CN107967686B - An epilepsy recognition device combining dynamic brain network and long-term memory network - Google Patents
An epilepsy recognition device combining dynamic brain network and long-term memory network Download PDFInfo
- Publication number
- CN107967686B CN107967686B CN201711442389.5A CN201711442389A CN107967686B CN 107967686 B CN107967686 B CN 107967686B CN 201711442389 A CN201711442389 A CN 201711442389A CN 107967686 B CN107967686 B CN 107967686B
- Authority
- CN
- China
- Prior art keywords
- network
- brain
- long
- term memory
- data
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 210000004556 brain Anatomy 0.000 title claims abstract description 67
- 206010015037 epilepsy Diseases 0.000 title claims abstract description 40
- 230000007787 long-term memory Effects 0.000 title claims abstract description 31
- 230000006403 short-term memory Effects 0.000 claims abstract description 15
- 238000002599 functional magnetic resonance imaging Methods 0.000 claims abstract description 13
- 230000015654 memory Effects 0.000 claims abstract description 12
- 238000004422 calculation algorithm Methods 0.000 claims abstract description 6
- 239000011159 matrix material Substances 0.000 claims description 40
- 238000000034 method Methods 0.000 claims description 14
- 238000000605 extraction Methods 0.000 claims description 12
- 238000013500 data storage Methods 0.000 claims description 9
- 238000012937 correction Methods 0.000 claims description 8
- 239000000284 extract Substances 0.000 claims description 8
- 238000007781 pre-processing Methods 0.000 claims description 5
- 230000004886 head movement Effects 0.000 claims description 4
- 230000008569 process Effects 0.000 claims description 2
- 238000012549 training Methods 0.000 abstract description 7
- 238000003909 pattern recognition Methods 0.000 abstract description 4
- 238000003745 diagnosis Methods 0.000 abstract description 3
- 239000000523 sample Substances 0.000 description 21
- 238000012360 testing method Methods 0.000 description 8
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 4
- 201000010099 disease Diseases 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 2
- 230000003902 lesion Effects 0.000 description 2
- 230000008506 pathogenesis Effects 0.000 description 2
- 230000009885 systemic effect Effects 0.000 description 2
- 206010051290 Central nervous system lesion Diseases 0.000 description 1
- 206010010356 Congenital anomaly Diseases 0.000 description 1
- 206010010904 Convulsion Diseases 0.000 description 1
- 208000034308 Grand mal convulsion Diseases 0.000 description 1
- 208000012902 Nervous system disease Diseases 0.000 description 1
- 208000025966 Neurological disease Diseases 0.000 description 1
- 208000006633 Tonic-Clonic Epilepsy Diseases 0.000 description 1
- 230000003925 brain function Effects 0.000 description 1
- 230000001149 cognitive effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 201000002933 epilepsy with generalized tonic-clonic seizures Diseases 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000007102 metabolic function Effects 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 239000013610 patient sample Substances 0.000 description 1
- 230000035790 physiological processes and functions Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0012—Biomedical image inspection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10072—Tomographic images
- G06T2207/10088—Magnetic resonance imaging [MRI]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30004—Biomedical image processing
- G06T2207/30016—Brain
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Medical Informatics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Quality & Reliability (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Magnetic Resonance Imaging Apparatus (AREA)
Abstract
本发明公开了一种联合动态脑网络和长短时记忆网络的癫痫识别装置,属于生物医学图像模式识别技术领域。本发明首先计算癫痫患者和正常对照组的功能磁共振成像的脑网络和动态脑网络。然后对于脑网络,使用F‑score特征选择算法计算脑网络中每一个功能连接的F值,取出F值大于0.06对应的动态脑网络的特征作为长短时记忆网络的输入。接下来建立长短时记忆网络结构,输入为选出的动态脑网络特征,输出为样本标签,其中癫痫患者标签为1,正常人标签为0。最后使用随机梯度下降算法来优化网络中的参数,经过不断的训练,最终完成癫痫患者于正常人之间的识别任务。本发明首次结合动态脑网络和长短时记忆网络来进行癫痫医疗辅助诊断任务。
The invention discloses an epilepsy recognition device combining a dynamic brain network and a long-short-term memory network, and belongs to the technical field of biomedical image pattern recognition. The present invention firstly calculates the brain network and dynamic brain network of functional magnetic resonance imaging of epilepsy patients and normal control groups. Then, for the brain network, the F-score feature selection algorithm was used to calculate the F value of each functional connection in the brain network, and the features of the dynamic brain network corresponding to the F value greater than 0.06 were taken out as the input of the long and short-term memory network. Next, a long-term and short-term memory network structure is established. The input is the selected dynamic brain network feature, and the output is the sample label. The label of epilepsy patients is 1, and the label of normal people is 0. Finally, the stochastic gradient descent algorithm is used to optimize the parameters in the network, and after continuous training, the identification task between epilepsy patients and normal people is finally completed. The invention combines the dynamic brain network and the long-term memory network for the first time to carry out the task of auxiliary diagnosis of epilepsy.
