CN111612232B - 基于梯度下降的配电网线路重跳概率预测优化方法和装置 - Google Patents

基于梯度下降的配电网线路重跳概率预测优化方法和装置 Download PDF

Info

Publication number
CN111612232B
CN111612232B CN202010402400.0A CN202010402400A CN111612232B CN 111612232 B CN111612232 B CN 111612232B CN 202010402400 A CN202010402400 A CN 202010402400A CN 111612232 B CN111612232 B CN 111612232B
Authority
CN
China
Prior art keywords
distribution network
gradient descent
probability prediction
power distribution
jump probability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010402400.0A
Other languages
English (en)
Other versions
CN111612232A (zh
Inventor
聂鼎
宋忧乐
范黎涛
王洪林
骆怡
林广宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electric Power Research Institute of Yunnan Power Grid Co Ltd
Original Assignee
Electric Power Research Institute of Yunnan Power Grid Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electric Power Research Institute of Yunnan Power Grid Co Ltd filed Critical Electric Power Research Institute of Yunnan Power Grid Co Ltd
Priority to CN202010402400.0A priority Critical patent/CN111612232B/zh
Publication of CN111612232A publication Critical patent/CN111612232A/zh
Application granted granted Critical
Publication of CN111612232B publication Critical patent/CN111612232B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Systems or methods specially adapted for specific business sectors, e.g. utilities or tourism
    • G06Q50/06Electricity, gas or water supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00032Systems characterised by the controlled or operated power network elements or equipment, the power network elements or equipment not otherwise provided for
    • H02J13/00036Systems characterised by the controlled or operated power network elements or equipment, the power network elements or equipment not otherwise provided for the elements or equipment being or involving switches, relays or circuit breakers
    • H02J13/0004Systems characterised by the controlled or operated power network elements or equipment, the power network elements or equipment not otherwise provided for the elements or equipment being or involving switches, relays or circuit breakers involved in a protection system
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications

Abstract

本申请涉及电网设备制造技术领域,特别地,涉及一种基于梯度下降的配电网线路重跳概率预测优化方法和装置。所述方法包括:基于配电网数据构建重跳概率预测模型;通过函数映射生成目标函数;基于所述目标函数、重跳概率预测模型计算得到预测值;通过预测值和实际值的绝对误差构造损失函数,赋值超参数;通过随机梯度下降方法获取所述损失函数的最小损失值;基于所述最小损失值,确定模型参数,得到最优重跳概率预测模型。

