CN111607417B - 炼焦诊断系统及方法 - Google Patents

炼焦诊断系统及方法 Download PDF

Info

Publication number
CN111607417B
CN111607417B CN202010467592.3A CN202010467592A CN111607417B CN 111607417 B CN111607417 B CN 111607417B CN 202010467592 A CN202010467592 A CN 202010467592A CN 111607417 B CN111607417 B CN 111607417B
Authority
CN
China
Prior art keywords
coking
parameters
parameter
data
coke
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010467592.3A
Other languages
English (en)
Other versions
CN111607417A (zh
Inventor
杜屏
吴磊
翟明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Shagang Steel Co ltd
Jiangsu Shagang Group Co Ltd
Jiangsu Shagang Iron and Steel Research Institute Co Ltd
Original Assignee
Jiangsu Shagang Group Co Ltd
Zhangjiagang Hongchang Steel Plate Co Ltd
Jiangsu Shagang Iron and Steel Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Shagang Group Co Ltd, Zhangjiagang Hongchang Steel Plate Co Ltd, Jiangsu Shagang Iron and Steel Research Institute Co Ltd filed Critical Jiangsu Shagang Group Co Ltd
Priority to CN202010467592.3A priority Critical patent/CN111607417B/zh
Publication of CN111607417A publication Critical patent/CN111607417A/zh
Application granted granted Critical
Publication of CN111607417B publication Critical patent/CN111607417B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B53/00Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Coke Industry (AREA)

Abstract

本发明揭示了一种炼焦诊断系统及方法,所述系统包括:数据采集模块,其用于采集炼焦相关参数的数据;数据分析模块,其用于建立时间对应关系,并依照时间对应关系建立炼焦数据库,制定炼焦相关参数的合理范围和报警范围;实时监控及报警模块,其用于对炼焦相关参数进行监控和报警。与现有技术相比,本发明的炼焦诊断系统,通过建立炼焦煤质量参数、炼焦配煤参数、炼焦生产工艺参数和焦炭质量参数的时间对应关系,能够实现从原料、炼焦配煤、炼焦生产工艺到产品对整个炼焦生产过程进行系统的监控和诊断,从而对生产时出现的异常报警或者产品的质量报警能够做到快速的原因追溯和应对措施制定,避免由于时间不对应造成的错误分析和应对不当。