Description
技术领域technical field
本发明属于生物医学图像模式识别技术领域,具体涉及功能磁共振图像的动态脑网络模式识别框架搭建。The invention belongs to the technical field of biomedical image pattern recognition, in particular to the construction of a dynamic brain network pattern recognition framework for functional magnetic resonance images.
背景技术Background technique
癫痫即俗称的“羊角风”,是一种常见的危害性极大的神经系统疾病。根据世界卫生组织的统计,目前大约有五千万癫痫患者,而且每年新增癫痫患者有四十万。通过以往研究发现,能够引发该疾病的原因有很多,例如先天因素,脑部病变,全身或系统性疾病。此外,癫痫发病率还与年龄相关。Epilepsy, commonly known as "horn wind", is a common and dangerous neurological disease. According to the statistics of the World Health Organization, there are about 50 million people with epilepsy, and 400,000 new people with epilepsy every year. Previous studies have found that there are many reasons for the disease, such as congenital factors, brain lesions, systemic or systemic diseases. In addition, the incidence of epilepsy is also age-related.
目前一些癫痫疾病,诸如特发强直-阵挛癫痫(GTCS),在常规检查来看,癫痫患者的脑部结构并没有发生显著的器质性病变,而且患者其他的一些生理代谢功能也与常人无异,到目前为止还没能找出正确的发病机制以及准确的病灶。因此,提高诊断水平,找出病灶区域是对治疗以及预测癫痫疾病发作的保障。At present, for some epilepsy diseases, such as idiopathic tonic-clonic epilepsy (GTCS), in routine examination, the brain structure of epilepsy patients does not have significant organic lesions, and some other physiological and metabolic functions of patients are also different from those of ordinary people. In the same way, the correct pathogenesis and accurate lesions have not been found so far. Therefore, improving the level of diagnosis and finding out the focal area is the guarantee for the treatment and prediction of epileptic seizures.
功能磁共振成像(functional magnetic resonance imaging,fMRI)是近几年发展起来的一种新的非介入性研究脑功能的成像技术,是研究人脑认知思维活动的强有力的工具。应用功能磁共振可以研究癫痫全面发展的发病机制,具有很好的临床实用性。而且通过模式识别算法来研究功能磁共振图像不仅可以在个体水平上进行高准确率的疾病的诊断,还可以更好地定位癫痫致病灶。Functional magnetic resonance imaging (fMRI) is a new non-invasive imaging technology developed in recent years to study brain function, and it is a powerful tool to study human brain cognitive thinking activities. The application of fMRI can study the pathogenesis of the overall development of epilepsy, which has good clinical practicability. Moreover, studying fMRI images through pattern recognition algorithms can not only diagnose diseases with high accuracy at the individual level, but also better locate epilepsy foci.
发明内容SUMMARY OF THE INVENTION
本发明通过分析大脑图像,克服现有技术中不能很好的辨识癫痫患者大脑图像的问题,设计出一种分辨患者是否患有癫痫的装置。By analyzing the brain images, the present invention overcomes the problem that the brain images of epilepsy patients cannot be well identified in the prior art, and designs a device for identifying whether the patients suffer from epilepsy.
