CN111612746A - A dynamic detection method of functional brain network hub nodes based on graph theory - Google Patents
A dynamic detection method of functional brain network hub nodes based on graph theory Download PDFInfo
- Publication number
- CN111612746A CN111612746A CN202010364805.XA CN202010364805A CN111612746A CN 111612746 A CN111612746 A CN 111612746A CN 202010364805 A CN202010364805 A CN 202010364805A CN 111612746 A CN111612746 A CN 111612746A
- Authority
- CN
- China
- Prior art keywords
- node
- matrix
- brain network
- functional brain
- nodes
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 210000004556 brain Anatomy 0.000 title claims abstract description 70
- 238000001514 detection method Methods 0.000 title claims abstract description 31
- 238000000034 method Methods 0.000 claims abstract description 22
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical group [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 9
- 239000008280 blood Substances 0.000 claims abstract description 9
- 210000004369 blood Anatomy 0.000 claims abstract description 9
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 9
- 239000001301 oxygen Substances 0.000 claims abstract description 9
- 239000011159 matrix material Substances 0.000 claims description 45
- 239000013598 vector Substances 0.000 claims description 38
- 230000006870 function Effects 0.000 claims description 21
- 238000005457 optimization Methods 0.000 claims description 4
- 239000008186 active pharmaceutical agent Substances 0.000 claims description 2
- 230000001174 ascending effect Effects 0.000 claims description 2
- 230000003190 augmentative effect Effects 0.000 claims description 2
- 238000004364 calculation method Methods 0.000 claims description 2
- 238000009795 derivation Methods 0.000 claims description 2
- 238000009499 grossing Methods 0.000 claims description 2
- 238000005070 sampling Methods 0.000 claims description 2
- 230000001149 cognitive effect Effects 0.000 abstract description 5
- 238000010586 diagram Methods 0.000 description 3
- 201000010099 disease Diseases 0.000 description 3
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 208000021384 Obsessive-Compulsive disease Diseases 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 238000004422 calculation algorithm Methods 0.000 description 2
- 238000002599 functional magnetic resonance imaging Methods 0.000 description 2
- 230000001537 neural effect Effects 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 238000012800 visualization Methods 0.000 description 2
- 208000012902 Nervous system disease Diseases 0.000 description 1
- 208000025966 Neurological disease Diseases 0.000 description 1
- 230000002490 cerebral effect Effects 0.000 description 1
- 238000013399 early diagnosis Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000002595 magnetic resonance imaging Methods 0.000 description 1
- 238000002610 neuroimaging Methods 0.000 description 1
- 230000001575 pathological effect Effects 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0012—Biomedical image inspection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10072—Tomographic images
- G06T2207/10088—Magnetic resonance imaging [MRI]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20072—Graph-based image processing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30004—Biomedical image processing
- G06T2207/30016—Brain
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Medical Informatics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Quality & Reliability (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Magnetic Resonance Imaging Apparatus (AREA)
Abstract
本发明公开了一种基于图论的功能脑网络中枢节点的动态检测方法。本发明在多变量中枢节点检测方法的基础上进行了改进,使得能够检测出更加可靠的符合神经科学认知活动的中枢节点。首先,利用滑动窗口的技术,把血氧信号以时间为维度平均分成几段。在每一段时间的滑动窗口内,检测出对应时间窗口内的中枢节点,从而得到一条中枢节点随着滑动窗口移动的一条变化轨迹。最后,把这条变化轨迹作为一种约束作用在多变量检测的方法上,从而能够动态的检测出更加可靠准确的中枢节点。
The invention discloses a dynamic detection method of a functional brain network center node based on graph theory. The invention improves on the multivariate central node detection method, so that a more reliable central node conforming to neuroscience cognitive activities can be detected. First, using the sliding window technique, the blood oxygen signal is evenly divided into several segments in the time dimension. In the sliding window of each period of time, the central node in the corresponding time window is detected, so as to obtain a change trajectory of the central node moving with the sliding window. Finally, this change trajectory is used as a constraint on the multivariate detection method, so that more reliable and accurate central nodes can be dynamically detected.