Description

基于梯度下降的配电网线路重跳概率预测优化方法和装置
技术领域
本申请涉及电网设备制造技术领域,特别地,涉及一种基于梯度下降的配电网线路重跳概率预测优化方法和装置。
背景技术
配电网线路重跳是指由于电网供电区域扩大、线路的分支较多、供电半径较长、设备的老化较多,种种内外因素导致配电网防御力下降,易发生跳闸,甚至是出现频繁跳闸的现象。配电网线路结构复杂,涉及设备种类多样,供电覆盖范围广泛,设备老化故障等一系列问题导致频繁跳闸事件的发生,配电网线路跳闸可能会威胁到配电网的安全,对整个配电网的服务用户都造成威胁,还可能带来多方面的隐患。因此良好的线路运行状态、合理的运行状态是保证配电网安全运行的基础。
传统降低停电事件发生概率的手段是采用制度管理,进行严格的巡回检查制度,要对线路设备的状况了解,并且及时对隐患进行消除。另一种方法是通过硬件规避,例如加装线路开关设备,设置开关定值,避免线路因为故障越级,安装位置应方便巡视,便于操作,防止开关停电时影响的范围扩大,在开关处安装避雷器;在雷雨季节来临前对配电变压器、开关、线路进行避雷器的安装,定期进行工频放电电压、绝缘电阻实验,并对存在缺陷的避雷设备进行定期更换。
但是,传统的人工巡回检查耗时长、信息反馈效率低且无法有效进行提前预防和定位预警。加之配网数据量大,数据关系错综复杂,导致模型预测时通常伴随噪声干扰,通常采用人工手动设置参数进行调优降噪、防止过拟合现象,但其结果未必达到理想预测精度。
发明内容
本申请提供了一种基于梯度下降的配电网线路重跳概率预测优化方法和装置,通过计算配电网线路重跳概率预测结果均方误差建立损失函数、采用随机梯度下降算法进行优化等,一定程度上可以解决现有算法模型预测精度低、准确性差、耗时长、信息反馈少的问题。
本申请的实施例是这样实现的:
本申请实施例的第一方面提供一种基于梯度下降的配电网线路重跳概率预测优化方法,所述方法包括:
基于配电网数据构建重跳概率预测模型;
通过函数映射生成目标函数;
基于所述目标函数、重跳概率预测模型计算得到预测值;
通过预测值和实际值的绝对误差构造损失函数,赋值超参数;
通过随机梯度下降方法获取所述损失函数的最小损失值;
基于所述最小损失值,确定模型参数,得到最优重跳概率预测模型。
本申请实施例的第二方面提供一种基于梯度下降的配电网线路重跳概率预测优化装置,包括存储器、处理器及存储在存储器上的计算机程序,所述处理器执行所述计算机程序时执行如本申请实施例的第一方面提供发明内容中任意一项所述的方法。
本申请实施例的第三方面提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机指令,当所述计算机指令中的至少部分指令被处理器执行时,实现如本申请实施例的第一方面提供发明内容中任意一项所述的方法。
本申请的有益效果在于:通过计算配网线路重跳概率预测结果均方误差建立损失函数,采用随机梯度下降算法优化等一系列模型优化算法提高模型预测精度、准确性,节省人工和时间成本提高运维检修的工作效率,提高信息反馈效率降低日常运维的难度,对配网线路重复跳闸事件的发生进行提前预防降低其故障跳闸率及负载停电次数,保证配电网线路的安全稳定运行。
附图说明
具体为了更清楚地说明本申请的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是根据本申请的一些实施例所示的一种基于梯度下降的配电网线路重跳概率预测优化系统的示意图;
图2是根据本申请的一些实施例所示的一种示例性计算设备的示意图;
图3示出了本申请实施例一种基于梯度下降的配电网线路重跳概率预测优化方法的流程示意图;
图4示出了本申请实施例通过随机梯度下降方法获取损失函数的最小损失值的执行流程示意图;
图5示出了本申请实施例通过随机梯度下降方法获取损失函数的最小损失值的逻辑判断示意图;
图6示出了本申请实施例随机梯度下降示意图。
具体实施方式
现在将描述某些示例性实施方案,以从整体上理解本文所公开的装置和方法的结构、功能、制造和用途的原理。这些实施方案的一个或多个示例已在附图中示出。本领域的普通技术人员将会理解,在本文中具体描述并示出于附图中的装置和方法为非限制性的示例性实施方案,并且本发明的多个实施方案的范围仅由权利要求书限定。结合一个示例性实施方案示出或描述的特征可与其他实施方案的特征进行组合。这种修改和变型旨在包括在本发明的范围之内。
本说明书通篇提及的″多个实施例″、″一些实施例″、″一个实施例″或″实施例″等,意味着结合该实施例描述的具体特征、结构或特性包括在至少一个实施例中。因此,本说明书通篇出现的短语″在多个实施例中″、″在一些实施例中″、″在至少另一个实施例中″或″在实施例中″等并不一定都指相同的实施例。此外,在一个或多个实施例中,具体特征、结构或特性可以任何合适的方式进行组合。因此,在无限制的情形下,结合一个实施例示出或描述的具体特征、结构或特性可全部或部分地与一个或多个其他实施例的特征、结构或特性进行组合。这种修改和变型旨在包括在本发明的范围之内。