Description

炼焦诊断系统及方法
技术领域
本发明涉及高炉炼铁生产技术领域,特别涉及一种炼焦诊断系统及方法。
背景技术
焦炭质量的稳定对于高炉降耗、长寿和稳定都是至关重要因素。焦炭的质量取决于炼焦煤质量的稳定、合理的配煤及执行、焦炉生产工艺及仓位管理等。因此任何一个环节出了问题都会导致焦炭质量严重下滑,从而引起高炉的失常。
但是当前针对焦炭生产过程进行监控或诊断的系统只局限在单个生产环节,比如优化配煤系统、配煤精度监控、或者是四大车的作业监控等局部工艺诊断和监控。这些系统无法对影响焦炭质量的整个炼焦原料和生产流程进行系统的监控和诊断,导致炼焦煤和炼焦工艺出了问题缺少及时的报警和应对方案,同时在焦炭质量出现问题时也很难或者需要花费比较长的时间才能实现原因追溯,严重影响下游高炉炼铁的稳定。
发明内容
本发明的目的在于提供一种炼焦诊断系统及方法。
为实现上述发明目的之一,本发明一实施方式提供一种炼焦诊断系统,所述系统包括:
数据采集模块,其用于采集炼焦相关参数的数据,所述数据包括历史数据和实时数据,所述炼焦相关参数包括炼焦煤质量参数、炼焦配煤工艺参数、炼焦生产工艺参数和焦炭质量参数;
数据分析模块,其用于建立炼焦煤质量参数、炼焦配煤参数、炼焦生产工艺参数和焦炭质量参数的时间对应关系,并将炼焦相关参数的数据依照时间对应关系建立炼焦数据库;并通过对炼焦数据库中的数据进行分析,得到各个参数的合理范围和报警范围;
实时监控及报警模块,其用于通过各个参数的报警范围,结合炼焦数据库中的实时数据,对各个参数进行监控和报警。
作为本发明一实施方式的进一步改进,所述数据分析模块还用于:
通过对炼焦煤的检化验数据、到厂时间、到货量、仓位变化、配煤速度、煤塔料位、焦炉装煤量、焦炭产量、焦炭取样时间的动态监控,计算或通过示踪试验得出炼焦煤质量参数、炼焦配煤参数、炼焦生产工艺参数和焦炭质量参数的时间对应关系。
作为本发明一实施方式的进一步改进,所述数据分析模块还用于:
使用区间分析法,对炼焦数据库中的数据进行分析,得到一个参数与另一个或多个参数的线性回归关系,并结合其中一个参数的已知指标,得到其它参数的合理范围和报警范围。
作为本发明一实施方式的进一步改进,所述数据分析模块还用于:
使用区间分析法,对炼焦数据库中的数据进行分析,得到每个其它参数与M40和/或CSR的线性回归关系,并结合所述M40和/或CSR的已知指标,确定每个其它参数的合理范围和报警范围,其中所述炼焦相关参数包括M40、CSR和其它参数。
作为本发明一实施方式的进一步改进,所述数据分析模块还用于:
获取多个参数在不同时间点的样本数据,将第一参数的样本数据的波动范围进行区间划分;
根据其它参数与所述第一参数的时间对应关系,将所有其它参数的样本数据进行相同的区间划分,并计算每个参数在每个区间中的平均值;
分别以第一参数和其它参数在每个区间中的平均值作为两个坐标轴的坐标值,分别计算所述第一参数和其它参数的线性回归关系。
作为本发明一实施方式的进一步改进,所述实时监控和报警模块还用于:
根据炼焦相关参数的合理范围和报警范围,对炼焦相关参数的取值进行区段划分,对于炼焦相关参数的实时数据进行分区段报警,针对不同区段的报警制定不同的应对措施。
作为本发明一实施方式的进一步改进,所述实时监控和报警模块还用于:
在焦炭质量参数出现报警时,通过所述炼焦数据库,确定焦炭质量参数出现报警前后,炼焦煤质量参数、炼焦配煤工艺参数或炼焦生产工艺参数的变化导致焦炭质量参数出现报警,并对出现的报警进行原因追溯。
作为本发明一实施方式的进一步改进,所述数据采集模块还用于:
采集炼焦煤的供应商、到港时间、堆放场地和炼焦煤的检化验数据,得到炼焦煤质量参数的数据;
采集配煤单和现场实时配煤数据,得到炼焦配煤工艺参数的数据;
采集焦炉用煤气流量、装煤量、结焦温度、结焦时间、干熄焦工序的生产工艺数据,得到炼焦生产工艺参数的数据;
采集焦炭的检化验数据、焦炭仓位和焦炭产量,得到焦炭质量参数的数据。
为实现上述发明目的之一,本发明一实施方式提供一种炼焦诊断方法,所述方法包括:
采集炼焦相关参数的数据,所述数据包括历史数据和实时数据,所述炼焦相关参数包括炼焦煤质量参数、炼焦配煤工艺参数、炼焦生产工艺参数和焦炭质量参数;
建立炼焦煤质量参数、炼焦配煤参数、炼焦生产工艺参数和焦炭质量参数的时间对应关系,并将炼焦相关参数的数据依照时间对应关系建立炼焦数据库;
通过对炼焦数据库中的数据进行分析,得到各个参数的合理范围和报警范围;
通过各个参数的报警范围,对各个参数的实时数据进行监控和报警,并在报警后进行异常原因追溯。
作为本发明一实施方式的进一步改进,所述“建立炼焦煤质量参数、炼焦配煤参数、炼焦生产工艺参数和焦炭质量参数的时间对应关系”具体包括:
通过对炼焦煤的检化验数据、到厂时间、到货量、仓位变化、配煤速度、煤塔料位、焦炉装煤量、焦炭产量、焦炭取样时间的动态监控,计算或通过示踪试验得出炼焦煤质量参数、炼焦配煤参数、炼焦生产工艺参数和焦炭质量参数的时间对应关系。
作为本发明一实施方式的进一步改进,所述“通过对炼焦数据库中的数据进行分析,得到各个参数的合理范围和报警范围”具体包括:
使用区间分析法,对炼焦数据库中的数据进行分析,得到每个其它参数与M40和/或CSR的线性回归关系,并结合所述M40和/或CSR的已知指标,确定每个其它参数的合理范围和报警范围,其中所述炼焦相关参数包括M40、CSR和其它参数。
作为本发明一实施方式的进一步改进,所述区间分析法包括:
获取多个参数在不同时间点的样本数据,将第一参数的样本数据的波动范围进行区间划分;
根据其它参数与所述第一参数的时间对应关系,将所有其它参数的样本数据进行相同的区间划分,并计算每个参数在每个区间中的平均值;
分别以第一参数和其它参数在每个区间中的平均值作为两个坐标轴的坐标值,分别计算所述第一参数和其它参数的线性回归关系。
作为本发明一实施方式的进一步改进,所述方法还包括:
根据炼焦相关参数的合理范围和报警范围,对炼焦相关参数的取值进行区段划分,对于炼焦相关参数的实时数据进行分区段报警,针对不同区段的报警制定不同的应对措施。
作为本发明一实施方式的进一步改进,所述方法还包括:
在焦炭质量参数出现报警时,通过所述炼焦数据库,确定焦炭质量参数出现报警前后,炼焦煤质量参数、炼焦配煤工艺参数或炼焦生产工艺参数的变化导致焦炭质量参数出现报警,并对出现的报警进行原因追溯。
作为本发明一实施方式的进一步改进,所述“采集炼焦相关参数的数据”具体包括:
采集炼焦煤的供应商、到港时间、堆放场地和炼焦煤的检化验数据,得到炼焦煤质量参数的数据;
采集配煤单和现场实时配煤数据,得到炼焦配煤工艺参数的数据;
采集焦炉用煤气流量、装煤量、结焦温度、结焦时间、干熄焦工序的生产工艺数据,得到炼焦生产工艺参数的数据;
采集焦炭的检化验数据、焦炭仓位和焦炭产量,得到焦炭质量参数的数据。
与现有技术相比,本发明的炼焦诊断系统,通过建立炼焦煤质量参数、炼焦配煤参数、炼焦生产工艺参数和焦炭质量参数的时间对应关系,能够实现从原料、炼焦配煤、炼焦生产工艺到产品对整个炼焦生产过程进行系统的监控和诊断,从而对生产时出现的异常报警或者产品的质量报警能够做到快速的原因追溯和应对措施制定,避免由于时间不对应造成的错误分析和应对不当。
附图说明
图1是本发明的炼焦诊断系统的结构示意图。
图2是炼焦煤粘结指数G值与焦炭的抗碎强度M40的关系图。
图3是本发明通过区间分析法得出的G值和M40的线性回归关系图。
图4是本发明通过区间分析法得出的G值和M10的线性回归关系图。
图5是本发明的炼焦诊断方法的流程示意图。
具体实施方式
以下将结合附图所示的具体实施方式对本发明进行详细描述。但这些实施方式并不限制本发明,本领域的普通技术人员根据这些实施方式所做出的结构、方法、或功能上的变换均包含在本发明的保护范围内。
对炼焦生产过程进行诊断,需要分析炼焦相关参数之间的关系,或者分析炼焦煤等原料和操作工艺对产品焦炭的影响。炼焦相关参数非常多,并且从炼焦相关参数的历史数据可以看出,对于这么多的炼焦相关参数,参数之间很少存在线性关系,基本都是非线性关系,甚至是杂乱无章,使用各种统计学方法对这些数据进行分析,也无法将这些炼焦相关参数之间的关系简化。