Description
技术领域technical field
本发明涉及神经科学脑网络研究领域,具体涉及一种基于图论的功能脑网络中枢节点的动态检测方法。The invention relates to the field of neuroscience brain network research, in particular to a dynamic detection method of a functional brain network center node based on graph theory.
背景技术Background technique
静息状态核磁共振技术(fMRI)提供了一种非侵入性的方法来测量脑血氧的变化。在静息状态下,受试者没有执行任何明确的任务,受试者会自发的产生神经活动,神经活动的波动是跟血氧浓度信号的变化相关的。因此血氧浓度信号被用来计算脑区之间的连接情况,从而构建功能脑网络。Resting-state magnetic resonance imaging (fMRI) provides a non-invasive method to measure changes in cerebral blood oxygen. In the resting state, the subjects did not perform any definite task, and the subjects spontaneously generated neural activity, and the fluctuation of neural activity was related to the change of the blood oxygen concentration signal. Therefore, the blood oxygen concentration signal is used to calculate the connectivity between brain regions, thereby constructing a functional brain network.
脑网络可以分成很多模块,有些模块负责视觉,有些负责听觉等,模块化结构使我们可以更加细致地区分脑区节点的不同角色和地位。比如,有些节点在其所在的模块内非常重要,但对整个网络而言却未必重要,这类节点被称为区域性核心节点(provincialhub),而另一些节点虽然在其自身的模块内作用有限,但它们却连接着不同的模块,维系着整个网络的连通性,这类节点被称为中枢节点(connectorhub)。中枢节点连接着脑网络中不同的功能模块,由于中枢节点的高度中心性,在大脑内的联系中起着非常重要的作用,比如对信息的整合,参与到多种多样的认知活动,这些特性表明当中枢节点遭受疾病的攻击时,更容易对我们的大脑产生影响。最近,在神经影像领域达成一种共识,即在整个扫描时间内,即使在无任务的环境中,大脑的功能网络也会发生变化。许多研究表明动态模式与某些脑神经疾病更相关。因此,如果我们能更加准确的动态检测中枢节点,可以帮助我们更好的分析和理解这些疾病的病理机制,也可以用来辅助疾病的早期诊断和治疗。The brain network can be divided into many modules, some modules are responsible for vision, some are responsible for hearing, etc. The modular structure allows us to distinguish the different roles and positions of nodes in the brain region in more detail. For example, some nodes are very important in their module, but not necessarily important to the whole network, such nodes are called regional core nodes (provincialhub), while other nodes have a limited role in their own module , but they are connected to different modules and maintain the connectivity of the entire network. Such nodes are called hub nodes (connectorhub). The central node connects different functional modules in the brain network. Due to the high centrality of the central node, it plays a very important role in the connection within the brain, such as the integration of information and participation in a variety of cognitive activities. The properties suggest that when a central node is attacked by a disease, it is more likely to have an impact on our brains. Recently, there has been a consensus in the field of neuroimaging that the functional network of the brain changes throughout the scan time, even in a task-free environment. Many studies have shown that dynamic patterns are more relevant to certain neurological disorders. Therefore, if we can dynamically detect the central nodes more accurately, it can help us better analyze and understand the pathological mechanism of these diseases, and can also be used to assist the early diagnosis and treatment of diseases.