图1是根据本申请的一些实施例所示的一种基于梯度下降的配电网线路重跳概率预测优化系统100的示意图。基于梯度下降的配电网线路重跳概率预测优化系统100是一个为可以自动对配电网线路重跳概率预测的平台。基于梯度下降的配电网线路重跳概率预测优化系统100可以包括一个服务器110、至少一个存储设备120、至少一个网络130、一个或多个数据采集设备150-1、150-2......150-N。服务器110可以包括一个处理引擎112。
在一些实施例中,服务器110可以是一个单独的服务器或者一个服务器群组。所述服务器群组可以是集中式的或分布式的(例如,服务器110可以是一个分布式的系统)。在一些实施例中,服务器110可以是本地的或远程的。例如,服务器110可以通过网络130访问存储在存储设备120中的数据。服务器110可以直接连接到存储设备120访问存储数据。在一些实施例中,服务器110可以在一个云平台上实现。所述云平台可以包括私有云、公共云、混合云、社区云、分布云、多重云等或上述举例的任意组合。在一些实施例中,服务器110可以在与本申请图2所示的计算设备上实现,包括计算设备200中的一个或多个部件。
在一些实施例中,服务器110可以包括一个处理引擎112。处理引擎112可以处理与服务请求相关的信息和/或数据以执行本申请描述的一个或多个功能。例如,处理引擎112可以基于获取数据采集设备150传送的配电网数据,并通过网络130发送至存储设备120,用于更新存储在其中的数据。在一些实施例中,处理引擎112可以包括一个或多个处理器。处理引擎112可以包括一个或多个硬件处理器,例如中央处理器(CPU)、专用集成电路(ASIC)、专用指令集处理器(ASIP)、图像处理器(GPU)、物理运算处理器(PPU)、数字信号处理器(DSP)、现场可编辑门阵列(FPGA)、可编辑逻辑器件(PLD)、控制器、微控制器单元、精简指令集计算机(RISC)、微处理器等或上述举例的任意组合。
存储设备120可以存储数据和/或指令。在一些实施例中,存储设备120可以存储从数据采集设备150获得的配电网数据。在一些实施例中,存储设备120可以存储供服务器110执行或使用的数据和/或指令,服务器110可以通过执行或使用所述数据和/或指令以实现本申请描述的实施例方法。在一些实施例中,存储设备120可以包括大容量存储器、可移动存储器、挥发性读写存储器、只读存储器(ROM)等或上述举例的任意组合。在一些实施例中,存储设备120可以在一个云平台上实现。例如所述云平台可以包括私有云、公共云、混合云、社区云、分布云、多重云等或上述举例的任意组合。
在一些实施例中,存储设备120可以与网络130连接以实现与基于梯度下降的配电网线路重跳概率预测优化系统100中的一个或多个部件之间的通信。基于梯度下降的配电网线路重跳概率预测优化系统100的一个或多个部件可以通过网络130访问存储在存储设备120中的数据或指令。在一些实施例中,存储设备120可以直接与基于梯度下降的配电网线路重跳概率预测优化系统100的一个或多个部件连接或通信。在一些实施例中,存储设备120可以是服务器110的一部分。
网络130可以促进信息和/或数据的交换。在一些实施例中,基于梯度下降的配电网线路重跳概率预测优化系统100中的一个或多个部件可以通过网络130向基于梯度下降的配电网线路重跳概率预测优化系统100中的其他部件发送信息和/或数据。例如,服务器110可以通过网络130从数据采集设备150获取/得到配电网数据。在一些实施例中,网络130可以是有线网络或无线网络中的任意一种,或其组合。在一些实施例中,网络130可以包括一个或多个网络接入点。例如,网络130可能包括有线或无线网络接入点,如基站和/或互联网交换点130-1、130-2等等。通过接入点,基于梯度下降的配电网线路重跳概率预测优化系统100的一个或多个部件可能连接到网络130以交换数据和/或信息。
数据采集设备150可以包括故障数据、缺陷数据、负荷数据、停电计划等运行数据、天气数据、气象数据等。在一些实施例中,数据采集设备150可以将采集到的配电网数据发送到基于梯度下降的配电网线路重跳概率预测优化系统100中的一个或多个设备中。例如,数据采集设备150可以配电网数据发送至服务器110进行处理,或存储设备120中进行存储。