本发明技术方案为一种联合动态脑网络和长短时记忆网络的癫痫识别装置,该装置包括数据输入接口、数据存储器、数据处理器,所述数据存储器上的数据被处理执行能够实现以下步骤;The technical solution of the present invention is an epilepsy recognition device combining a dynamic brain network and a long-short-term memory network, the device includes a data input interface, a data storage, and a data processor, and the data on the data storage can be processed and executed to achieve the following steps;
步骤1:步骤脑网络的计算:Step 1: Step Brain Network Computation:
步骤11:获取病人M个时间节点的脑部静息态的功能磁共振信号,对功能磁共振信号进行包含时间校正、头动校正、配准的预处理;对每个时间节点预处理过后的功能磁共振数据进行如下处理;Step 11: Obtain the resting-state functional magnetic resonance signals of the patient's brain at M time nodes, and perform preprocessing including time correction, head movement correction, and registration on the functional magnetic resonance signals; The fMRI data are processed as follows;
步骤12:按照246个脑区的模板,计算每个脑区的平均信号,会得到246个平均信号;Step 12: According to the template of 246 brain regions, calculate the average signal of each brain region, and get 246 average signals;
步骤13:每个脑区的平均信号之间两两算皮尔逊相关系数,会得到246*246的皮尔逊相关系数组成的矩阵,该矩阵为脑网络;Step 13: Calculate the Pearson correlation coefficient between the average signals of each brain area, and get a matrix composed of 246*246 Pearson correlation coefficients, which is a brain network;
步骤2:计算动态脑网络;Step 2: Calculate the dynamic brain network;
将步骤1得到M个时间节点的脑网络依次排列,设置时间节点的滑窗长度K和步长,在滑窗过程中计算每次处于窗内的K个脑网络的皮尔逊相关系数矩阵,滑窗完毕后得到H个246*246个皮尔逊相关系数矩阵,这些皮尔逊相关系数矩阵为动态脑网络;Arrange the brain networks of the M time nodes obtained in
步骤3:对脑网络进行特征提取;Step 3: Feature extraction on the brain network;
采用特征提取矩阵来提取动态脑网络的特征,得到H个246*246个特征矩阵,该特征提取矩阵提取出步骤2得到的皮尔逊相关系数矩阵中特定位置的数据,其余位置数据置0,设非零包含有E个非零数据,将非零数据取出,组成一个H*E的特征矩阵;The feature extraction matrix is used to extract the features of the dynamic brain network, and H 246*246 feature matrices are obtained. The feature extraction matrix extracts the data of a specific position in the Pearson correlation coefficient matrix obtained in
步骤4:将步骤3提取的H个246*246个特征矩阵输入训练好的长短时记忆网络,根据该长短时记忆网络的输出判断病人情况。Step 4: Input the H 246*246 feature matrices extracted in
进一步的,所述步骤4中选取出步骤3得到的H*E的特征矩阵的前R行数据,然后每次滑动一行,每次都提取出下一个R行数据,滑动结束后,将所有提取的数据作为长短时记忆网络的输入,R根据实际情况决定。Further, in the
进一步的,所述步骤2中特征提取矩阵的方法为:Further, the method for feature extraction matrix in the
步骤2.1:获取数据存储器中所有样本数据,该样本数据中包括正常样本和癫痫样本,采用步骤1、步骤2的方法获得所有样本的一个时间节点的脑网络,得到Q个样本脑网络,Q为样本总数;Step 2.1: Obtain all sample data in the data storage, including normal samples and epilepsy samples, use the methods of
步骤2.2:提取所有样本脑网络中第一个位置(1,1)的数据,组成功能连接向量x;Step 2.2: Extract the data of the first position (1, 1) in all sample brain networks to form a functional connection vector x;
步骤2.3:采用如下公式计算第一个位置的F值;Step 2.3: Calculate the F value of the first position using the following formula;
其中,表示特征向量x的所有样本的均值;表示特征向量中,属于正常样本子集的均值;表示特征向量中,属于癫痫样本子集的均值;n0表示样本中正常样本的个数;n1表示样本中癫痫样本的个数;表示正常样本子集中第i个样本的功能连接值;表示癫痫样本子集中第i个样本的功能连接值;in, Represents the mean of all samples of the feature vector x; Represents the mean value of the normal sample subset in the feature vector; Represents the mean of the epilepsy sample subset in the feature vector; n 0 represents the number of normal samples in the sample; n 1 represents the number of epilepsy samples in the sample; represents the functional connectivity value of the ith sample in the subset of normal samples; represents the functional connectivity value of the ith sample in the epilepsy sample subset;
步骤2.4:采用步骤2.3的方法计算出其余所有位置的F值,得到一个大小为246*246的F值矩阵;Step 2.4: Use the method of step 2.3 to calculate the F value of all other positions, and obtain an F value matrix with a size of 246*246;
步骤2.5:设定特征提取阈值,将F值矩阵中各位置元素大于阈值的置为1,小于等于阈值的置为0,最终得到特征提取矩阵。Step 2.5: Set the feature extraction threshold, set each position element in the F-value matrix greater than the threshold to 1, and set the element less than or equal to the threshold to 0, and finally obtain the feature extraction matrix.