经过发明人长时间的研究,发明了一种区间分析法,能够将炼焦相关参数的这些非线性关系的数据、甚至是杂乱无章的数据进行线性化,从而简化了炼焦相关参数之间的关系。
所述区间分析法包括如下步骤:
步骤S110:获取多个参数在不同时间点的样本数据,将第一参数的样本数据的波动范围进行区间划分。
为了方便划分,优选通过平均分割的方式,将第一参数的样本数据的波动范围进行区间划分。
区间个数可以是很多,也可以很少,但是由于后续要将每个区间的平均值进行线性回归,因此优选划分的区间个数为6-8个,如果样本数据量多可以划分成8个,少的话可以划分成6个,依次类推。
另外,在进行区间划分后,有些区间的样本量可能很少,对后续的处理没有帮助作用,因此,在一个优选的实施方式中,将所述第一参数的样本数据的波动范围划分成多个区间后,统计所述第一参数的总样本量和在每个区间中样本量,计算每个区间的样本量占比。删除样本量占比少于预定阈值的区间,得到最终划分的区间。所述预定阈值可以是5%,即当某个区间的样本量少于总样本量的5%时,删除或去掉这个区间,是这个区间的数据不进入后续的处理。
步骤S120:根据其它参数与所述第一参数的时间对应关系,将所有其它参数的样本数据进行相同的区间划分,并计算每个参数在每个区间中的平均值。
例如第一参数的样本数据被划分成M个区间,第一区间包括第一参数在时间点A、B、C和D的四个样本数据,根据其它参数与所述第一参数的时间对应关系,将其它参数在对应的A、B、C和D时间点的样本数据也划分成第一区间,依次类推。这样,其它参数的样本数据也被划分成和第一参数相同且具有对应关系的M个区间。
区间划分结束后,计算每个参数在每个区间的平均值,包括第一参数在M个区间的平均值,每个其它参数在M个区间的平均值。
步骤S130:分别以第一参数和其它参数在每个区间中的平均值作为两个坐标轴的坐标值,分别计算所述第一参数和其它参数的线性回归关系。
所述两个坐标轴可以是横轴和纵轴,分别以第一参数在每个区间的平均值作为横轴/纵轴的坐标值,以一个其它参数在每个区间的平均值作为纵轴/横轴的坐标值,计算第一参数和这一个其它参数的线性回归关系。
按照相同的方式处理所有的其它参数,得到第一参数与所有其它参数的多个线性回归关系。
使用区间分析法分析炼焦相关参数的数据,可以得到每个炼焦相关参数与其它炼焦相关参数的线性回归关系。
需要说明的是,使用区间分析法能够得到一个参数与其它参数之间的线性回归关系,但是无法得到其它参数对这个参数的影响权重,因此,为了能够科学的计算其它参数对某个参数的影响权重,发明人经过研究,将上述区间分析法与归一法相结合,得到归一化区间分析法,计算其它参数对某个参数的影响权重。所述归一化区间分析法包括:
步骤S210:获取多个参数在不同时间点的样本数据,将第一参数的样本数据的波动范围进行区间划分。
同步骤S110。
步骤S220:根据其它参数与所述第一参数的时间对应关系,将所有其它参数的样本数据进行相同的区间划分。
同步骤S120。
步骤S230:计算每个参数在每个区间的平均值,并对每个参数的各个平均值进行归一化处理,得到每个参数的各个归一化平均值。
优选使用如下归一化公式,求取每个参数的各个平均值T的归一化平均值t:
Figure BDA0002513162290000071
其中Tmin和Tmax为每个参数在所有区间的最小值和最大值。
步骤S240:分别以第一参数和其它参数在每个区间的归一化平均值作为两个坐标轴的坐标值,分别计算以其它参数为自变量、以所述第一参数为因变量的归一化线性方程。
比如以第一参数的归一化平均值作为纵轴的坐标值,以一个其它参数的归一化平均值作为横轴的坐标值,能够得到以所述其它参数为自变量x、以所述第一参数为因变量y的归一化线性方程:
y=ax+b
其中自变量x的系数a的绝对值,即表征所述其它参数对第一参数的影响权重。
需要说明的是,使用区间分析法或归一化区间分析法分析参数之间的线性回归关系或归一化线性方程时,所有参与分析的参数的数据采集时,具有时间对应关系。
如图1所示,本发明提供一种炼焦诊断系统,所述系统能够实现从原料、炼焦配煤、炼焦生产工艺到产品对整个炼焦生产过程进行系统的监控和诊断,从而对生产时出现的异常报警或者产品的质量报警能够做到快速的原因追溯和应对措施制定。所述系统包括数据采集模块、数据分析模块和实时监控及报警模块。
数据采集模块
数据采集模块用于采集炼焦相关参数的数据,所述数据包括历史数据和实时数据,所述炼焦相关参数包括从原料到产品整个炼焦过程中涉及的参数,主要包括炼焦煤质量参数、炼焦配煤工艺参数、炼焦生产工艺参数和焦炭质量参数。
数据采集模块主要进行如下数据采集:
(1)炼焦煤质量和仓储数据采集
主要包括采集炼焦煤的供应商、到港时间、堆放场地和炼焦煤的检化验数据,得到炼焦煤质量参数的数据。
(2)炼焦配煤和配煤车间数据实时采集
主要包括采集配煤单和现场实时配煤数据,得到炼焦配煤工艺参数的数据。
(3)焦炉和干熄焦工艺数据采集
采集焦炉用煤气流量、装煤量、结焦温度、结焦时间、干熄焦工序的生产工艺数据,得到炼焦生产工艺参数的数据。
(4)焦炭指标和仓位数据采集
采集焦炭的检化验数据、焦炭仓位和焦炭M40,得到焦炭质量参数的数据。
数据分析模块
炼焦过程(焦炭生产过程)包括很多道工序,比如对炼焦煤进行存储和检化验,然后配煤、焦化和熄焦从而得到焦炭,从一批炼焦煤到一批焦炭,这些工序是按顺序执行的,同时,多批炼焦煤同时进行炼制,很多工序又是并行执行的,整个炼焦过程工艺复杂,当检验到焦炭质量出现问题时,并不能很准确的知道所述焦炭的炼焦煤是对应哪个批次、它是如何配煤、或者在什么时候进行焦化和熄焦的,因此很难追溯焦炭质量出现问题的原因。
因此,数据分析模块用于建立炼焦煤质量参数、炼焦配煤参数、炼焦生产工艺参数和焦炭质量参数的时间对应关系,并将炼焦相关参数的数据依照时间对应关系建立炼焦数据库,从而将炼焦过程分散的炼焦煤质量、配煤、生产工艺、产品质量等参数关联起来,便于后续的数据分析、报警和原因追溯功能的实现。
优选的,通过对炼焦煤的检化验数据、到厂时间、到货量、仓位变化、配煤速度、煤塔料位、焦炉装煤量、焦炭产量、焦炭取样时间的动态监控,计算或通过示踪试验得出炼焦煤质量参数、炼焦配煤参数、炼焦生产工艺参数和焦炭质量参数的时间对应关系。
优选的,对于采集到的炼焦相关参数的数据,根据上述时间对应关系建立炼焦数据库后,需要对炼焦数据库中的数据进行清洗、挖掘和融合后,再使用融合后的数据进行数据分析、监控和报警,比如使用区间分析法或归一化区间分析法进行分析等。
数据清洗是指剔除异常坏点数据,补充缺失数据。数据挖掘是指在采集数据的基础上,对各参数数据进行统计分析,统计平均值、最大值、最小值、数据分布、标准偏差等。同时,数据挖掘还包括挖掘间接参数的数据,所述间接参数是指无法通过采集直接获取的参数。比如干熄焦炉数的获取,就是根据干熄焦锅炉顶盖打开信号、称重系统的信号联合判断和计算得到的。数据融合是指统一所有参数的数据频率或数据周期,得到周期数据。由于炼焦相关参数的数据获取频率不同,比如有些参数每秒采集一次,有些参数每分钟采集一次,有些参数每小时甚至每天采集一次,这样对于这些不同数据获取频率的参数数据,就需要进行数据融合,统一所有参数的数据频率或数据周期,得到周期数据。比如统一所有参数的数据频率为一个小时一个数据,所述数据周期为一个小时。由于炼焦相关参数的数据量比较大,整体周期较长,因此优选的数据频率为一天一个数据,即数据周期为天。得到一个参数的周期数据的方法为:获取这个参数在数据周期内的所有数据的平均值或者最新值,作为这个参数的一个周期数据。后续使用烧结数据库中的某个参数的数据,是指这个参数的周期数据。
数据分析模块还用于通过对炼焦数据库中的数据进行分析,得到各个参数的合理范围和报警范围。
目前在炼焦过程中,其工艺指标控制范围和报警范围的确定大多由现场工作人员根据经验确定,缺少现场数据的支撑,容易引起警报误判,更难发现炼焦生产各环节的影响规律并优化生产。