图2是根据本申请的一些实施例所示的一种示例性计算设备200的示意图。服务器110、存储设备120和数据采集设备150可以在计算设备200上实现。例如,处理引擎112可以在计算设备200上实现并被配置为实现本申请中所披露的功能。
计算设备200可以包括用来实现本申请所描述的系统的任意部件。例如,处理引擎112可以在计算设备200上通过其硬件、软件程序、固件或其组合实现。为了方便起见图中仅绘制了一台计算机,但是本申请所描述的与基于梯度下降的配电网线路重跳概率预测优化系统100相关的计算功能可以以分布的方式、由一组相似的平台所实施,以分散系统的处理负荷。
计算设备200可以包括与网络连接的通信端口250,用于实现数据通信。计算设备200可以包括一个处理器220,可以以一个或多个处理器的形式执行程序指令。示例性的电脑平台可以包括一个内部总线210、不同形式的程序存储器和数据存储器包括,例如,硬盘270、和只读存储器(ROM)230或随机存储器(RAM)240,用于存储由计算机处理和/或传输的各种各样的数据文件。示例性的计算设备可以包括存储在只读存储器230、随机存储器240和/或其他类型的非暂时性存储介质中的由处理器220执行的程序指令。本申请的方法和/或流程可以以程序指令的方式实现。计算设备200也包括输入/输出部件260,用于支持电脑与其他部件之间的输入/输出。计算设备200也可以通过网络通讯接收本披露中的程序和数据。
为理解方便,图2中仅示例性绘制了一个处理器。然而,需要注意的是,本申请中的计算设备200可以包括多个处理器,因此本申请中描述的由一个处理器实现的操作和/或方法也可以共同地或独立地由多个处理器实现。例如,如果在本申请中,计算设备200的处理器执行步骤1和步骤2,应当理解的是,步骤1和步骤2也可以由计算设备200的两个不同的处理器共同地或独立地执行。
图3示出了本申请实施例一种基于梯度下降的配电网线路重跳概率预测优化方法的流程示意图。
在步骤301中,基于配电网数据构建重跳概率预测模型。
配电网是指从输电网或地区发电厂接受电能,通过配电设施就地分配或按电压逐级分配给各类用户的电力网。配电网是由架空线路、电缆、杆塔、配电变压器、隔离开关、无功补偿器及一些附属设施等组成的,在电力网中起重要分配电能作用的网络。
在一些实施例中,配电网数据可以包括配电网设备基础数据库,所述基础数据库是一个逐渐完善的过程。所述配电网设备基础数据库包括一次设备的基础参数、及所述一次设备的控制保护二次系统整定配置参数;所述一次设备为配网开关设备、配电变压器、配电线路中的一种或多种组合。配电网设备基础数据,主要是配网开关设备、配电变压器、配电线路等一次设备、基础设备的额定参数等基础参数(包括短路电流承受能力、过载能力等)、及其控制保护等二次系统整定配置情况。
在一些实施例中,所述配电网数据还包括配电网台账,所述台帐是电力系统配网中各种设备、机构的数据记录,所述数据记录包括变电站、母线、线路、负荷开关、断路器、熔断器、支线、柱上开关、变压器等。由于设备多样、连接关系复杂,不同数据源的台账数据相互独立,配电网台帐可实现数据的整合。在一些实施例中,所述连接关系包括将所有的变电站、线路、变压器及其它导电设备相互连接形成以变电站为中心的多链路网状结构。将所有的″站-线-变″及其它导电设备相互连接,形成以″站″为中心的多链路网状结构,实现配电网网架拓扑图中有关″站-线-变″的网状逻辑结构,所述配电网网架拓扑图具有统一性。
在一些实施例中,在基于配电网数据构建重跳概率预测模型前,还包括:将配电网数据划分为训练集与测试集,所述训练集采集预设数量的样本,用于训练所述重跳概率预测模型。
在机器学习领域中,一般需要将样本分成独立的三部分,分别是训练集、验证集、和测试集。其中训练集用于估计模型,验证集用于确定网络结构或者控制模型复杂程度的参数,测试集则用于检验最终选择最优的模型的性能如何。
在一些实施例中,可以将训练数据进行划分,训练集占总样本的50%,而其它各占25%,三部分都是从样本中随机抽取。使用所述训练集对重跳概率预测模型进行训练,得到误差全局最小化的最优网络模型参数。
在步骤302中,通过函数映射生成目标函数。
函数与映射都是两个非空集合中元素的对应关系,集合中的元都有方向。但是函数要求两个元素必须是数,而映射中两个集合的元素是任意的数学对象。函数是一种特殊的映射,它要求两个集合中的元素必须是数,而映射中两个集合的元素是任意的数学对象;函数要求每个值域都有相应的定义域与其对应,也就是说,值域这个集合不能有剩余元素,而构成映射的像的集合是可以有剩余;对于函数来说有先后关系,即定义域根据对应法则产生的值域,而对于映射来说没有先后关系,两个集合同时存在,所以函数值域中的每个数都有定义域中的数和它对应,而映射像中的元素则不一定有原像中的元素与他对应。