目前,关于中枢节点检测的方法都是针对静态功能脑网络设计的,很难捕获中枢节点随时间产生的动态变化,导致检测的结果不具有时间一致性且无法保证中枢节点的变化与功能脑网络中呈现的认知变化相一致。At present, the detection methods of central nodes are all designed for static functional brain networks, and it is difficult to capture the dynamic changes of central nodes over time, resulting in the inconsistency of the detection results and the inability to guarantee the changes of central nodes and functional brain networks. Cognitive changes presented in
发明内容SUMMARY OF THE INVENTION
本发明提出一种给基于图论的功能脑网络中枢节点的动态检测方法。针对上述静态检测方法的不足,本文在多变量中枢节点检测方法的基础上进行了改进,使得能够检测出更加可靠的符合神经科学认知活动的中枢节点。The invention proposes a dynamic detection method for the central node of a functional brain network based on graph theory. Aiming at the shortcomings of the above static detection methods, this paper improves the multivariate central node detection method, so that it can detect more reliable central nodes in line with neuroscience cognitive activities.
首先,利用滑动窗口的技术,把血氧信号以时间为维度平均分成几段。在每一段时间的滑动窗口内,检测出对应时间窗口内的中枢节点,从而得到一条中枢节点随着滑动窗口移动的一条变化轨迹(如图1所示)。最后,把这条变化轨迹作为一种约束作用在多变量检测的方法上,从而能够动态的检测出更加可靠准确的中枢节点。First, using the sliding window technique, the blood oxygen signal is evenly divided into several segments in the time dimension. In the sliding window of each period of time, the central node in the corresponding time window is detected, so as to obtain a change trajectory of the central node moving with the sliding window (as shown in Figure 1). Finally, this change trajectory is used as a constraint on the multivariate detection method, so that more reliable and accurate central nodes can be dynamically detected.
本发明解决其技术问题所采用的方案如下步骤:The scheme adopted by the present invention to solve its technical problems is as follows:
步骤1:使用皮尔逊相关性在每个滑动窗口中构造功能脑网络;Step 1: Construct a functional brain network in each sliding window using Pearson correlation;
基本数据格式和预备知识,用G=(V,W)来表示一个功能脑网络,其中V表示N个脑区节点的集合,是一个N×N的邻接矩阵。wij表示邻接矩阵W中第i行第j列的元素,具体表示第i个脑区节点和第j个脑区节点的关联度;接下来计算拉普拉斯矩阵L=D-W,其中D是一个对角元素为的度矩阵。Basic data format and preliminary knowledge, use G=(V, W) to represent a functional brain network, where V represents the set of N brain area nodes, is an N×N adjacency matrix. w ij represents the element of the i-th row and the j-th column in the adjacency matrix W, specifically representing the degree of correlation between the i-th brain area node and the j-th brain area node; then calculate the Laplace matrix L=DW, where D is A diagonal element is degree matrix.
在图论中,图G由一组正交向量Φ形成,这些正交向量通过对拉普拉斯矩阵L进行特征分解来获得,即L=ΦTΛΦ,对角矩阵Λ=diag[λ1,λ2,...,λN],且λ1,λ2,...,λN表示以升序排序的特征值。In graph theory, a graph G is formed by a set of orthonormal vectors Φ obtained by eigendecomposition of the Laplacian matrix L, that is, L=Φ T ΛΦ, the diagonal matrix Λ=diag[λ 1 , λ 2 , . . . , λ N ], and λ 1 , λ 2 , . . . , λ N represent the eigenvalues sorted in ascending order.
所述的特征值与正交向量一一对应,是拉普拉斯矩阵L的特征值;The eigenvalues are in one-to-one correspondence with the orthogonal vectors, and are the eigenvalues of the Laplace matrix L;
如果所有脑区节点都连接在一个功能脑网络中,没有分离的部分,那么其中最小的特征值λ1为零。零特征值的数量等于子图的数量。即当λ1和λ2都的值都为零的时候,子图的数量为2。If all brain area nodes are connected in a functional brain network with no discrete parts, then the smallest eigenvalue λ1 is zero. The number of zero eigenvalues is equal to the number of subgraphs. That is, when the values of λ 1 and λ 2 are both zero, the number of subgraphs is 2.