本发明的数据分析模块,优选使用区间分析法,对炼焦数据库中的数据进行分析,得到一个参数与另一个或多个参数的线性回归关系,并结合其中一个参数的已知指标,得到其它参数的合理范围和报警范围。
需要说明的是,所述已知指标包括已知目标指标和已知下限指标,所述已知目标指标是指参数的现有目标范围或目标属性,所述已知下限指标,是指参数的已知下限范围,在所述下限范围所述参数的数据会被判定为异常。通过一个参数与另一个或多个参数的线性回归关系,并结合其中一个参数的已知目标指标,能够得到其它参数的合理范围。通过一个参数与另一个或多个参数的线性回归关系,并结合其中一个参数的已知下限指标,能够得到其它参数的报警范围。
具体的,使用区间分析法,对炼焦数据库中的数据进行分析,得到每个其它参数与M40和/或CSR的线性回归关系,并结合所述M40和/或CSR的已知指标,确定每个其它参数的合理范围和报警范围,其中所述炼焦相关参数包括M40、CSR和其它参数。即可以计算其它参数与M40的线性回归关系,然后结合M40的已知指标,得到其它参数的合理范围;也可以计算其它参数与CSR的线性回归关系,然后结合CSR的已知指标,得到其它参数的合理范围,还可以同时计算其它参数与上述两个关键参数的线性回归关系,得到其它参数的合理范围。
需要说明的是,使用区间分析法,不仅限于计算其它参数与M40和CSR的线性回归关系,还可以计算任意两个参数的线性回归关系,在实际使用中,可以通过相关性分析,计算两个或多个强相关性的参数的线性回归关系,然后根据其中一个参数的已知指标,计算另外一个或多个参数的合理范围。
如图2和图3所示,图2为炼焦煤粘结指数G值与焦炭的抗碎强度M40的关系图,从图中看出G值与M40存在一定的非线性关系,但是分布零散,难以给出回归关系。使用区间分析法,对这两个参数的数据进行分析,如下表1所示,对炼焦煤G值进行区间划分,并计算每个区间的G值平均值和M40的平均值。以G值在每个区间的平均值作为横轴的坐标值,以M40在对应区间的平均值作为纵轴的坐标值,得到如图3所示的G值和M40的线性回归关系。
Figure BDA0002513162290000111
Figure BDA0002513162290000121
表1
焦炭的主要评价指标是抗碎强度M40和反应后强度CSR,因此使用区间分析法,对炼焦数据库中的数据进行分析,能够得到炼焦相关参数中除M40和CSR的其它参数与M40、CSR的线性回归关系。这样从这个线性关系中就可以很明显的看出其它参数对焦炭质量的影响。需要说明的是,所述其它参数一般是从炼焦煤质量参数、炼焦配煤工艺参数、炼焦生产工艺参数和焦炭质量参数中选取关键参数得到。
在得到每个其它参数与M40、每个其它参数与CSR的线性回归关系后,并结合所述M40和CSR的已知指标,可以确定每个其它参数的合理范围和报警范围。
图3和图4分别为本发明通过区间分析法得出的G值和M40、G值和M10的线性回归关系图。如图3和图4所示,如果焦炭的抗碎强度的目的指标为M40≥88,可以得出配合煤G值的一个合理范围,再结合M10的已知指标,得出配合煤G值的另一个合理范围,两个合理范围的交集即是配合煤G值的最终合理范围。而通过M40和M10的已知下限指标,可以得出G值的报警范围。当配合煤的G值落到报警范围,则自动进行红色报警,相应的配煤技术人员要及时调整配煤结构,将配合煤G值保持在合理范围内,从而保证焦炭的质量稳定。
实时监控及报警模块
实时监控及报警模块用于通过各个参数的报警范围,对各个参数的实时数据进行监控和报警,并在报警后进行异常原因追溯。
在一个优选的实施方式中,根据炼焦相关参数的合理范围和报警范围,对炼焦相关参数的取值进行区段划分,对于炼焦相关参数的实时数据根据区段进行分级报警,针对不同级别的报警制定不同的应对措施。
具体的,对于炼焦相关参数进行蓝色、黄色、红色的分级报警。当某一参数出现红色报警的时候,相关部门需要对报警进行原因分析和应对措施制定,并监控上下道工序的报警情况,跟踪应对措施的实施效果。因此实时监控及报警模块可以实现对炼焦煤、配煤、生产工艺的监控、报警和应对措施跟踪,真正做到所有异常第一时间发现,在当前工序采取应对措施,进入下一工序前提前预防。同时由于是整个生产过程的监控,当焦炭、生产工艺参数出现异常时,可以追溯它使用的原料和上游生产异常情况,自动统计焦炭质量异常和对应时间的前道工序的异常报警情况,做到炼焦生产的及时追溯和原因分析。在一个具体的应用中,新采购的炼焦煤a质量检化验指标出现了异常,炼焦煤a出现了严重的混煤情况,质检的岩相分析结果出现了红色报警:焦煤中混入了部分1/3焦煤和瘦煤。对应的焦化厂技术人员要及时进行原因分析和应对措施制定,根据混煤情况,减少原计划的1/3焦煤配煤比例,适度提高焦煤比例,最终严重的炼焦煤混煤质量问题并没有导致焦炭质量的失常,后续高炉生产保持稳定。而本发明投入使用前,一般是高炉持续异常,才开始追溯到焦炭质量异常,而焦炭质量异常的原因追溯也要耗费几天,找到原因到炉况治理成功,一般需要一周以上的时间,带来了巨大的经济损失。
在另一个优选的实施方式中,在焦炭质量参数出现报警时,通过所述炼焦数据库,确定焦炭质量参数出现报警前后,炼焦煤质量参数、炼焦配煤工艺参数或炼焦生产工艺参数的变化导致焦炭质量参数出现报警,并对出现的报警进行原因追溯。
如图5所示,本发明还提供一种炼焦诊断方法,所述方法包括:
步骤S310:采集炼焦相关参数的数据,所述数据包括历史数据和实时数据,所述炼焦相关参数包括炼焦煤质量参数、炼焦配煤工艺参数、炼焦生产工艺参数和焦炭质量参数。
具体的,采集炼焦煤的供应商、到港时间、堆放场地和炼焦煤的检化验数据,得到炼焦煤质量参数的数据;
采集配煤单和现场实时配煤数据,得到炼焦配煤工艺参数的数据;
采集焦炉用煤气流量、装煤量、结焦温度、结焦时间、干熄焦工序的生产工艺数据,得到炼焦生产工艺参数的数据;
采集焦炭的检化验数据、焦炭仓位和焦炭产量,得到焦炭质量参数的数据。
步骤S320:建立炼焦煤质量参数、炼焦配煤参数、炼焦生产工艺参数和焦炭质量参数的时间对应关系,并将炼焦相关参数的数据依照时间对应关系建立炼焦数据库。
优选的,通过对炼焦煤的检化验数据、到厂时间、到货量、仓位变化、配煤速度、煤塔料位、焦炉装煤量、焦炭产量、焦炭取样时间的动态监控,计算或通过示踪试验得出炼焦煤质量参数、炼焦配煤参数、炼焦生产工艺参数和焦炭质量参数的时间对应关系。根据所述时间对应关系,将炼焦相关参数的数据建立炼焦数据库。
步骤S330:通过对炼焦数据库中的数据进行分析,得到各个参数的合理范围和报警范围。
优选的,使用区间分析法,对炼焦数据库中的数据进行分析,得到每个其它参数与M40和/或CSR的线性回归关系,并结合所述M40和/或CSR的已知指标,确定每个其它参数的合理范围和报警范围,其中所述炼焦相关参数包括M40、CSR和其它参数。
步骤S340:通过各个参数的报警范围,对各个参数的实时数据进行监控和报警,并在报警后进行异常原因追溯。
优选的,所述方法还包括:根据炼焦相关参数的合理范围和报警范围,对炼焦相关参数的取值进行区段划分,对于炼焦相关参数的实时数据进行分区段报警,针对不同区段的报警制定不同的应对措施。
优选的,所述方法还包括:在焦炭质量参数出现报警时,通过所述炼焦数据库,确定焦炭质量参数出现报警前后,炼焦煤质量参数、炼焦配煤工艺参数或炼焦生产工艺参数的变化导致焦炭质量参数出现报警,并对出现的报警进行原因追溯。
本发明提供一种炼焦相关参数范围的设定方法,所述方法使用区间分析法对炼焦相关参数的数据进行分析,为炼焦相关参数制定合理的范围。所述方法包括:
步骤S410:获取炼焦相关参数中的一个参数和与所述参数具有相关性的相关性参数的数据。
从上述建立有时间对应关系的炼焦数据库中,获取需要做分析的一个参数和与所述参数具有相关性参数的数据。
所述相关性参数可以认为是除所述参数之外的所有其它炼焦相关参数,因为它们都是炼焦相关参数,所以它们都是相关的。当然,也可以认为所述相关性参数是与所述参数具有强相关的部分其它炼焦相关参数,此时,获取与所述参数具有相关性的参数的方法,可以通过历史经验判断,也可以通过相关性分析得到。
相关性分析为现有技术,即可以通过数据,分析两个参数之间的相关性。本发明使用相关性分析得到一个参数的相关性参数的方法为:
通过数据,分别分析这个参数与其它炼焦相关参数的相关性,根据所述相关性的强弱程度,选取与这个参数的相关性排名前N的其它炼焦相关参数,作为与这个参数具有相关性的参数。
由于焦炭质量为炼焦生产的主要目标,优选所述相关性参数包括焦炭质量参数。
在一个优选的实施方式中,所述相关性参数包括焦炭的M40,通过所述参数与M40的线性回归关系,结合所述焦炭M40的已知目标指标,得到所述参数的合理范围。
在另一个优选的实施方式中,所述相关性参数包括焦炭的CSR,通过所述参数与CSR的线性回归关系,结合所述CSR的已知目标指标,得到所述参数的合理范围。
步骤S420:使用区间分析法,对所述参数和相关性参数进行分析,得到所述参数与每个相关性参数的线性回归关系。
将所述参数的数据根据波动范围进行区间划分。然后根据相关性参数与所述参数的时间对应关系,将所有相关性参数的数据进行相同的区间划分。区间划分结束后,计算所述参数在每个区间的平均值,同时计算每个相关性参数在每个区间的平均值。
以所述参数在每个区间的平均值作为一个坐标轴(比如横轴)的坐标值,以一个相关性参数在每个区间的平均值作为另一个坐标值(比如纵轴)的坐标值,计算所述参数和这个相关性参数的线性回归关系。使用同样的方法,计算所述参数与其它相关性参数的线性回归关系。
步骤S430:根据所述线性回归关系,结合一个或多个所述相关性参数的已知目标指标,得到所述参数的合理范围。
在一个优选的实施方式中,所述方法还包括:根据所述线性回归关系,结合一个或多个所述相关性参数的已知下限指标,得到所述参数的报警范围。
根据本发明的炼焦相关参数范围的设定方法,可以设定所有炼焦相关参数的合理范围和报警范围。
通过设定炼焦相关参数的合理范围和报警范围,可以对炼焦相关参数的实时数据进行监控和报警,有效指导焦炭的生产。
本发明还提供一种电子设备,包括存储器和处理器,所述存储器存储有可在所述处理器上运行的计算机程序,所述处理器执行所述程序时实现上述所述炼焦相关参数范围的设定方法中的任意一个步骤,也就是说,实现上述所述炼焦相关参数范围的设定方法中任意一个技术方案中的步骤。
本发明还提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现上述所述炼焦相关参数范围的设定方法中的任意一个步骤,也就是说,实现上述所述炼焦相关参数范围的设定方法中的任意一个技术方案中的步骤。
焦炭的质量参数是反映焦炭生产技术水平和经济水平的指标参数,特别是焦炭的M40和CSR,是评价焦炭生产技术水平和经济水平的最终指标。因此,本发明还提供一种炼焦系统的评分方法,所述炼焦系统是指从原料到产品的整个炼焦过程,所述评分方法使用归一化区间分析法,科学的计算炼焦系统的关键参数对焦炭质量参数的影响权重,确定关键参数对炼焦系统评价的贡献度,从而科学的对炼焦系统进行量化评价。所述方法包括:
步骤S510:使用归一化区间分析法,对炼焦系统的关键参数和焦炭质量参数的数据进行分析,分别得到以所述关键参数为自变量、以焦炭质量参数为因变量的归一化线性方程。
可以从炼焦相关参数中选出关键参数作为炼焦系统的评价项,选取的方法可以是依靠经验,也可以通过归一化区间分析法分析所有炼焦相关参数与焦炭质量参数的数据,得到以炼焦相关参数为因变量、以焦炭质量参数为自变量的归一化线性方程,然后根据因变量系数绝对值的大小,选取排名前N的因变量作为关键参数。
优选所述关键参数包括部分炼焦煤质量参数、部分炼焦配煤工艺参数和部分炼焦生产工艺参数。
所述焦炭质量参数为一个或多个,可以只包括M40,也可以只包括CSR或者只包括一个其它的焦炭质量参数,优选包括M40和CSR两个参数。
在确定关键参数和焦炭质量参数后,可以从上述炼焦数据库中获取对应的数据。然后使用归一化区间分析法,对这些数据进行分析,分别得到以所述关键参数为自变量、以焦炭质量参数为因变量的归一化线性方程,其中因变量系数绝对值即为关键参数对焦炭质量参数的影响权重。
在一个优选的实施方式中,所述“使用归一化区间分析法,对炼焦系统的关键参数和焦炭质量参数的数据进行分析,分别得到以所述关键参数为自变量、以焦炭质量参数为因变量的归一化线性方程”具体包括:
获取所有所述关键参数和焦炭质量参数的数据,将所述焦炭质量参数的数据的波动范围进行区间划分。
根据每个关键参数与所述焦炭质量参数的时间对应关系,将所有关键参数的数据进行相同的区间划分。
计算每个参数在每个区间的平均值,并对每个参数的各个平均值进行归一化处理,得到每个参数的各个归一化平均值。
分别以所述焦炭质量参数和关键参数在每个区间的归一化平均值作为两个坐标轴的坐标值,分别计算以关键参数为自变量、以所述焦炭质量参数为因变量的归一化线性方程。
步骤S520:根据所述归一化线性方程中的因变量系数绝对值的大小,确定对应关键参数对炼焦系统的评分权重。
当焦炭质量参数为一个参数时,所述因变量系数绝对值即是对应应变量对炼焦系统的评分权重。当焦炭质量参数有多个时,需要先确定多个焦炭质量参数对炼焦系统的影响权重,再结合关键参数对焦炭质量参数的影响权重(即对应的因变量系数的绝对值),确定关键参数对炼焦系统的评分权重。
以焦炭质量参数为M40和CSR举例,需要根据M40和CSR对炼焦系统的重要性,确定M40和CSR对炼焦系统的影响权重。比如在要求M40但是对CSR没多大要求时,加重M40的影响权重,在要求CSR但是对M40没多大要求时,加重CSR的影响权重,在对M40和CSR没有偏重倾向时,可以设定M40和CSR对炼焦系统的影响权重都是0.5。在确定M40和CSR对炼焦系统的影响权重(分别是c和d)后,分别计算关键参数对M40的影响权重e、和对CSR的影响权重f,那么关键参数对炼焦系统的评分权重为上述两类影响权重相乘后求和,即:
评分权重=c*e+d*f。
步骤S530:根据所有关键参数的评分权重和每个关键参数的取值等级,对炼焦系统进行量化评价。
所述步骤具体包括:
步骤S531:根据所有关键参数的评分权重,计算每个关键参数的总分。
首先设定炼焦系统的总分,比如可以是100分。然后将所有关键参数的评分权重相加,得到权重总和,将单个关键参数的评分权重除以权重总和,再乘以炼焦系统总分,就得到每个关键参数的总分。当然,这样计算出来的关键参数的总分可能不是整数,为了方便计算,可以稍微调整所述关键参数的总分为最接近的整数。
步骤S532:确定每个关键参数的合理范围,根据每个关键参数的取值偏离所述合理范围的程度,为每个关键参数划分取值等级。
对于关键参数合理范围的确定,可以依靠经验,也可以使用区间分析法分析关键参数的数据,确定关键参数的合理范围,这种确定方法科学且具有数据支撑。使用区间分析法确定关键参数的合理范围的方法包括:
获取一个关键参数和与所述关键参数具有相关性的相关性参数的数据,可以从炼焦数据库中获取。
使用区间分析法,对所述关键参数和相关性参数的数据进行分析,得到所述关键参数与每个相关性参数的线性回归关系。
根据所述线性回归关系,结合一个或多个所述相关性参数的已知目标指标,得到所述参数的合理范围。
步骤S533:根据每个关键参数的总分和取值等级的划分,设定每个关键参数的每个取值等级对应的等级分值。
假设炼焦煤粘结指数G值的总分为5分,那么可以设定取值等级为一等的分值为5分,二等为3分,三等为1分,四等为0分。
步骤S534:获取一个时段的所有关键参数的数据,为每个关键参数的数据进行评分,所有关键参数的评分之和即为所述炼焦系统在所述时段的评分。
那么获取一个时段所有关键参数的数据包括:获取这个时段的所有关键参数的所有数据,通过求平均值或者取最新值的方式,将每个关键参数的所有数据融合成一个数据,从而得到这个时段的所有关键参数的数据。所述一个时段可以是一天、一个小时、一个班次等等。假设需要计算每天炼焦系统的评分,那么获取每个关键参数每天的所有数据,将每个关键参数每天的所有数据融合成一个数据(融合的方法是求平均值或者取最新值等)。或者需要计算一天中每个班次(8小时一个班次)的评分,那么获取每个关键参数在每个班次的所有数据,将每个关键参数在每个班次的所有数据融合成一个数据。
在得到关键参数对应这个时段的数据后,找到每个关键参数的数据落入的取值等级,以及所述取值等级对应的等级分值,得到每个关键参数的评分,将所有关键参数的评分之和,即为炼焦系统的在这个时段的评分。
本发明的炼焦系统的评分方法,可以对不同时段的炼焦系统进行评分,从而确定不同时段炼焦系统的生产状况,有效指导焦炭的生产,利于炼焦系统的稳定,提高炼焦系统的经济效益。
在一个优选的实施方式中,所述方法还包括:
将炼焦系统的评分设定不同的评分区间,针对不同评分区间制定不同的应对方案。
例如对于总分100分的炼焦系统评分,设定[90,100]为第一评分区间,[80,90)为第二评分区间,[70,80)为第三评分区间,[0,70]为第四评分区间。针对第一至四评分区间制定的应对方案可以分别为:(1)不做任何处理;(2)分析关键参数分数发生变化的原因(主要是变低的原因),并对齐进行整改;(3)分析失分项靠前的N个关键参数失分的原因,并对其进行整改;(4)析失分项靠前的N+M个关键参数失分的原因,并对其进行限期整改,并制定相应的惩罚措施。以上只是举例,但并不以此为限。
在另一个优选的实施方式中,所述方法还包括:
在某个关键参数出现失分时,通过所述关键参数与焦炭质量参数的线性回归关系,计算所述关键参数对焦炭质量参数的影响。
所述失分,是指所述关键参数没有得到满分或少于总分。本实施方式用于准确计算失分的关键参数,尤其是失分过多的关键参数,对焦炭质量参数(比如M40和CSR)的影响。
使用此方法能够准确计算炼焦系统的严重失分项对焦炭的M40和CSR的影响。
在又一个优选的实施方式中,所述方法还包括:
所述关键参数包括关键操作工艺参数,计算每个关键操作工艺参数在每个班次的评分,获取每个关键操作工艺参数在所有班次中的最高分,选取所述最高分对应的操作作为规范操作。
在炼焦系统中,一天分为三个班次:白班、中班和夜班,每个班次8个小时,分别对应不同的工人。由于不同的工人操作不同,使得对应的关键操作工艺参数的评分不同,因此选取评分高的关键操作工艺参数对应班次的工人操作,作为标准操作,规范所述关键操作工艺参数的操作,利于炼焦系统的稳定性。
由于炼焦系统涉及的操作复杂,且分为多个班次,每个班次工人不同,每个工人的操作都会对焦炭质量产生影响,因此,如何对操作工人进行管理,从而减少操作工人对焦炭质量的负面影响,也是炼焦系统的一大难题。在又一个优选的实施方式中,所述方法还包括:
计算炼焦系统在一时间段内(比如一个月或者一个季度等)每个班次的评分,得到每个班次在所述时间段的总体评分,根据所述评分对每个班次对应的工人进行管理。
管理的方法包括但不限于根据总体评分对工人制定奖惩措施,调动工人的积极性。
本发明还提供一种炼焦系统的评分系统,所述系统包括数据处理模块、评分预处理模块和评分模块,其中:
数据处理模块用于使用归一化区间分析法,对炼焦系统的关键参数和焦炭质量参数的数据进行分析,分别得到以所述关键参数为自变量、以焦炭质量参数为因变量的归一化线性方程;
评分预处理模块用于根据所述归一化线性方程中的因变量系数绝对值的大小,确定对应关键参数对炼焦系统的评分权重;
评分模块用于根据所有关键参数的评分权重和每个关键参数的取值等级,对炼焦系统进行量化评价。
在一个优选的实施方式中,所述数据处理模块还用于:
获取多个参数在不同时间点的样本数据,将第一参数的样本数据的波动范围进行区间划分;
根据其它参数与所述第一参数的时间对应关系,将所有其它参数的样本数据进行相同的区间划分;
计算每个参数在每个区间的平均值,并对每个参数的各个平均值进行归一化处理,得到每个参数的各个归一化平均值;
分别以第一参数和其它参数在每个区间的归一化平均值作为两个坐标轴的坐标值,分别计算以其它参数为自变量、以所述第一参数为因变量的归一化线性方程。
进一步的,所述数据处理模块还用于:
使用归一化公式,求取每个参数的各个平均值T的归一化平均值t,其中所述归一化公式为:
Figure BDA0002513162290000221
其中Tmin和Tmax为每个参数在所有区间的最小值和最大值。
在一个优选的实施方式中,所述评分模块还用于:
根据所有关键参数的评分权重,计算每个关键参数的总分;
确定每个关键参数的合理范围,根据每个关键参数的取值偏离所述合理范围的程度,为每个关键参数划分取值等级;
根据每个关键参数的总分和取值等级的划分,设定每个关键参数的每个取值等级对应的等级分值;
获取一个时段的所有关键参数的数据,为每个关键参数的数据进行评分,所有关键参数的评分之和即为所述炼焦系统在所述时段的评分。
进一步的,所述数据处理模块还用于确定一个关键参数的合理范围,其包括:
获取一个关键参数和与所述关键参数具有相关性的相关性参数的数据;
使用区间分析法,对所述关键参数和相关性参数的数据进行分析,得到所述关键参数与每个相关性参数的线性回归关系;
根据所述线性回归关系,结合一个或多个所述相关性参数的已知目标指标,得到所述参数的合理范围。
进一步的,所述数据处理模块还用于:
获取多个参数在不同时间点的样本数据,将第一参数的样本数据的波动范围进行区间划分;
根据其它参数与所述第一参数的时间对应关系,将所有其它参数的样本数据进行相同的区间划分,并计算每个参数在每个区间中的平均值;
分别以第一参数和其它参数在每个区间中的平均值作为两个坐标轴的坐标值,分别计算所述第一参数和其它参数的线性回归关系。
在一个优选的实施方式中,所述焦炭质量参数包括焦炭的M40和CSR,所述评分预处理模块还用于:
确定M40对炼焦系统的影响权重为c、CSR对炼焦系统的影响权重为d;
计算每个关键参数对M40的影响权重e、每个关键参数对CSR的影响权重f;
每个关键参数对炼焦系统的评分权重=c*e+d*f。
在另一个优选的实施方式中,所述系统还包括管理模块,所述管理模块可以用于:
将炼焦系统的评分设定不同的评分区间,针对不同评分区间制定不同的应对方案。
所述管理模块还可以用于:
在某个关键参数出现失分时,通过所述关键参数与焦炭质量参数的线性回归关系,计算所述关键参数对焦炭质量参数的影响。
所述管理模块还可以用于:
计算每个关键操作工艺参数在每个班次的评分,获取每个关键操作工艺参数在所有班次中的最高分,选取所述最高分对应的操作作为规范操作。
所述管理模块还可以用于:
计算炼焦系统在一时间段内每个班次的评分,得到每个班次在所述时间段的总体评分,根据所述总体评分对每个班次对应的工人进行管理。
在一个优选的实施方式中,所述关键参数包括部分炼焦煤质量参数、部分炼焦配煤工艺参数和部分炼焦生产工艺参数,所述数据处理模块还用于:
建立所述炼焦煤质量参数与炼焦配煤工艺参数、炼焦生产工艺参数和焦炭质量参数的时间对应关系;
根据所述时间对应关系,将采集的炼焦相关参数的数据建立炼焦数据库;
从所述炼焦数据库中获取所述关键参数和焦炭质量参数的数据。
进一步的,所述数据处理模块还用于:
通过对炼焦煤的检化验数据、到厂时间、到货量、仓位变化、配煤速度、煤塔料位、焦炉装煤量、焦炭产量、焦炭取样时间的动态监控,计算或通过示踪试验得出炼焦煤质量参数、炼焦配煤参数、炼焦生产工艺参数和焦炭质量参数的时间对应关系。
进一步的,所述系统还包括数据采集模块,所述数据采集模块用于采集炼焦相关参数的数据;
所述数据处理模块还用于:对炼焦数据库中的数据进行数据清洗、数据挖掘和数据融合,使用高炉数据库中融合后的数据进行数据分析、监控和报警,其中,所述数据清洗是指剔除采集的数据中的异常点,所述数据挖掘是指在采集的数据的基础上,通过已有公式计算得到间接参数的数据,所述数据融合是指统一所有参数的数据频率或数据周期,得到周期数据。
应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施方式中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。
上文所列出的一系列的详细说明仅仅是针对本发明的可行性实施方式的具体说明,它们并非用以限制本发明的保护范围,凡未脱离本发明技艺精神所作的等效实施方式或变更均应包含在本发明的保护范围之内。

Claims (12)

1.一种炼焦诊断方法,其特征在于,所述方法包括:
采集炼焦相关参数的数据,所述数据包括历史数据和实时数据,所述炼焦相关参数包括炼焦煤质量参数、炼焦配煤工艺参数、炼焦生产工艺参数和焦炭质量参数;
建立炼焦煤质量参数、炼焦配煤参数、炼焦生产工艺参数和焦炭质量参数的时间对应关系,并将炼焦相关参数的数据依照时间对应关系建立炼焦数据库;
通过对炼焦数据库中的数据进行分析,得到各个参数的合理范围和报警范围;
通过各个参数的报警范围,对各个参数的实时数据进行监控和报警,并在报警后进行异常原因追溯;
其中,通过对炼焦数据库中的数据进行分析,得到各个参数的合理范围和报警范围具体包括:
获取炼焦相关参数中的一个参数和与所述参数具有相关性的相关性参数的数据;
使用区间分析法,对所述参数和相关性参数进行分析,得到所述参数与每个相关性参数的线性回归关系,其中,所述相关性参数包括抗碎强度、和/或耐磨强度、和/或反应后强度、和/或炼焦煤粘结指数;
根据所述线性回归关系,结合一个或多个所述相关性参数的已知目标指标,得到所述参数的合理范围;
其中,使用区间分析法,对所述参数和相关性参数进行分析,得到所述参数与每个相关性参数的线性回归关系包括:
将所述参数的数据根据波动范围进行区间划分;
根据相关性参数与参数的时间对应关系,将所有相关性参数的数据进行相同的区间划分;
计算所述参数在每个区间的平均值,同时计算每个相关性参数在每个区间的平均值;
以所述参数在每个区间的平均值作为一个坐标轴的坐标值,以一个相关性参数在每个区间的平均值作为另一个坐标值的坐标值;
计算所述参数和这个相关性参数的线性回归关系。
2.根据权利要求1所述的炼焦诊断方法,其特征在于,建立炼焦煤质量参数、炼焦配煤参数、炼焦生产工艺参数和焦炭质量参数的时间对应关系具体包括:
通过对炼焦煤的检化验数据、到厂时间、到货量、仓位变化、配煤速度、煤塔料位、焦炉装煤量、焦炭产量、焦炭取样时间的动态监控,计算或通过示踪试验得出炼焦煤质量参数、炼焦配煤参数、炼焦生产工艺参数和焦炭质量参数的时间对应关系。
3.根据权利要求1所述的炼焦诊断方法,其特征在于,所述区间分析法包括:
获取多个参数在不同时间点的样本数据,将第一参数的样本数据的波动范围进行区间划分;
根据其它参数与所述第一参数的时间对应关系,将所有其它参数的样本数据进行相同的区间划分,并计算每个参数在每个区间中的平均值;
分别以第一参数和其它参数在每个区间中的平均值作为两个坐标轴的坐标值,分别计算所述第一参数和其它参数的线性回归关系。
4.根据权利要求1所述的炼焦诊断方法,其特征在于,所述方法还包括:
根据炼焦相关参数的合理范围和报警范围,对炼焦相关参数的取值进行区段划分,对于炼焦相关参数的实时数据进行分区段报警,针对不同区段的报警制定不同的应对措施。
5.根据权利要求1所述的炼焦诊断方法,其特征在于,所述方法还包括:
在焦炭质量参数出现报警时,通过所述炼焦数据库,确定焦炭质量参数出现报警前后,炼焦煤质量参数、炼焦配煤工艺参数或炼焦生产工艺参数的变化导致焦炭质量参数出现报警,并对出现的报警进行原因追溯。
6.根据权利要求1所述的炼焦诊断方法,其特征在于,采集炼焦相关参数的数据具体包括:
采集炼焦煤的供应商、到港时间、堆放场地和炼焦煤的检化验数据,得到炼焦煤质量参数的数据;
采集配煤单和现场实时配煤数据,得到炼焦配煤工艺参数的数据;
采集焦炉用煤气流量、装煤量、结焦温度、结焦时间、干熄焦工序的生产工艺数据,得到炼焦生产工艺参数的数据;
采集焦炭的检化验数据、焦炭仓位和焦炭产量,得到焦炭质量参数的数据。
7.一种炼焦诊断系统,其特征在于,所述系统包括:
数据采集模块,其用于采集炼焦相关参数的数据,所述数据包括历史数据和实时数据,所述炼焦相关参数包括炼焦煤质量参数、炼焦配煤工艺参数、炼焦生产工艺参数和焦炭质量参数;
数据分析模块,其用于建立炼焦煤质量参数、炼焦配煤参数、炼焦生产工艺参数和焦炭质量参数的时间对应关系,并将炼焦相关参数的数据依照时间对应关系建立炼焦数据库;并通过对炼焦数据库中的数据进行分析,得到各个参数的合理范围和报警范围;所述数据分析模块还用于获取炼焦相关参数中的一个参数和与所述参数具有相关性的相关性参数的数据,使用区间分析法,对所述参数和相关性参数进行分析,得到所述参数与每个相关性参数的线性回归关系,其中,所述相关性参数包括抗碎强度、和/或耐磨强度、和/或反应后强度、和/或炼焦煤粘结指数,根据所述线性回归关系,结合一个或多个所述相关性参数的已知目标指标,得到所述参数的合理范围;所述数据分析模块还用于将所述参数的数据根据波动范围进行区间划分,根据相关性参数与参数的时间对应关系,将所有相关性参数的数据进行相同的区间划分,计算所述参数在每个区间的平均值,同时计算每个相关性参数在每个区间的平均值,以所述参数在每个区间的平均值作为一个坐标轴的坐标值,以一个相关性参数在每个区间的平均值作为另一个坐标值的坐标值,计算所述参数和这个相关性参数的线性回归关系;
实时监控及报警模块,其用于通过各个参数的报警范围,结合炼焦数据库中的实时数据,对各个参数进行监控和报警。
8.根据权利要求7所述的炼焦诊断系统,其特征在于,所述数据分析模块还用于:
通过对炼焦煤的检化验数据、到厂时间、到货量、仓位变化、配煤速度、煤塔料位、焦炉装煤量、焦炭产量、焦炭取样时间的动态监控,计算或通过示踪试验得出炼焦煤质量参数、炼焦配煤参数、炼焦生产工艺参数和焦炭质量参数的时间对应关系。
9.根据权利要求7所述的炼焦诊断系统,其特征在于,所述数据分析模块还用于:
获取多个参数在不同时间点的样本数据,将第一参数的样本数据的波动范围进行区间划分;
根据其它参数与所述第一参数的时间对应关系,将所有其它参数的样本数据进行相同的区间划分,并计算每个参数在每个区间中的平均值;
分别以第一参数和其它参数在每个区间中的平均值作为两个坐标轴的坐标值,分别计算所述第一参数和其它参数的线性回归关系。
10.根据权利要求7所述的炼焦诊断系统,其特征在于,所述实时监控和报警模块还用于:
根据炼焦相关参数的合理范围和报警范围,对炼焦相关参数的取值进行区段划分,对于炼焦相关参数的实时数据进行分区段报警,针对不同区段的报警制定不同的应对措施。
11.根据权利要求7所述的炼焦诊断系统,其特征在于,所述实时监控和报警模块还用于:
在焦炭质量参数出现报警时,通过所述炼焦数据库,确定焦炭质量参数出现报警前后,炼焦煤质量参数、炼焦配煤工艺参数或炼焦生产工艺参数的变化导致焦炭质量参数出现报警,并对出现的报警进行原因追溯。
12.根据权利要求7所述的炼焦诊断系统,其特征在于,所述数据采集模块还用于:
采集炼焦煤的供应商、到港时间、堆放场地和炼焦煤的检化验数据,得到炼焦煤质量参数的数据;
采集配煤单和现场实时配煤数据,得到炼焦配煤工艺参数的数据;
采集焦炉用煤气流量、装煤量、结焦温度、结焦时间、干熄焦工序的生产工艺数据,得到炼焦生产工艺参数的数据;
采集焦炭的检化验数据、焦炭仓位和焦炭产量,得到焦炭质量参数的数据。
CN202010467592.3A 2020-05-28 2020-05-28 炼焦诊断系统及方法 Active CN111607417B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010467592.3A CN111607417B (zh) 2020-05-28 2020-05-28 炼焦诊断系统及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010467592.3A CN111607417B (zh) 2020-05-28 2020-05-28 炼焦诊断系统及方法

Publications (2)

Publication Number Publication Date
CN111607417A CN111607417A (zh) 2020-09-01
CN111607417B true CN111607417B (zh) 2022-11-18

Family

ID=72199228

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010467592.3A Active CN111607417B (zh) 2020-05-28 2020-05-28 炼焦诊断系统及方法

Country Status (1)

Country Link
CN (1) CN111607417B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114778755B (zh) * 2022-03-18 2023-07-25 淮北矿业股份有限公司 一种基于大数据的煤质在线检测系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007032950A (ja) * 2005-07-28 2007-02-08 Nohmi Bosai Ltd ごみ処理装置の悪臭警報システム
CN105137947A (zh) * 2015-09-15 2015-12-09 湖南千盟智能信息技术有限公司 一种焦炉智能控制管理系统
EP2955372A2 (en) * 2014-06-11 2015-12-16 Kevin Lee Friesth Quintuple-effect generation multi-cycle hybrid renewable energy system with integrated energy provisioning, storage facilities and amalgamated control system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE20210165U1 (de) * 2002-06-25 2002-12-05 Eckgold Roland Vergaser zur Erzeugung von Brenngas aus biologischen Abfällen
JP2005054132A (ja) * 2003-08-07 2005-03-03 Yukio Hiyama 炭焼き用電熱炉
CN110951495A (zh) * 2019-11-11 2020-04-03 唐山中润煤化工有限公司 一种炼焦全过程控制焦炭质量的方法、系统、介质及设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007032950A (ja) * 2005-07-28 2007-02-08 Nohmi Bosai Ltd ごみ処理装置の悪臭警報システム
EP2955372A2 (en) * 2014-06-11 2015-12-16 Kevin Lee Friesth Quintuple-effect generation multi-cycle hybrid renewable energy system with integrated energy provisioning, storage facilities and amalgamated control system
CN105137947A (zh) * 2015-09-15 2015-12-09 湖南千盟智能信息技术有限公司 一种焦炉智能控制管理系统

Also Published As

Publication number Publication date
CN111607417A (zh) 2020-09-01

Similar Documents

Publication Publication Date Title
CN109685289B (zh) 高炉炉况顺行预测方法、装置及系统
CN108375715B (zh) 一种配电网线路故障风险日预测方法及系统
CN109741927B (zh) 微型变压器生产线的设备故障和潜在不良品智能预测系统
CN111607673A (zh) 铁前诊断系统及方法
CN111593155A (zh) 高炉诊断系统及方法
CA2843276A1 (en) Dynamic outlier bias reduction system and method
CN110221976B (zh) 一种基于度量技术的计量终端软件质量量化评价方法
CN110702437B (zh) 一种水轮发电机组油压系统健康状况的评价方法
CN109522962B (zh) 一种化工厂安全定量评估方法
CN104360677A (zh) 一种卷烟加工过程质量评价与诊断方法
CN116502769A (zh) 高炉炉况的评分方法与系统
CN111607417B (zh) 炼焦诊断系统及方法
CN104268416B (zh) 一种冷链物流车厢温度监控方法及系统
CN114417697A (zh) 一种基于神经网络的tbm滚刀磨损实时预测方法及系统
CN111967717A (zh) 一种基于信息熵值的数据质量评价方法
CN117556366B (zh) 基于数据筛选的数据异常检测系统及方法
CN111639302B (zh) 烧结诊断系统及方法
CN111639800B (zh) 高炉工艺参数范围的设定方法、设备和存储介质
CN101477653A (zh) 数据质量的处理方法及系统
CN111553581A (zh) 一种基于熵值的装备维修性评价模型
CN116306232A (zh) 一种基于工业大数据的高炉能耗与碳排放分析方法及系统
CN111459996B (zh) 对油枪在指定时间段内的工作状态进行检测的方法及装置
Bryce et al. Workforce populations: empirical versus markovian dynamics
CN110597729B (zh) 基于维度的压力测试方法、装置及系统
CN113112189A (zh) 一种燃料技术监督评价体系及评价方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP03 Change of name, title or address

Address after: 215624 Shagang science and technology building, Yongxin Road, Jinfeng Town, Zhangjiagang City, Suzhou City, Jiangsu Province

Patentee after: INSTITUTE OF RESEARCH OF IRON & STEEL, JIANGSU PROVINCE/SHA-STEEL, Co.,Ltd.

Country or region after: China

Patentee after: Jiangsu Shagang Steel Co.,Ltd.

Patentee after: JIANGSU SHAGANG GROUP Co.,Ltd.

Address before: 215624 Shagang science and technology building, Yongxin Road, Jinfeng Town, Zhangjiagang City, Suzhou City, Jiangsu Province

Patentee before: INSTITUTE OF RESEARCH OF IRON & STEEL, JIANGSU PROVINCE/SHA-STEEL, Co.,Ltd.

Country or region before: China

Patentee before: ZHANGJIAGANG HONGCHANG STEEL PLATE Co.,Ltd.

Patentee before: JIANGSU SHAGANG GROUP Co.,Ltd.

CP03 Change of name, title or address