目标函数就是用设计变量来表示的所追求的目标形式,所以目标函数就是设计变量的函数,是一个标量。从工程意义讲,目标函数是系统的性能标准,比如,一个结构的最轻重量、最低造价、最合理形式;一件产品的最短生产时间、最小能量消耗;一个实验的最佳配方等等,建立目标函数的过程就是寻找设计变量与目标的关系的过程,目标函数和设计变量的关系可用曲线、曲面或超曲面表示。
在步骤303中,基于所述目标函数、重跳概率预测模型计算得到预测值。
根据已构建的重跳概率预测模型和上述目标函数,基于一定时期内、或一定数据范围进行计算得到预测值。
在步骤304中,通过预测值和实际值的绝对误差构造损失函数,赋值超参数。
在一些实施例中,通过计算发生重跳概率的预测值与实际值的绝对误差构造Huber损失函数,并定义超参数。
Huber损失函数是一个用于回归问题的带参损失函数,其优点是能增强MSE(meansquare error:平方误差损失函数)对离群点的鲁棒性。当预测偏差小于δ时,它采用平方误差,当预测偏差大于δ时,δ是Huber损失函数的参数,相比于最小二乘的线性回归,Huber损失函数能够降低对离群点的惩罚程度,即Huber损失函数是一种常用的鲁棒的回归损失函数。
MAE(Mean Absolute Error:平均绝对误差),是绝对误差的平均值,能更好地反映预测值误差的实际情况。
在步骤305中,通过随机梯度下降方法获取所述损失函数的最小损失值。
在一些实施例中,通过随机梯度下降方法获取损失函数的最小损失值。
利用随机梯度下降的方法找到损失函数的最小损失值,在下降过程中当残差大于超参数时由MAE(平均绝对误差)控制,当残差小于超参数时由MSE(均方误差)控制,通过设置超参数逐步下降得出损失函数最低点的y值为模型的最优解。
图4示出了本申请实施例通过随机梯度下降方法获取损失函数的最小损失值的执行流程示意图。
在步骤401中,在随机梯度下降过程中残差大于所述超参数时,由所述损失函数的平均绝对误差控制;在随机梯度下降过程中残差小于超参数时由所述损失函数的均方误差控制。
梯度(gradient)是指由损失函数的全部偏导数汇聚而成的向量,也是该点处函数值变化最快的方向。因为要尽可能的减少累计误差,在这里采取梯度下降法来寻找所述损失函数的最小值。由于模型的不稳定性,神经网络模型的训练过程通常是根据已设定的参数基于梯度下降原理寻找局部极小值,但因为局部极小值并不一定代表全局最小,因此每一次的训练结果可能都不尽相同,进而导致在衡量输入变量指标参数的重要性时也会得出不同的结果。
在一些实施例中,超参数与模型参数不同,超参数是为了让模型更好更快,处理模型优化和模型选择,保证模型不欠拟合和过拟合。所述超参数反应了所述损失函数Y值的下降步长,如图6所示。
在一些实施例中,所述重跳概率预测模型可以为机器学习模型。机器学习模型可以包括:深度信念网络模型、VGG卷积神经网络、OverFeat、R-CNN、SPP-Net、Fast R-CNN、Faster R-CNN、R-FCN、DSOD等。所述初始模型可以具有多个初始模型参数,例如,学习率,超参数等。所述初始模型参数可以是系统的默认值,也可以根据实际应用情况进行调整修改。所述初始模型的训练过程可以从现有技术中找到,在此不在赘述。当满足某一预设条件时,例如,训练样本数达到预定的数量,模型的检测正确率大于某一预定准确率阈值,或损失函数(Loss Function)的值小于某一预设值,训练过程停止,训练完成后获取到神经网络模型。
在随机梯度下降过程中,当残差大于所述预设的超参数时,由所述损失函数的MAE控制;在随机梯度下降过程中残差小于超参数时,由所述损失函数的MSE控制。
在一些实施例中,为了对重跳概率预测的准确度做客观、真实的分析,可以使用测试集数据和真实数据的有限长度做均方差(MSE),拟合优度(R2)进行定量分析,从而确定重跳概率预测数据的误差范围。MSE是反映预测值与真实值之间差异程度的一种度量,是预测值与真实值之差的平方的期望值。MSE可以评价数据的变化程度,MSE的值越小,说明模型的预测效果越好。另一方面,MAE(Mean Absolute Error:平均绝对误差),是绝对误差的平均值,更好地反映预测值误差的实际情况.
在步骤402中,通过设置所述超参数逐步下降获取所述损失函数的最小损失值。
在损失达到最小时,重跳概率预测模型得到最优模型时的模型参数。
当通过所述超参数的设置获取得到损失函数的最小损失值时,损失函数达到收敛,通常收敛的指标有多种,在本实施例中,以达到预设最小损失值阈值作为损失收敛的指标。当达到收敛后,保存此刻得到的重跳概率预测模型参数,如图5所示,图5示出了本申请实施例通过随机梯度下降方法获取损失函数的最小损失值的逻辑判断示意图。
继续参考图3,在步骤306中,基于所述最小损失值,确定模型参数,得到最优重跳概率预测模型。