步骤2:改进的多变量中枢节点检测Step 2: Improved Multivariate Hub Node Detection
2-1.功能脑网络中的每个脑区节点vi都与一个选择向量中的二值标记si相关联,其中si=0表示脑区节点vi为中枢节点,si=1表示不是中枢节点。通过移除选中的脑区节点后对功能脑网络的破坏程度,来判断是否是希望得到的中枢节点,其中破坏程度通过移除该脑区节点后剩余功能脑网络的零特征值的数量情况来判断。2-1. Each brain area node v i in the functional brain network is associated with a binary label s i in a selection vector, where s i =0 indicates that the brain area node v i is a central node, and s i =1 Indicates that it is not a hub node. Whether it is the desired central node is determined by the degree of damage to the functional brain network after removing the selected brain area node, where the degree of damage is determined by the number of zero eigenvalues of the remaining functional brain network after removing the node in the brain area. judge.
判断准则如下:若剩余功能脑网络的零特征值的数量在删除选中的节点后,相对于删除别的节点增加的更多,则将该节点作为候选的中枢节点。The judgment criterion is as follows: if the number of zero eigenvalues of the remaining functional brain network increases more than other nodes after deleting the selected node, the node is regarded as a candidate hub node.
2-2.由于一次性需要选择多个中枢节点,所以对选择向量s=[s1,s2,…,sn]的估计是一个NP难的问题。根据KyFan定理,把问题转换成最小化前K个最小特征值的总和,2-2. Since multiple hub nodes need to be selected at one time, the estimation of the selection vector s=[s 1 , s 2 , . . . , s n ] is an NP-hard problem. According to KyFan's theorem, transform the problem into minimizing the sum of the first K smallest eigenvalues,
设功能脑网络的N个脑区节点中总共有K个中枢节点,则计算如下:Assuming that there are a total of K central nodes in the N brain area nodes of the functional brain network, the calculation is as follows:
然后进一步推导得到最终的目标函数:Then further derivation to get the final objective function:
其中,λi表示第i个特征值;表示一个矩阵;Among them, λ i represents the ith eigenvalue; represents a matrix;
2-3.将选择向量s的每个元素放到对角矩阵S的对角线上。其中Ls=D-STWS表示剩余功能脑网络的拉普拉斯矩阵,下标s是用于区分的标记;表示剩余功能脑网络中每个脑区节点的K维矩阵,并受FTF=I正交约束,因此需要优化求解F和S:2-3. Place each element of the selection vector s on the diagonal of the diagonal matrix S. where L s =DS T WS represents the Laplacian matrix of the residual functional brain network, and the subscript s is the mark used to distinguish; represents the K-dimensional matrix of each brain area node in the residual functional brain network, and is constrained by the orthogonality of F T F=I, so it needs to be optimized to solve F and S:
优化F:固定对角矩阵S,得到F的闭式解,闭式解是Ls的前K项最小特征值所对应的K个正交向量。Optimize F: fix the diagonal matrix S, and obtain the closed-form solution of F. The closed-form solution is the K orthogonal vectors corresponding to the minimum eigenvalues of the first K items of L s .
优化S:固定F,优化对角矩阵S的目标函数变为:Optimize S: fix F, and the objective function of optimizing the diagonal matrix S becomes:
其中是一个元素aij=wij||fi-fj||2的N×N的矩阵,且fi和fj分别表示F矩阵的第i行向量和第j行向量。in is an N×N matrix with elements a ij =w ij ||f i -f j || 2 , and f i and f j represent the i-th row vector and the j-th row vector of the F matrix, respectively.
2-4.由于优化后的目标函数不是严格凸的,s是二值的选择向量不利于优化,因此引入辅助向量并将上述优化后的目标函数化简为:2-4. Since the optimized objective function is not strictly convex, s is a binary selection vector, which is not conducive to optimization, so an auxiliary vector is introduced And simplify the above optimized objective function to:
其中P是由辅助向量p导出的另一个对角矩阵。直观地说,选择向量s是辅助向量p的二值化结果。where P is another diagonal matrix derived from the auxiliary vector p. Intuitively, the selection vector s is the binarization result of the auxiliary vector p.