进一步的,所述4中长短时记忆网络的步长为3,层数为8,输入层大小为1*E,输出层为1个值;采用步骤1、2、3的方法计算出存储器中所有样本的特征矩阵,采用各样本的特征矩阵输入长短时记忆网络,使用随机梯度下降算法进行训练,更新长短时记忆网络中的参数,最终长短时记忆网络中参数基本稳定,得到训练好的长短时记忆网络。Further, the step size of the long and short-term memory network in the 4 is 3, the number of layers is 8, the size of the input layer is 1*E, and the output layer is 1 value; The feature matrix of all samples is used to input the feature matrix of each sample into the long and short-term memory network, and the stochastic gradient descent algorithm is used for training, and the parameters in the long and short-term memory network are updated. Finally, the parameters in the long and short-term memory network are basically stable. time memory network.
本发明结合动态功能连接以及长短时记忆网络的方法,使用长短时记忆网络模拟癫痫病人脑网络的动态特性,提供了一种有效的基于功能磁共振成像的癫痫诊断手段。The invention combines the method of dynamic functional connection and long-short-term memory network, uses the long-short-term memory network to simulate the dynamic characteristics of the brain network of epilepsy patients, and provides an effective epilepsy diagnosis method based on functional magnetic resonance imaging.
附图说明Description of drawings
图1为本发明流程图;Fig. 1 is the flow chart of the present invention;
图2为本发明长短时记忆网络(LSTM)结构图;2 is a structural diagram of a long-short-term memory network (LSTM) of the present invention;
图3为本发明不同迭代次数与分类正确率之间的关系走势图;3 is a graph showing the relationship between different iteration times and classification accuracy rates of the present invention;
图4为不同迭代次数,训练损失值和测试损失值。Figure 4 shows the number of iterations, training loss values and test loss values.
具体实施方式Detailed ways
一种联合动态脑网络和长短时记忆网络的癫痫识别方法,包括以下几个步骤:An epilepsy recognition method combining dynamic brain network and long-term memory network, including the following steps:
A.脑网络的计算:A. Calculation of brain network:
步骤A1:扫描癫痫患者和正常人的静息态功能磁共振信号;对功能磁共振信号进行预处理,其中预处理包含时间校正、头动校正、配准。Step A1: Scan the resting-state fMRI signals of epilepsy patients and normal people; perform preprocessing on the fMRI signals, wherein the preprocessing includes time correction, head movement correction, and registration.
步骤A2:对与处理过后的功能磁共振数据,按照246个脑区的模板,计算每个脑区的平均信号,会得到246个平均信号。Step A2: For the processed fMRI data, according to the template of 246 brain regions, calculate the average signal of each brain region, and 246 average signals will be obtained.
步骤A3:每个脑区的平均信号之间两两算皮尔逊相关系数,会得到246*246的皮尔逊相关系数组成的矩阵。该矩阵就是脑网络。Step A3: Calculate the Pearson correlation coefficient between the average signals of each brain region, and a matrix composed of 246*246 Pearson correlation coefficients will be obtained. This matrix is the brain network.
B.动态脑网络的计算:B. Computation of Dynamic Brain Networks:
步骤B1:扫描癫痫患者和正常人的静息态功能磁共振信号。对功能磁共振信号进行预处理,其中预处理包含时间校正、头动校正、配准。Step B1: Scan the resting-state fMRI signals of epilepsy patients and normal people. The functional magnetic resonance signals are preprocessed, wherein the preprocessing includes time correction, head movement correction, and registration.
步骤B2:利用处理过后的功能磁共振数据,按照246个脑区的模板,计算每个脑区的平均信号,会得到246个平均信号。Step B2: Using the processed fMRI data, according to the template of 246 brain regions, calculate the average signal of each brain region, and 246 average signals will be obtained.
步骤B3:利用滑窗的方法计算每个脑区平均信号之间的皮尔逊相关系数。经过预处理后的每个人的数据有245个时间点,计算时将每个滑窗设置成50个时间点长度的窗宽,相邻两个滑窗的重叠度为90%。结果每个人会计算出40个246*246的皮尔逊相关系数组成的矩阵。Step B3: Calculate the Pearson correlation coefficient between the average signals of each brain region using the sliding window method. The preprocessed data of each person has 245 time points. During the calculation, each sliding window is set to a window width of 50 time points, and the overlap of two adjacent sliding windows is 90%. As a result, each person will calculate a matrix of 40 246*246 Pearson correlation coefficients.
C.F-score对脑网络进行特征选择:C.F-score performs feature selection on brain networks:
步骤C1:训练样本包含100名被试(癫痫患者50名,正常人50名),每名被试经过步骤A1、A2、A3,一共会得到100个246*246大小的二维脑网络矩阵以及1个100*1大小的一维标签向量y,其中1表示癫痫患者,0表示正常被试。Step C1: The training sample contains 100 subjects (50 epilepsy patients and 50 normal people). Each subject will get a total of 100 246*246 two-dimensional brain network matrices and A one-dimensional label vector y of
步骤C2:取出被试脑网络矩阵中第一个位置的功能连接值,第一个位置的坐标为(1,1)。会得到第一个位置所有被试的功能连接向量x,其大小为100*1。对第一个位置所有被试的功能连接向量x与标签向量y,按照F-score公式计算第一个位置的F值。F-score公式如下:Step C2: Take out the functional connectivity value of the first position in the subject's brain network matrix, and the coordinates of the first position are (1, 1). The functional connection vector x of all subjects in the first position will be obtained, and its size is 100*1. For the functional connection vector x and label vector y of all subjects in the first position, the F value of the first position is calculated according to the F-score formula. The F-score formula is as follows:
其中,表示特征向量x的所有样本的均值;表示特征向量中,属于正常被试样本子集的均值;表示特征向量中,属于癫痫患者样本子集的均值;n0表示样本中正常被试的个数;n1表示样本中癫痫患者的个数;表示正常被试子集中第i个样本的功能连接值;表示癫痫患者子集中第i个样本的功能连接值;in, Represents the mean of all samples of the feature vector x; Represents the mean value of the normal sample subset in the feature vector; Represents the mean value of the epilepsy patient sample subset in the feature vector; n0 represents the number of normal subjects in the sample; n1 represents the number of epilepsy patients in the sample; represents the functional connectivity value of the ith sample in the normal subject subset; represents the functional connectivity value of the ith sample in the subset of epilepsy patients;
步骤C3:对脑网络矩阵每个位置,重复步骤C2,会得到大小为246*246的F值矩阵。Step C3: Repeat step C2 for each position of the brain network matrix, and an F-value matrix with a size of 246*246 will be obtained.
步骤C4:提取F值矩阵中大于0.06的F值所对应的位置信息W,本专利所用数据,大于0.06包含469个功能连接。根据位置信息W,提取出三维动态脑网络矩阵中的连接值,得到大小为40*469的矩阵,其中40表示动态脑网络的滑动窗个数。对每一名被试,经过步骤C1、C2、C3,一共会得到100个40*469的动态特征矩阵。Step C4: Extract the position information W corresponding to the F value greater than 0.06 in the F value matrix. The data used in this patent, greater than 0.06, contains 469 functional connections. According to the position information W, the connection value in the three-dimensional dynamic brain network matrix is extracted, and a matrix of
D.长短时记忆网络训练:D. Long and short-term memory network training:
步骤D1:根据步骤C4,每一名被试得到40*469的动态特征矩阵。对于每名被试,首先取出动态特征矩阵的前三行作为长短时记忆网络输入特征,其大小为3*469。然后依次滑动一行,取出三行,直到40*469的动态特征矩阵中每一行都取到过。每名被试将会得到38个大小为3*469的长短时记忆网络输入特征。训练集包含100名被试,总共会得到3800个大小为3*469的长短时记忆网络输入特征。Step D1: According to Step C4, each subject gets a dynamic feature matrix of 40*469. For each subject, the first three rows of the dynamic feature matrix are taken out as the input features of the long-short-term memory network, the size of which is 3*469. Then slide one row in turn and take out three rows until every row in the 40*469 dynamic feature matrix has been taken. Each subject will get 38 long and short-term memory network input features of
步骤D2:对于长短时记忆网络模型,步长为3,层数为8。输入层大小为1*469。输出层为1个值,代表标签。Step D2: For the long-short-term memory network model, the step size is 3 and the number of layers is 8. The input layer size is 1*469. The output layer is 1 value representing the label.
步骤D3:将3800个大小为3*469的长短时记忆网络输入特征看作3800个新样本数据。如果新样本数据来自癫痫患者,则标签为1;如果来自正常被试,则标签为0。最终得到大小为3800*1的标签向量。Step D3: Treat 3800 long-short-term memory network input features with a size of 3*469 as 3800 new sample data. If the new sample data is from epilepsy patients, the label is 1; if it is from normal subjects, the label is 0. Finally, a label vector of size 3800*1 is obtained.
步骤D4:依次将3800个大小为3*469的新样本数据和对应的标签,输入长短时记忆网络,使用随机梯度下降算法进行训练,更新长短时记忆网络中的参数。Step D4: Input 3800 new sample data with a size of 3*469 and the corresponding labels into the long-term memory network in turn, use the stochastic gradient descent algorithm for training, and update the parameters in the long-term memory network.
步骤D5:不断重复步骤D4,最终长短时记忆网络中参数基本稳定。Step D5: Repeat step D4 continuously, and finally the parameters in the long and short-term memory network are basically stable.
E.长短时记忆网络测试:E. Long and short-term memory network test:
步骤E1:根据A和B中所有步骤,计算100测试样本大小为40*246*246三维动态脑网络矩阵。Step E1: According to all the steps in A and B, calculate 100 test samples with a size of 40*246*246 three-dimensional dynamic brain network matrix.
步骤E2:根据步骤C4中的位置信息W,100个测试样本中每一个样本都会得到大小为40*469的动态特征矩阵。Step E2: According to the position information W in Step C4, each of the 100 test samples will obtain a dynamic feature matrix with a size of 40*469.
步骤E3:根据步骤D1中,每名测试被试将会得到38个大小为3*469的长短时记忆网络输入特征。分别将38个测试长短时记忆网络输入特征输入到之前训练后的模型,会得到38个标签预测值。在38个标签预测值中,1的个数大于0的个数,则该测试被试预测标签为1;如果1的个数小于或等于0的个数,则该名被试预测标签为0。Step E3: According to Step D1, each test subject will get 38 long-term memory network input features with a size of 3*469. Inputting 38 test long-short-term memory network input features into the previously trained model will yield 38 label predictions. Among the 38 label prediction values, if the number of 1s is greater than the number of 0s, the test subject predicts the label to be 1; if the number of 1s is less than or equal to the number of 0s, the subject predicts the label to be 0 .
步骤E4:每一名测试被试重复步骤E3,将会得到每一名被试的预测标签,然后查看与标准标签是否匹配。最终求出分类正确率,本专利所用数据分类正确率可达到80%。Step E4: Step E3 is repeated for each test subject, and the predicted label of each subject will be obtained, and then check whether it matches the standard label. Finally, the classification accuracy rate is obtained, and the classification accuracy rate of the data used in this patent can reach 80%.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711442389.5A CN107967686B (en) | 2017-12-27 | 2017-12-27 | An epilepsy recognition device combining dynamic brain network and long-term memory network |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711442389.5A CN107967686B (en) | 2017-12-27 | 2017-12-27 | An epilepsy recognition device combining dynamic brain network and long-term memory network |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107967686A CN107967686A (en) | 2018-04-27 |
CN107967686B true CN107967686B (en) | 2021-07-06 |
Family
ID=61994469
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201711442389.5A Expired - Fee Related CN107967686B (en) | 2017-12-27 | 2017-12-27 | An epilepsy recognition device combining dynamic brain network and long-term memory network |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107967686B (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109192298B (en) * | 2018-07-27 | 2021-11-23 | 南京航空航天大学 | Deep brain disease diagnosis algorithm based on brain network |
CN113902732A (en) * | 2019-05-07 | 2022-01-07 | 上海联影智能医疗科技有限公司 | Brain image analysis method, computer device and readable storage medium |
KR20220113741A (en) * | 2019-12-06 | 2022-08-16 | 더 보드 어브 트러스티스 어브 더 리랜드 스탠포드 주니어 유니버시티 | Imaging of individual hippocampal seizures and long-term effects of repeated seizures |
CN111150393B (en) * | 2020-02-19 | 2023-03-28 | 杭州电子科技大学 | Electroencephalogram epilepsy spike discharge joint detection method based on LSTM multichannel |
CN113057621B (en) * | 2021-03-05 | 2024-07-09 | 兰州理工大学 | Dynamic function connection research method and application of juvenile myoclonus epilepsy |
CN113768465A (en) * | 2021-09-15 | 2021-12-10 | 安徽师范大学 | Brain network feature extraction method based on convolutional network and long-short term memory network |
CN114159043B (en) * | 2021-12-17 | 2024-10-08 | 天津大学 | Qcut algorithm-based brain function network abnormal brain node data detection method |
CN115736828A (en) * | 2022-11-14 | 2023-03-07 | 北京邮电大学 | Epileptic signal detection method and device based on brain network characteristics and single-lead characteristics |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006102370A2 (en) * | 2005-03-22 | 2006-09-28 | University Of Massachusetts | Functional brain mri mapping as a marker in cns diseases and disorders |
CN104715261A (en) * | 2015-03-23 | 2015-06-17 | 南京工业大学 | fMRI dynamic brain function sub-network construction and parallel SVM weighted recognition method |
-
2017
- 2017-12-27 CN CN201711442389.5A patent/CN107967686B/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006102370A2 (en) * | 2005-03-22 | 2006-09-28 | University Of Massachusetts | Functional brain mri mapping as a marker in cns diseases and disorders |
CN104715261A (en) * | 2015-03-23 | 2015-06-17 | 南京工业大学 | fMRI dynamic brain function sub-network construction and parallel SVM weighted recognition method |
Non-Patent Citations (1)
Title |
---|
基于磁共振成像的脑连接方法学及应用研究;廖伟;《中国博士学位论文电子期刊网》;20110901;全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN107967686A (en) | 2018-04-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107967686B (en) | An epilepsy recognition device combining dynamic brain network and long-term memory network | |
CN110522448B (en) | Brain network classification method based on atlas neural network | |
Liu et al. | Towards clinical diagnosis: Automated stroke lesion segmentation on multi-spectral MR image using convolutional neural network | |
CN109376751B (en) | Human brain function network classification method based on convolutional neural network | |
US12127826B2 (en) | Brain atlas individualization method and system based on magnetic resonance and twin graph neural network | |
CN104771163B (en) | EEG feature extraction method based on CSP and R CSP algorithms | |
KR102100698B1 (en) | System for diagnosis auxiliary based on artificial intelligence using ensemble learning algorithm | |
CN108345903B (en) | A kind of multi-modal fusion image classification method based on mode distance restraint | |
CN113255728A (en) | Depression classification method based on map embedding and multi-modal brain network | |
CN108446020A (en) | Merge Mental imagery idea control method and the application of Visual Graph and deep learning | |
KR20190128978A (en) | Method for estimating human emotions using deep psychological affect network and system therefor | |
CN106127769A (en) | A kind of brain Forecasting Methodology in age connecting network based on brain | |
CN113688862A (en) | A brain image classification method and terminal device based on semi-supervised federated learning | |
Bassi et al. | Deep learning diagnosis of pigmented skin lesions | |
CN115886840A (en) | Epilepsy prediction method based on domain-pair-resistant multi-level deep convolution feature fusion network | |
CN110110776A (en) | A kind of tranquillization state plural number fMRI data ICA-CNN taxonomy model of patient and Healthy People | |
CN105868572A (en) | Method for predicting myocardial ischemia position on basis of self-encoder | |
CN110321827A (en) | A kind of pain level appraisal procedure based on face pain expression video | |
CN109994204A (en) | A search method for key nodes in brain functional network | |
Cao et al. | A novel approach analysing the dynamic brain functional connectivity for improved MCI detection | |
Zhou et al. | Graph-in-graph convolutional networks for brain disease diagnosis | |
Siar et al. | Age detection from brain MRI images using the deep learning | |
CN116523839A (en) | Parkinson's disease auxiliary analysis system | |
Hireš et al. | Brief overview of neural networks for medical applications | |
CN115154828A (en) | A method, system and device for brain function remodeling based on brain-computer interface technology |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20210706 |