根据得出的最优解确定模型参数,固化配网线路重跳概率预测模型。当达到收敛后,保存此刻得到的重跳概率预测模型参数,所述时刻的模型参数构成最优重跳概率预测模型。
在神经网络模型的训练的过程中,设定损失函数并通过使所述损失函数的输出值最小化,来寻找最优参数,得到最优重跳概率预测模型。
本申请实施例还提供了一种基于梯度下降的配电网线路重跳概率预测优化装置,包括存储器、处理器及存储在存储器上的计算机程序,所述处理器执行所述计算机程序时执行如本申请实施例所述基于梯度下降的配电网线路重跳概率预测优化方法的内容。
本申请实施例还提供了一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机指令,当所述计算机指令中的至少部分指令被处理器执行时,实现如本申请基于梯度下降的配电网线路重跳概率预测优化方法的内容。
本申请的有益效果在于,通过计算配网线路重跳概率预测结果均方误差建立损失函数,采用随机梯度下降算法优化等一系列模型优化算法提高模型预测精度、准确性,节省人工和时间成本提高运维检修的工作效率,提高信息反馈效率降低日常运维的难度,对配网线路重复跳闸事件的发生进行提前预防降低其故障跳闸率及负载停电次数,保证配电网线路的安全稳定运行。
此外,本领域技术人员可以理解,本申请的各方面可以通过若干具有可专利性的种类或情况进行说明和描述,包括任何新的和有用的工序、机器、产品或物质的组合,或对他们的任何新的和有用的改进。相应地,本申请的各个方面可以完全由硬件执行、可以完全由软件(包括固件、常驻软件、微码等)执行、也可以由硬件和软件组合执行。以上硬件或软件均可被称为″数据块″、″模块″、″引擎″、″单元″、″组件″或″系统″。此外,本申请的各方面可能表现为位于一个或多个计算机可读介质中的计算机产品,该产品包括计算机可读程序编码。
计算机存储介质可能包含一个内合有计算机程序编码的传播数据信号,例如在基带上或作为载波的一部分。该传播信号可能有多种表现形式,包括电磁形式、光形式等,或合适的组合形式。计算机存储介质可以是除计算机可读存储介质之外的任何计算机可读介质,该介质可以通过连接至一个指令执行系统、装置或设备以实现通讯、传播或传输供使用的程序。位于计算机存储介质上的程序编码可以通过任何合适的介质进行传播,包括无线电、电缆、光纤电缆、RF、或类似介质,或任何上述介质的组合。
本申请各部分操作所需的计算机程序编码可以用任意一种或多种程序语言编写,包括面向对象编程语言如Java、Scala、Smalltalk、Eiffel、JADE、Emerald、C++、C#、VB.NET、Python等,常规程序化编程语言如C语言、Visual Basic、Fortran 2003、Perl、COBOL 2002、PHP、ABAP,动态编程语言如Python、Ruby和Groovy,或其他编程语言等。该程序编码可以完全在用户计算机上运行、或作为独立的软件包在用户计算机上运行、或部分在用户计算机上运行部分在远程计算机运行、或完全在远程计算机或服务器上运行。在后种情况下,远程计算机可以通过任何网络形式与用户计算机连接,比如局域网(LAN)或广域网(WAN)、或连接至外部计算机(例如通过因特网)、或在云计算环境中、或作为服务使用如软件即服务(SaaS)。
此外,除非权利要求中明确说明,本申请所述处理元素和序列的顺序、数字字母的使用、或其他名称的使用,并非用于限定本申请流程和方法的顺序。尽管上述披露中通过各种示例讨论了一些目前认为有用的发明实施例,但应当理解的是,该类细节仅起到说明的目的,附加的权利要求并不仅限于披露的实施例,相反,权利要求旨在覆盖所有符合本申请实施例实质和范围的修正和等价组合。例如,虽然以上所描述的系统组件可以通过硬件设备实现,但是也可以只通过软件的解决方案得以实现,如在现有的服务器或移动设备上安装所描述的系统。
同理,应当注意的是,为了简化本申请披露的表述,从而帮助对一个或多个发明实施例的理解,前文对本申请实施例的描述中,有时会将多种特征归并至一个实施例、附图或对其的描述中。但是,这种披露方法并不意味着本申请对象所需要的特征比权利要求中提及的特征多。实际上,实施例的特征要少于上述披露的单个实施例的全部特征。
针对本申请引用的每个专利、专利申请、专利申请公开物和其他材料,如文章、书籍、说明书、出版物、文档等,特此将其全部内容并入本申请作为参考。与本申请内容不一致或产生冲突的申请历史文件除外,对本申请权利要求最广范围有限制的文件(当前或之后附加于本申请中的)也除外。需要说明的是,如果本申请附属材料中的描述、定义、和/或术语的使用与本申请所述内容有不一致或冲突的地方,以本申请的描述、定义和/或术语的使用为准。