同样在方程(4)中交替求解P和S:Also solve for P and S alternately in equation (4):
优化F:固定对角矩阵S,得到F的闭式解,闭式解是Ls的前K项最小特征值所对应的K个正交向量。Optimize F: fix the diagonal matrix S, and obtain the closed-form solution of F. The closed-form solution is the K orthogonal vectors corresponding to the minimum eigenvalues of the first K items of L s .
优化S和P:固定F,利用增广拉格朗日乘子法优化求解对角矩阵S和辅助矩阵P。Optimize S and P: fix F, use the augmented Lagrange multiplier method to optimize the diagonal matrix S and the auxiliary matrix P.
步骤3:功能脑网络中枢节点的动态检测Step 3: Dynamic detection of functional brain network hub nodes
本发明的中枢节点检测对动态功能网络的算法框架如图2所示。具体来如下所示:Fig. 2 shows the algorithm frame of the dynamic function network of the central node detection of the present invention. Specifically as follows:
3-1.将整个血氧信号分段成T组重叠的滑动窗口。在每个时刻t,估计每个脑区节点vi对应的pi,pi是辅助向量p中的第i个元素。3-1. Segment the entire blood oxygen signal into T groups of overlapping sliding windows. At each time t, estimate pi corresponding to each brain region node v i , where pi is the ith element in the auxiliary vector p.
3-2.连接pi形成一条轨迹其中是连续函数pi(τ)在时间点τt的离散采样。因此连续函数pi(τ)在任意其它时间点τ的值都可以使用径向基函数(RBFs)计算:3-2. Connect pi to form a trajectory in is the discrete sampling of the continuous function p i (τ) at time τ t . Therefore the value of the continuous function p i (τ) at any other time point τ can be calculated using radial basis functions (RBFs):
其中参数σ用于控制轨迹平滑的强度,表示第i个脑区节点在时刻t的辅助向量的权值,即表示pi在时刻t的权值;τ-τt表示时间差。where the parameter σ is used to control the strength of the trajectory smoothing, Represents the weight of the auxiliary vector of the i-th brain area node at time t, namely Represents the weight of pi at time t; τ-τ t represents the time difference.
3-3.给定轨迹径向基函数集合通过以下方法计算:3-3. Given track Radial Basis Function Collection Calculated by:
其中,参数λ用于控制连续函数pi(τ)的时间相关性的强度。where the parameter λ is used to control the strength of the time dependence of the continuous function p i (τ).
3-4.使用改进后由辅助向量构成的对角矩阵P,来初始化每个滑动窗口的选择向量s组成的对角矩阵S,如图2中的箭头所示。3-4. Use the improved diagonal matrix P composed of auxiliary vectors to initialize the diagonal matrix S composed of the selection vector s of each sliding window, as shown by the arrows in Figure 2.
3-5.将改进后由辅助向量构成的对角矩阵P带入步骤2-3重复优化求解直到目标收敛。3-5. Bring the improved diagonal matrix P composed of auxiliary vectors into step 2-3 and repeat the optimization solution until the target converges.
本发明有意效果如下:The intentional effect of the present invention is as follows:
本发明方法的输出是随着脑网络的变化而变化的中枢节点,这些中枢节点不仅在每个时间点上都比传统方法更精确,而且还保留了在时间点之间的相关性信息。The output of the method of the present invention is the central nodes that change with the changes of the brain network, and these central nodes are not only more accurate than the traditional method at each time point, but also retain the correlation information between the time points.
附图说明Description of drawings
图1是中枢节点动态检测方法的整体框架;Fig. 1 is the overall framework of the dynamic detection method of the central node;
图2是中枢节点动态检测方法的算法框架;Fig. 2 is the algorithm framework of the dynamic detection method of the central node;
图3是传统方法和本方法稳定性的分析图;Fig. 3 is the analysis diagram of traditional method and the stability of this method;
图4是传统方法和本方法对一个正常人中枢节点检测的可视化结果图;Fig. 4 is a visualization result diagram of the detection of a normal person's central node by the traditional method and the present method;
图5是传统方法和本方法对一个强迫症患者中枢节点检测的可视化结果图;Fig. 5 is a visualization result diagram of the detection of the central node of a patient with obsessive-compulsive disorder by the traditional method and the present method;
具体实施方式Detailed ways
下面结合附图及实验,对本发明进行进一步的详细说明。The present invention will be further described in detail below in conjunction with the accompanying drawings and experiments.
本发明利用滑动窗口的技术,把血氧信号以时间为维度平均分成几段。在每一段时间的滑动窗口内,检测出对应时间窗口内的中枢节点,从而得到一条中枢节点随着滑动窗口移动的一条变化轨迹(如图1所示)。最后,把这条变化轨迹作为一种约束作用在多变量检测的方法上,从而能够动态的检测出更加可靠准确的中枢节点。The present invention uses the sliding window technology to divide the blood oxygen signal into several segments evenly in the dimension of time. In the sliding window of each period of time, the central node in the corresponding time window is detected, so as to obtain a change trajectory of the central node moving with the sliding window (as shown in Figure 1). Finally, this change trajectory is used as a constraint on the multivariate detection method, so that more reliable and accurate central nodes can be dynamically detected.
本发明实施例实现的主要步骤:The main steps realized by the embodiment of the present invention:
步骤(1):选择63名正常人和62名强迫症患者的数据进行实验。每个受试者都有T1加权磁共振图像(具体参数为TR=8毫秒,TE=1.7ms毫秒,翻转角度=20°,分辨率=1.0×1.0×1.0mm2)和静息态功能磁共振数据(具体参数为TR=2s,TE=60ms毫秒,翻转角度=90°,分辨率=3.0×3.0×4.0mm2),每个受试者都包含230个检测时间点。Step (1): Select the data of 63 normal people and 62 obsessive-compulsive disorder patients for the experiment. Each subject had T1-weighted magnetic resonance images (specific parameters were TR = 8 ms, TE = 1.7 ms ms, flip angle = 20°, resolution = 1.0 x 1.0 x 1.0 mm 2 ) and resting-state fMRI Resonance data (specific parameters are TR=2s, TE=60ms milliseconds, flip angle=90°, resolution=3.0×3.0×4.0mm 2 ), each subject contains 230 detection time points.
步骤(2):将所有这些实验数据配准到AAL模板中,划分成116个脑区。并且计算这些脑区之间的相关性得到相应的功能脑网络连接矩阵W,作为实验的输入。Step (2): Register all these experimental data into the AAL template, which is divided into 116 brain regions. And the correlation between these brain regions is calculated to obtain the corresponding functional brain network connection matrix W, which is used as the input of the experiment.
步骤(3):设置实验参数。Step (3): set the experimental parameters.
滑动窗口的大小设置成整个时间点的10%大小;中枢节点的检测数目设置为12;径向基RBF的参数σ设置成0.7;通过网格搜索法找到目标函数(2)的最优的λ参数为0.6。The size of the sliding window is set to 10% of the entire time point; the detection number of the central node is set to 12; the parameter σ of the radial basis RBF is set to 0.7; the optimal λ of the objective function (2) is found by the grid search method The parameter is 0.6.
步骤(4):最后对目标函数依次优化F和S,直到收敛,得到最终的结果。Step (4): Finally, on the objective function Optimize F and S in turn until convergence and get the final result.
实验结果分析:Analysis of results:
对于每一个个体,统计出每个滑动窗口内被检测为中枢节点的个数,构建相应的直方图,最后计算对应的熵值。For each individual, the number of detected pivot nodes in each sliding window is counted, the corresponding histogram is constructed, and the corresponding entropy value is finally calculated.
熵越低表明,中枢节点在整个检测过程中的变化也是少的,如图3所示,我们可以看到熵值都处于对角线以上,表明我们的方法检测出来的熵值更低,更加稳定。The lower the entropy, the less the change of the central node in the whole detection process. As shown in Figure 3, we can see that the entropy value is above the diagonal line, indicating that the entropy value detected by our method is lower and more Stablize.
我们进一步可视化了其中一段时间中枢节点的变化结果,如图4和图5所示,我们的方法检测出来的中枢节点在3个TR内(约6秒)没有发生变化,而传统方法检测出来的中枢节点在第二个TR时刻都发生了跳变,并在下一时刻恢复到之前的状态,这种情况是不寻常,不符认知变化的规律。因此,可以看出我们的方法比传统方法更加稳定和可靠。We further visualized the change results of the hub nodes for a period of time. As shown in Figure 4 and Figure 5, the hub nodes detected by our method did not change within 3 TRs (about 6 seconds), while the traditional methods detected no changes. The central node jumped at the second TR moment, and returned to the previous state at the next moment. This situation is unusual and does not conform to the law of cognitive change. Therefore, it can be seen that our method is more stable and reliable than traditional methods.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010364805.XA CN111612746B (en) | 2020-04-30 | 2020-04-30 | Dynamic detection method for functional brain network central node based on graph theory |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010364805.XA CN111612746B (en) | 2020-04-30 | 2020-04-30 | Dynamic detection method for functional brain network central node based on graph theory |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111612746A true CN111612746A (en) | 2020-09-01 |
CN111612746B CN111612746B (en) | 2023-10-13 |
Family
ID=72196615
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010364805.XA Active CN111612746B (en) | 2020-04-30 | 2020-04-30 | Dynamic detection method for functional brain network central node based on graph theory |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111612746B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117357132A (en) * | 2023-12-06 | 2024-01-09 | 之江实验室 | Task execution method and device based on multi-layer brain network node participation coefficient |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101243974A (en) * | 2008-03-28 | 2008-08-20 | 天津和德脑象图技术开发研究有限公司 | Method and apparatus for generating brain phase image detection and analysis with electroencephalogram |
CN103325119A (en) * | 2013-06-27 | 2013-09-25 | 中国科学院自动化研究所 | Default state brain network center node detecting method based on modality fusion |
US20150142714A1 (en) * | 2013-11-18 | 2015-05-21 | Sargon Partners | Dynamic lighting system |
CN106650231A (en) * | 2016-11-10 | 2017-05-10 | 深圳市元征软件开发有限公司 | Method and device for processing wireless body area network data |
CN108519819A (en) * | 2018-03-30 | 2018-09-11 | 北京金山安全软件有限公司 | Intelligent device processing method and device, intelligent device and medium |
CN109522894A (en) * | 2018-11-12 | 2019-03-26 | 电子科技大学 | A method of detection fMRI brain network dynamic covariant |
US20190090749A1 (en) * | 2017-09-26 | 2019-03-28 | Washington University | Supervised classifier for optimizing target for neuromodulation, implant localization, and ablation |
CN109893126A (en) * | 2019-03-21 | 2019-06-18 | 杭州电子科技大学 | Epileptic seizure prediction method based on brain function network characterization |
-
2020
- 2020-04-30 CN CN202010364805.XA patent/CN111612746B/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101243974A (en) * | 2008-03-28 | 2008-08-20 | 天津和德脑象图技术开发研究有限公司 | Method and apparatus for generating brain phase image detection and analysis with electroencephalogram |
CN103325119A (en) * | 2013-06-27 | 2013-09-25 | 中国科学院自动化研究所 | Default state brain network center node detecting method based on modality fusion |
US20150142714A1 (en) * | 2013-11-18 | 2015-05-21 | Sargon Partners | Dynamic lighting system |
CN106650231A (en) * | 2016-11-10 | 2017-05-10 | 深圳市元征软件开发有限公司 | Method and device for processing wireless body area network data |
US20190090749A1 (en) * | 2017-09-26 | 2019-03-28 | Washington University | Supervised classifier for optimizing target for neuromodulation, implant localization, and ablation |
CN108519819A (en) * | 2018-03-30 | 2018-09-11 | 北京金山安全软件有限公司 | Intelligent device processing method and device, intelligent device and medium |
CN109522894A (en) * | 2018-11-12 | 2019-03-26 | 电子科技大学 | A method of detection fMRI brain network dynamic covariant |
CN109893126A (en) * | 2019-03-21 | 2019-06-18 | 杭州电子科技大学 | Epileptic seizure prediction method based on brain function network characterization |
Non-Patent Citations (3)
Title |
---|
THI MAI PHUONG NGUYEN 等: "Estimation of Brain Dynamics Under Visuomotor Task using Functional Connectivity Analysis Based on Graph Theory" * |
耿广磊: "基于磁共振的脑结构功能网络分析方法应用研究" * |
靳聪 等: "DTI脑网络中枢节点识别方法的比较" * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117357132A (en) * | 2023-12-06 | 2024-01-09 | 之江实验室 | Task execution method and device based on multi-layer brain network node participation coefficient |
CN117357132B (en) * | 2023-12-06 | 2024-03-01 | 之江实验室 | Task execution method and device based on multi-layer brain network node participation coefficient |
Also Published As
Publication number | Publication date |
---|---|
CN111612746B (en) | 2023-10-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Qiao et al. | Estimating functional brain networks by incorporating a modularity prior | |
KR102221264B1 (en) | Method for estimating human emotions using deep psychological affect network and system therefor | |
Mullen et al. | Real-time neuroimaging and cognitive monitoring using wearable dry EEG | |
Shi et al. | Atrial fibrillation detection from face videos by fusing subtle variations | |
Jie et al. | Topological graph kernel on multiple thresholded functional connectivity networks for mild cognitive impairment classification | |
CN108345903B (en) | A kind of multi-modal fusion image classification method based on mode distance restraint | |
Xing et al. | Convolutional neural network with element-wise filters to extract hierarchical topological features for brain networks | |
Li et al. | Virtual adversarial training-based deep feature aggregation network from dynamic effective connectivity for MCI identification | |
CN111863244B (en) | Functional connection mental disease classification method and system based on sparse pooling graph convolution | |
Dimitriadis et al. | Improving the reliability of network metrics in structural brain networks by integrating different network weighting strategies into a single graph | |
CN103034778B (en) | Be applicable to the individual brain function network extraction method of how tested brain function data analysis | |
CN113057585B (en) | Cognitive disorder detection model and training method thereof | |
CN106650818B (en) | Resting state function magnetic resonance image data classification method based on high-order hyper-network | |
WO2014043216A1 (en) | Systems and methods for diagnosing cardiovascular conditions | |
Sangeetha et al. | Deep learning-based early parkinson’s disease detection from brain mri image | |
KR101796055B1 (en) | Method and device for monitoring brain status by constructing multiple brain networks | |
CN107967686B (en) | An epilepsy recognition device combining dynamic brain network and long-term memory network | |
Wan et al. | EEG fading data classification based on improved manifold learning with adaptive neighborhood selection | |
Wang et al. | Distribution-guided network thresholding for functional connectivity analysis in fMRI-based brain disorder identification | |
Zong et al. | A new brain network construction paradigm for brain disorder via diffusion-based graph contrastive learning | |
Shrivastava et al. | Control or autism-classification using convolutional neural networks on functional MRI | |
CN110491506A (en) | Auricular fibrillation prediction model and its forecasting system | |
CN112634214A (en) | Brain network classification method combining node attributes and multilevel topology | |
Luo et al. | Exploring adaptive graph topologies and temporal graph networks for EEG-based depression detection | |
CN111612746A (en) | A dynamic detection method of functional brain network hub nodes based on graph theory |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |