2022-03-29 | 2024-05-14 | 北京扬铭科技发展有限责任公司 | 一种全自动信号检测识别报警方法 |
CN114697183B (zh) * | 2022-03-31 | 2023-11-17 | 中国人民解放军国防科技大学 | 一种基于深度学习的信道同步方法 |
CN116526568B (zh) * | 2023-07-03 | 2023-09-15 | 国网北京市电力公司 | 交直流配电网分布式电源优化方法、系统、设备及介质 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101409694A (zh) * | 2008-11-06 | 2009-04-15 | 北京韦加航通科技有限责任公司 | 一种单载波频域均衡实现方法及系统 |
CN101981984A (zh) * | 2008-03-28 | 2011-02-23 | 高通股份有限公司 | 自适应功率控制的装置和方法 |
US20120224862A1 (en) * | 2011-03-05 | 2012-09-06 | Xiang Liu | System, Method, and Apparatus for High-Sensitivity Optical Detection |
CN105162737A (zh) * | 2015-09-11 | 2015-12-16 | 中国人民解放军国防科学技术大学 | 用于软件无线电系统的低复杂度自适应单载波频域均衡方法及装置 |
CN105634633A (zh) * | 2016-01-05 | 2016-06-01 | 哈尔滨工业大学(威海) | 用于水声协作通信中的自适应多分支合并频域检测器 |
CN106411799A (zh) * | 2016-10-12 | 2017-02-15 | 哈尔滨工业大学 | 低轨卫星移动通信单载波频域均衡方法 |
CN109474304A (zh) * | 2018-11-29 | 2019-03-15 | 中国海洋大学 | 自适应多制式水声通信系统及方法 |
CN109617847A (zh) * | 2018-11-26 | 2019-04-12 | 东南大学 | 一种基于模型驱动深度学习的无循环前缀ofdm接收方法 |
JP2019140590A (ja) * | 2018-02-14 | 2019-08-22 | 日本放送協会 | シングルキャリアmimo送信装置及びシングルキャリアmimo受信装置 |
CN110247864A (zh) * | 2018-03-11 | 2019-09-17 | 中山大学 | 一种sc-fde系统的无线时变信道估计方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112074940A (zh) * | 2018-03-20 | 2020-12-11 | 东京毅力科创株式会社 | 结合有集成半导体加工模块的自感知校正异构平台及其使用方法 |
-
2020
- 2020-05-25 CN CN202010448707.4A patent/CN111614587B/zh active Active
-
2021
- 2021-05-24 KR KR1020210066528A patent/KR102294156B1/ko active IP Right Grant
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101981984A (zh) * | 2008-03-28 | 2011-02-23 | 高通股份有限公司 | 自适应功率控制的装置和方法 |
CN101409694A (zh) * | 2008-11-06 | 2009-04-15 | 北京韦加航通科技有限责任公司 | 一种单载波频域均衡实现方法及系统 |
US20120224862A1 (en) * | 2011-03-05 | 2012-09-06 | Xiang Liu | System, Method, and Apparatus for High-Sensitivity Optical Detection |
CN105162737A (zh) * | 2015-09-11 | 2015-12-16 | 中国人民解放军国防科学技术大学 | 用于软件无线电系统的低复杂度自适应单载波频域均衡方法及装置 |
CN105634633A (zh) * | 2016-01-05 | 2016-06-01 | 哈尔滨工业大学(威海) | 用于水声协作通信中的自适应多分支合并频域检测器 |
CN106411799A (zh) * | 2016-10-12 | 2017-02-15 | 哈尔滨工业大学 | 低轨卫星移动通信单载波频域均衡方法 |
JP2019140590A (ja) * | 2018-02-14 | 2019-08-22 | 日本放送協会 | シングルキャリアmimo送信装置及びシングルキャリアmimo受信装置 |
CN110247864A (zh) * | 2018-03-11 | 2019-09-17 | 中山大学 | 一种sc-fde系统的无线时变信道估计方法 |
CN109617847A (zh) * | 2018-11-26 | 2019-04-12 | 东南大学 | 一种基于模型驱动深度学习的无循环前缀ofdm接收方法 |
CN109474304A (zh) * | 2018-11-29 | 2019-03-15 | 中国海洋大学 | 自适应多制式水声通信系统及方法 |
Non-Patent Citations (2)
Title |
---|
B. S. CHANG: "On the effect of channel estimation errors in SC-FDE systems using widely linear iterative equalization", 《2015 INTERNATIONAL SYMPOSIUM ON WIRELESS COMMUNICATION SYSTEMS (ISWCS)》 * |
张凯鑫: "基于深度学习的SC-FDE符号检测研究", 《中国优秀硕士学位论文全文数据库 信息科技辑》 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112235023A (zh) * | 2020-10-09 | 2021-01-15 | 齐鲁工业大学 | 一种基于模型驱动深度学习的mimo-scfde自适应传输方法 |
CN112637093A (zh) * | 2020-12-09 | 2021-04-09 | 齐鲁工业大学 | 一种基于模型驱动深度学习的信号检测方法 |
WO2022151069A1 (zh) * | 2021-01-13 | 2022-07-21 | Oppo广东移动通信有限公司 | 接收信息处理方法、装置、计算机设备及存储介质 |
CN113285902A (zh) * | 2021-05-19 | 2021-08-20 | 南京航空航天大学 | 一种ofdm系统检测器设计方法 |
CN113285902B (zh) * | 2021-05-19 | 2023-03-14 | 南京航空航天大学 | 一种ofdm系统检测器设计方法 |
CN114629763A (zh) * | 2021-09-27 | 2022-06-14 | 亚萨合莱国强(山东)五金科技有限公司 | 一种基于神经网络的ofdm系统iq信号解调方法及装置 |
CN114629763B (zh) * | 2021-09-27 | 2023-10-13 | 亚萨合莱国强(山东)五金科技有限公司 | 一种基于神经网络的ofdm系统iq信号解调方法及装置 |
Also Published As
Publication number | Publication date |
---|---|
KR102294156B1 (ko) | 2021-08-27 |
CN111614587B (zh) | 2021-04-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111614587B (zh) | 一种基于自适应集成深度学习模型的sc-fde系统信号检测方法 | |
Ye et al. | Power of deep learning for channel estimation and signal detection in OFDM systems | |
CN112637093B (zh) | 一种基于模型驱动深度学习的信号检测方法 | |
Elwekeil et al. | Deep convolutional neural networks for link adaptations in MIMO-OFDM wireless systems | |
Wang et al. | Deep convolutional neural network-based detector for index modulation | |
Jiang et al. | AI-aided online adaptive OFDM receiver: Design and experimental results | |
CN111669344A (zh) | 一种基于深度学习的时变ofdm系统信号检测方法 | |
Qing Yang | Modulation classification based on extensible neural networks | |
Liu et al. | A deep neural network method for automatic modulation recognition in OFDM with index modulation | |
Alawad et al. | A deep learning-based detector for IM-MIMO-OFDM | |
CN112215335A (zh) | 一种基于深度学习的系统检测方法 | |
Ye et al. | Bilinear convolutional auto-encoder based pilot-free end-to-end communication systems | |
Dehri et al. | Blind digital modulation classification for STBC‐OFDM system in presence of CFO and channels estimation errors | |
Liu et al. | CNN-based underwater acoustic OFDM communications over doubly-selective channels | |
Zheng et al. | Designing learning-based adversarial attacks to (MIMO-) OFDM systems with adaptive modulation | |
CN112564830B (zh) | 一种基于深度学习的双模正交频分复用索引调制检测方法及装置 | |
Li et al. | Model-driven deep learning scheme for adaptive transmission in MIMO-SCFDE system | |
CN112636855A (zh) | 一种ofdm信号检测方法 | |
Abbas et al. | MULTI USER DETECTION USING FUZZY LOGIC EMPOWERED ADAPTIVE BACK PROPAGATION NEURAL NETWORK. | |
Salehi et al. | Channel estimation based on learning automata for OFDM systems | |
KR102596571B1 (ko) | 가시광 통신에서 일반적인 led 인덱스 기반 변조 방식용 딥 러닝 기반의 인덱스 추정기 | |
Aziz et al. | Deep Recurrent Neural Network Based Detector for OFDM With Index Modulation | |
Altın | Deep neural network-based detection of index modulated MIMO-OFDM | |
Gümüş et al. | Channel estimation and symbol demodulation for OFDM systems over rapidly varying multipath channels with hybrid deep neural networks | |
Bhatt et al. | Analysis of the fifth generation NOMA system using LSTM algorithm |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CP03 | Change of name, title or address |
Address after: 250353 University Road, Changqing District, Ji'nan, Shandong Province, No. 3501 Patentee after: Qilu University of Technology (Shandong Academy of Sciences) Country or region after: China Patentee after: ASSA ABLOY Guoqiang (Shandong) Hardware Technology Co.,Ltd. Address before: 250353 University Road, Changqing District, Ji'nan, Shandong Province, No. 3501 Patentee before: Qilu University of Technology Country or region before: China Patentee before: ASSA ABLOY Guoqiang (Shandong) Hardware Technology Co.,Ltd. |