Claims (9)

1.一种基于梯度下降的配电网线路重跳概率预测优化方法,其特征在于,所述方法包括:
基于配电网数据构建重跳概率预测模型;
通过函数映射生成目标函数;
基于所述目标函数、重跳概率预测模型计算得到预测值;
通过预测值和实际值的绝对误差构造损失函数,赋值超参数;
通过随机梯度下降方法获取所述损失函数的最小损失值;
基于所述最小损失值,确定模型参数,得到最优重跳概率预测模型;
其中,在通过随机梯度下降方法获取所述损失函数的最小损失值步骤中使用测试集数据和真实数据的有限长度做均方差(MSE),拟合优度(R2)进行定量分析,从而确定重跳概率预测数据的误差范围。
2.如权利要求1所述基于梯度下降的配电网线路重跳概率预测优化方法,其特征在于,在基于配电网数据构建重跳概率预测模型前,还包括:将配电网数据划分为训练集与测试集。
3.如权利要求2所述基于梯度下降的配电网线路重跳概率预测优化方法,其特征在于,所述训练集采集预设数量的样本,用于训练所述重跳概率预测模型。
4.如权利要求1所述基于梯度下降的配电网线路重跳概率预测优化方法,其特征在于,所述损失函数被配置为Huber损失函数。
5.如权利要求1所述基于梯度下降的配电网线路重跳概率预测优化方法,其特征在于,通过随机梯度下降方法获取所述损失函数的最小损失值,具体执行如下:
在随机梯度下降过程中残差大于所述超参数时,由所述损失函数的平均绝对误差控制;在随机梯度下降过程中残差小于超参数时由所述损失函数的均方误差控制;
通过设置所述超参数逐步下降获取所述损失函数的最小值。
6.如权利要求1所述基于梯度下降的配电网线路重跳概率预测优化方法,其特征在于,在损失达到最小时,所述重跳概率预测模型得到最优模型时的模型参数。
7.如权利要求1所述基于梯度下降的配电网线路重跳概率预测优化方法,其特征在于,所述超参数反应了所述损失函数Y值的下降步长。
8.一种基于梯度下降的配电网线路重跳概率预测优化装置,其特征在于,包括存储器、处理器及存储在存储器上的计算机程序,所述处理器执行所述计算机程序时执行如权利要求1-7中任一所述基于梯度下降的配电网线路重跳概率预测优化方法。
9.一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机指令,当所述计算机指令中的至少部分指令被处理器执行时,实现如权利要求1~7中任意一项所述基于梯度下降的配电网线路重跳概率预测优化方法。
CN202010402400.0A 2020-05-13 2020-05-13 基于梯度下降的配电网线路重跳概率预测优化方法和装置 Active CN111612232B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010402400.0A CN111612232B (zh) 2020-05-13 2020-05-13 基于梯度下降的配电网线路重跳概率预测优化方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010402400.0A CN111612232B (zh) 2020-05-13 2020-05-13 基于梯度下降的配电网线路重跳概率预测优化方法和装置

Publications (2)

Publication Number Publication Date
CN111612232A CN111612232A (zh) 2020-09-01
CN111612232B true CN111612232B (zh) 2023-08-18

Family

ID=72200164

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010402400.0A Active CN111612232B (zh) 2020-05-13 2020-05-13 基于梯度下降的配电网线路重跳概率预测优化方法和装置

Country Status (1)

Country Link
CN (1) CN111612232B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116152358B (zh) * 2023-04-21 2023-07-21 深圳明锐理想科技有限公司 一种相机参数标定优化方法及电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014158072A1 (en) * 2013-03-29 2014-10-02 Telefonaktiebolaget L M Ericsson (Publ) Interference estimation with tdm
CN109740924A (zh) * 2018-12-29 2019-05-10 西安电子科技大学 融合属性信息网络和矩阵分解的物品评分预测方法
CN110533459A (zh) * 2019-08-07 2019-12-03 中国联合网络通信集团有限公司 一种基于梯度提升算法的终端更换概率预测方法及装置
CN110826794A (zh) * 2019-10-31 2020-02-21 上海电力大学 基于pso优化svm的电厂耗煤基准值滚动预测方法和装置
CN110874671A (zh) * 2019-10-24 2020-03-10 腾讯科技(深圳)有限公司 一种配电网的电力负荷预测方法、装置及存储介质
CN111092429A (zh) * 2019-12-23 2020-05-01 国网北京市电力公司 一种柔性互联配电网的优化调度方法、存储介质及处理器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014158072A1 (en) * 2013-03-29 2014-10-02 Telefonaktiebolaget L M Ericsson (Publ) Interference estimation with tdm
CN109740924A (zh) * 2018-12-29 2019-05-10 西安电子科技大学 融合属性信息网络和矩阵分解的物品评分预测方法
CN110533459A (zh) * 2019-08-07 2019-12-03 中国联合网络通信集团有限公司 一种基于梯度提升算法的终端更换概率预测方法及装置
CN110874671A (zh) * 2019-10-24 2020-03-10 腾讯科技(深圳)有限公司 一种配电网的电力负荷预测方法、装置及存储介质
CN110826794A (zh) * 2019-10-31 2020-02-21 上海电力大学 基于pso优化svm的电厂耗煤基准值滚动预测方法和装置
CN111092429A (zh) * 2019-12-23 2020-05-01 国网北京市电力公司 一种柔性互联配电网的优化调度方法、存储介质及处理器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
短期电力负荷预测方法研究;郑金;《中国优秀硕士学位论文全文数据库 工程科技Ⅱ辑》;全文 *

Also Published As

Publication number Publication date
CN111612232A (zh) 2020-09-01

Similar Documents

Publication Publication Date Title
CN107453357B (zh) 一种基于分层求解的配电网状态估计方法
WO2022088890A1 (zh) 电网中长期检修计划的校核方法、系统、设备及存储介质
CN103872681A (zh) 一种基于主配网一体化的在线实时合环方法
KR101219545B1 (ko) 전력계통에서의 최적화 기법을 적용한 파라미터 추정 방법
Angioni et al. Design and implementation of a substation automation unit
CN104037776A (zh) 随机惯性因子粒子群优化算法的电网无功容量配置方法
CN111784030B (zh) 一种基于空间相关性的分布式光伏功率预测方法及装置
CN111612232B (zh) 基于梯度下降的配电网线路重跳概率预测优化方法和装置
CN115453193B (zh) 基于pqm、ttu和sm量测数据协同的配电网谐波状态估计方法
CN110707693A (zh) 一种基于ami全量测点分区的集合卡尔曼滤波动态状态估计方法
CN111612231B (zh) 一种配网线路重跳模型融合处理方法及装置
Mohammedi et al. Optimal placement of phasor measurement units using topology transformation method based on Grey Wolf optimization approach
CN115828489B (zh) 基于关键量测布点位置搜索的感知设备部署方法及系统
CN117114161A (zh) 一种基于元学习的输电线路风偏闪络风险的预测方法
Atkinson et al. Leveraging advanced metering infrastructure for distribution grid asset management
CN109494733B (zh) 一种电力负荷模型的辨识参数优化方法及系统
US20230018146A1 (en) Method and central computer arrangement for predicting a grid state, and computer program product
CN111884254B (zh) 基于双重随机模拟的分布式光伏消纳接入方法及装置
CN111612233A (zh) 一种配电网线路重跳影响因素重要性得分获取方法及装置
CN114757548A (zh) 一种采用场景构建的风电储能设备调节性能评估方法
KR101569586B1 (ko) 계통 해석 데이터의 처리를 위한 장치 및 방법
CN105958473B (zh) 一种基于短路电流约束的电网饱和负荷水平的确定方法
Coster et al. Capacity management of low voltage grids using universal smart energy framework
Ipach et al. Utility-based operation management for low voltage distribution grids using online optimization
CN117411190B (zh) 基于多源信息的配电网拓扑识别方法、设备、系统及介质

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant