CN111598481A - Shared bicycle flow system, automatic scheduling system and method based on sub-area division - Google Patents
Shared bicycle flow system, automatic scheduling system and method based on sub-area division Download PDFInfo
- Publication number
- CN111598481A CN111598481A CN202010455032.6A CN202010455032A CN111598481A CN 111598481 A CN111598481 A CN 111598481A CN 202010455032 A CN202010455032 A CN 202010455032A CN 111598481 A CN111598481 A CN 111598481A
- Authority
- CN
- China
- Prior art keywords
- bicycle
- demand
- sub
- shared
- pick
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 62
- 238000007637 random forest analysis Methods 0.000 claims description 28
- 238000003066 decision tree Methods 0.000 claims description 24
- 230000001939 inductive effect Effects 0.000 claims description 17
- 238000004422 calculation algorithm Methods 0.000 claims description 16
- 238000012549 training Methods 0.000 claims description 13
- 230000003993 interaction Effects 0.000 claims description 10
- 238000004891 communication Methods 0.000 claims description 9
- 230000009467 reduction Effects 0.000 claims description 9
- 235000014676 Phragmites communis Nutrition 0.000 claims description 8
- 230000001174 ascending effect Effects 0.000 claims description 7
- 230000007246 mechanism Effects 0.000 claims description 7
- 238000013277 forecasting method Methods 0.000 claims description 6
- 230000008859 change Effects 0.000 claims description 5
- 238000010276 construction Methods 0.000 claims description 3
- 230000008569 process Effects 0.000 claims description 3
- 238000000605 extraction Methods 0.000 claims description 2
- 210000001503 joint Anatomy 0.000 claims 2
- 238000005192 partition Methods 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 11
- 230000032258 transport Effects 0.000 description 10
- 238000012423 maintenance Methods 0.000 description 6
- 238000002955 isolation Methods 0.000 description 5
- 239000000969 carrier Substances 0.000 description 3
- 230000008602 contraction Effects 0.000 description 3
- 230000006698 induction Effects 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000001276 controlling effect Effects 0.000 description 2
- 230000001976 improved effect Effects 0.000 description 2
- 230000002452 interceptive effect Effects 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 230000003442 weekly effect Effects 0.000 description 2
- 238000012952 Resampling Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000010219 correlation analysis Methods 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 230000009469 supplementation Effects 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/06—Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
- G06Q10/063—Operations research, analysis or management
- G06Q10/0631—Resource planning, allocation, distributing or scheduling for enterprises or organisations
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
- G06F18/243—Classification techniques relating to the number of classes
- G06F18/24323—Tree-organised classifiers
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/04—Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/06—Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
- G06Q10/063—Operations research, analysis or management
- G06Q10/0631—Resource planning, allocation, distributing or scheduling for enterprises or organisations
- G06Q10/06315—Needs-based resource requirements planning or analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/40—Business processes related to the transportation industry
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/20—Monitoring the location of vehicles belonging to a group, e.g. fleet of vehicles, countable or determined number of vehicles
- G08G1/207—Monitoring the location of vehicles belonging to a group, e.g. fleet of vehicles, countable or determined number of vehicles with respect to certain areas, e.g. forbidden or allowed areas with possible alerting when inside or outside boundaries
Landscapes
- Business, Economics & Management (AREA)
- Engineering & Computer Science (AREA)
- Human Resources & Organizations (AREA)
- Economics (AREA)
- Strategic Management (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Entrepreneurship & Innovation (AREA)
- Marketing (AREA)
- Tourism & Hospitality (AREA)
- General Business, Economics & Management (AREA)
- Development Economics (AREA)
- Operations Research (AREA)
- Quality & Reliability (AREA)
- Game Theory and Decision Science (AREA)
- Data Mining & Analysis (AREA)
- Educational Administration (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Primary Health Care (AREA)
- Artificial Intelligence (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Evolutionary Biology (AREA)
- Evolutionary Computation (AREA)
- General Engineering & Computer Science (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
- Traffic Control Systems (AREA)
Abstract
本公开提出了共享单车流动系统、基于子区划分的自动调度系统及方法,共享单车流动系统包括设置在各个单车取放点的地上输送装置,连接各个单车取放点的地上输送装置的地下输送装置,以及能够为地上输送装置或者地下输送装置提供单车的多层储存装置;相邻的单车取放点、地上储存装置通过地上运送装置或者地下运送装置连接,形成共享单车的流动运送网络。提出的流动系统,实现一定区域内站点的联动,通过综合的需求预测方法预测各个站点需求量,然后进行动态子区划分,形成子区内各个站点的需求调度方案,最后流动系统按照调度方案实现共享单车的自动运输,在用户有需求时,最大限度给用户提供高效便捷的存取车服务。
The present disclosure proposes a shared bicycle flow system, an automatic dispatching system and method based on sub-area division, and the shared bicycle flow system includes an above-ground conveying device arranged at each bicycle pick-and-place point, and an underground conveying device connected to the above-ground conveying device at each bicycle pick-and-place point. The device, and the multi-layer storage device that can provide bicycles for the above-ground conveying device or the underground conveying device; the adjacent bicycle pick-and-place points and the above-ground storage device are connected by the above-ground conveying device or the underground conveying device, forming a mobile transportation network of shared bicycles. The proposed flow system realizes the linkage of stations in a certain area, predicts the demand of each station through a comprehensive demand forecast method, and then divides dynamic sub-areas to form a demand scheduling scheme for each station in the sub-area. Finally, the flow system is realized according to the scheduling scheme. The automatic transportation of shared bicycles provides users with efficient and convenient car access services to the greatest extent when they have needs.
Description
技术领域technical field
本公开涉及共享单车相关技术领域,具体的说,是涉及共享单车流动系统、基于子区划分的自动调度系统及方法。The present disclosure relates to the technical field of shared bicycles, and in particular, to a shared bicycle flow system, and an automatic dispatching system and method based on sub-area division.
背景技术Background technique
本部分的陈述仅仅是提供了与本公开相关的背景技术信息,并不必然构成在先技术。The statements in this section merely provide background information related to the present disclosure and do not necessarily constitute prior art.
近年来,共享单车的出现完善了公共交通系统,解决了市民出行“最后一公里”的难题,符合绿色环保的生活理念,但是随着共享单车数量的急剧增加,随之产生了一系列问题。在城市的大街小巷,单车乱停乱放的问题逐渐突出,“无路可走,无处可停”的现象引起社会各界的关注,规范停车点和推广电子围栏等一系列措施的实施,虽一定程度规范了停车问题,但是相对削弱了共享出行的便利性和随机性,出现找车难、停车难的问题,导致用户体验不佳;目前所有共享单车站点都是零散的,不利于协调控制,在集中管理方面有很大难度。In recent years, the emergence of shared bicycles has improved the public transportation system, solved the "last mile" problem of citizens' travel, and conformed to the concept of green and environmental protection. However, with the rapid increase in the number of shared bicycles, a series of problems have arisen. In the streets and alleys of the city, the problem of random parking of bicycles has gradually become prominent. The phenomenon of "no way to go, nowhere to park" has attracted attention from all walks of life, and a series of measures such as standardizing parking spots and promoting electronic fences have been implemented. Although the parking problem has been regulated to a certain extent, it has relatively weakened the convenience and randomness of shared travel, and it is difficult to find a car and park, resulting in a poor user experience. Currently, all shared bicycle sites are scattered, which is not conducive to coordination. Control, it is very difficult to centralize management.
发明人发现,目前在共享单车运输领域,主要存在以下问题:The inventors found that at present, in the field of shared bicycle transportation, there are mainly the following problems:
第一,全部需要依靠人力参与运输,共享单车覆盖区域较广,所以会耗费大量人力资源,并且存在调度不及时的问题;虽然有些发明提出一些共享单车运载车以及一些搬运装置,但是运载车在实现自动运输时,受周围环境的影响,存在很大的不安全因素。虽然有搬运装置,但还是需要人员实现共享单车站点与站点之间的运输,大大耗费人力并且存在调度人员有限,调度不及时的问题,不能很好的满足用户需求。First, all need to rely on manpower to participate in transportation. Shared bicycles cover a wide area, so it will consume a lot of human resources, and there is a problem of untimely scheduling; although some inventions propose some shared bicycle carriers and some handling devices, but the carriers are in When automatic transportation is realized, there are great unsafe factors affected by the surrounding environment. Although there is a handling device, it still requires personnel to realize the transportation between the shared bicycle sites, which consumes a lot of manpower and has the problems of limited scheduling personnel and untimely scheduling, which cannot well meet the needs of users.
第二,各个站点共享单车投放数量与实际需求量不平衡问题较为普遍,不能很好的迎合用户需求。在共享单车需求预测领域,现有技术主要利用机器学习的一些算法分析共享出行的历史数据建立模型进行预测,没有充分考虑结合用户的实质需求,从用户需求的角度出发可以一定程度提高需求预测的准确性,虽然现有方法中考虑到用户预约的需求预测方法,但是没有充分挖掘用户的真正需求,仅仅依靠预约数据进行预测缺乏对变动因素的考虑,使得预测结果不准确;同时,考虑因素不全面,没有充分考虑站点周围环境的变动因素,忽略了站点周围吸引点对需求量的变动影响。Second, the imbalance between the number of shared bicycles placed at various sites and the actual demand is relatively common, and it cannot well meet the needs of users. In the field of demand forecasting of shared bicycles, the existing technology mainly uses some algorithms of machine learning to analyze the historical data of shared travel to establish models for forecasting, without fully considering the actual needs of users. From the perspective of user needs, the demand forecasting can be improved to a certain extent. Accuracy, although the existing method takes into account the demand forecasting method for user reservations, it does not fully tap the real needs of users, and only relying on reservation data for forecasting lacks consideration of changing factors, making the forecasting results inaccurate; at the same time, the factors considered are not accurate. Comprehensive, without fully considering the changing factors of the surrounding environment of the site, ignoring the influence of the attraction points around the site on the change in demand.
第三,在共享单车调度方法方面,主要考虑各个站点之间内在关联度,没有充分考虑各个站点本身的内在特征以及周围环境特征的影响,不能满足调度的有效性,导致无效的调度工作持续进行,造成大量的资源浪费。Third, in the scheduling method of shared bicycles, it mainly considers the internal correlation between each station, and does not fully consider the inherent characteristics of each station itself and the influence of the surrounding environment characteristics, which cannot meet the effectiveness of scheduling, resulting in continuous ineffective scheduling work. , resulting in a lot of waste of resources.
发明内容SUMMARY OF THE INVENTION
本公开为了解决上述问题,提出了共享单车流动系统、基于子区划分的自动调度系统及方法,提出的流动系统,实现一定区域内站点的联动,通过综合的需求预测方法预测各个站点需求量,然后进行动态子区划分,形成子区内各个站点的需求调度方案,最后流动系统按照调度方案实现共享单车的自动运输,在用户有需求时,最大限度给用户提供高效便捷的存取车服务。In order to solve the above problems, the present disclosure proposes a shared bicycle flow system, an automatic scheduling system and method based on sub-area division, and the proposed flow system realizes the linkage of stations in a certain area, and predicts the demand of each station through a comprehensive demand forecasting method. Then, the dynamic sub-area is divided to form the demand scheduling scheme of each station in the sub-area. Finally, the mobile system realizes the automatic transportation of shared bicycles according to the scheduling scheme, and provides users with efficient and convenient car access services to the greatest extent when they have needs.
为了实现上述目的,本公开采用如下技术方案:In order to achieve the above object, the present disclosure adopts the following technical solutions:
本公开的第一目的是提供共享单车流动系统,包括设置在各个单车取放点的地上输送装置,连接各个单车取放点地上输送装置的地下输送装置,以及能够为地上输送装置或者地下输送装置提供单车的多层储存装置;相邻的单车取放点、地上储存装置通过地上运送装置或者地下运送装置连接,形成共享单车的流动运送网络。The first object of the present disclosure is to provide a shared bicycle flow system, including an above-ground conveying device arranged at each bicycle pick-and-place point, an underground conveying device connected to the above-ground conveying device at each bicycle pick-and-place point, and an above-ground conveying device or an underground conveying device. Provide a multi-layer storage device for bicycles; adjacent bicycle pick-and-place points and above-ground storage devices are connected by above-ground transportation devices or underground transportation devices to form a mobile transportation network for shared bicycles.
本公开的第二目的是提供基于子区划分的自动调度方法,包括如下步骤:The second object of the present disclosure is to provide an automatic scheduling method based on sub-area division, including the following steps:
获取单车取放点的单车取放数据,基于随机森林算法融合用户需求和共享出行吸引力的方法,对各个单车取放点的需求量进行预测;Obtain the bicycle pick-and-place data at the bike pick-and-place point, and predict the demand for each bike pick-and-place point based on the random forest algorithm that integrates user needs and the attractiveness of shared travel;
根据需求量的预测结果,基于树状分支结合内外因素,对单车取放点进行子区动态划分,根据划分结果生成调度方案;According to the forecast result of the demand, based on the tree branch combined with internal and external factors, the bicycle pick-and-place point is dynamically divided into sub-areas, and the scheduling plan is generated according to the division result;
按照调度方案执行调度的控制。The control of scheduling is performed according to the scheduling scheme.
本公开的第三目的是提供基于子区划分的自动调度系统,包括上述的共享单车流动系统,以及向共享单车流动系统发送调度指令的控制平台;控制平台包括共享单车需求预测系统和动态子区划分调度系统;The third object of the present disclosure is to provide an automatic dispatching system based on sub-area division, including the above-mentioned shared bicycle flow system, and a control platform for sending dispatch instructions to the shared bicycle flow system; the control platform includes a shared bicycle demand prediction system and a dynamic sub-area Division scheduling system;
共享单车需求预测系统被配置为用于执行上述的基于子区划分的自动调度方法中的共享单车需求预测方法;The shared bicycle demand forecasting system is configured to execute the shared bicycle demand forecasting method in the above-mentioned automatic scheduling method based on sub-area division;
或者,动态子区划分调度系统被配置为用于执行上述的基于子区划分的自动调度方法中的动态子区划分调度方法。Alternatively, the dynamic sub-area division scheduling system is configured to perform the dynamic sub-area division scheduling method in the above-mentioned automatic sub-area division-based scheduling method.
与现有技术相比,本公开的有益效果为:Compared with the prior art, the beneficial effects of the present disclosure are:
(1)本公开的共享单车流动系统结合利用地上和地下的空间,在机非隔离、人非隔离等有条件的地带形成车辆运送网络,在一定区域内基本覆盖所有共享单车需求地,根据需要将储存装置或运输轨道上的车辆运送到各个单车取放点,单车取放点不用长时间储存大量的单车,较小的区域就可以满足单车取放点的面积要求,并且在流动系统内设置有多个连续的单车取放点,用户可以在沿线区域方便快捷的存取车;同时将储存装置设置为多层的结构,可以减少单车存放的占地面积。突破原有人力参与调度运输的局限,可以避免调度人员有限,调度不及时等问题;可有效规范用户停车行为,避免乱停乱放问题,同时高效调度车辆,可以缓解用车难、停车难问题。(1) The shared bicycle flow system of the present disclosure combines the use of above-ground and underground space to form a vehicle transportation network in conditional areas such as non-isolation of machines and non-isolation of people, basically covering all the places where shared bicycles are required in a certain area, and as needed Transport the vehicles on the storage device or the transport track to each bicycle pick-up and drop-off point. The bicycle pick-up and drop-off point does not need to store a large number of bicycles for a long time. There are multiple continuous bicycle pick-and-place points, users can easily and quickly access the bicycle in the area along the line; at the same time, the storage device is set to a multi-layer structure, which can reduce the footprint of bicycle storage. Breaking through the limitations of the original human participation in dispatching and transportation, it can avoid problems such as limited dispatchers and untimely dispatching; it can effectively regulate users' parking behavior, avoid the problem of random parking, and at the same time dispatch vehicles efficiently, which can alleviate the problem of difficulty in using vehicles and parking. .
(2)本公开的共享单车需求预测方法,基于随机森林算法融合用户需求和共享出行吸引力,能准确获得用户需求,提高调度的准确性,减少或避免无效调度的执行,减少调度次数,提高系统的调度执行效率。(2) The shared bicycle demand forecasting method of the present disclosure, based on the random forest algorithm, integrates user needs and shared travel attractiveness, can accurately obtain user needs, improve the accuracy of scheduling, reduce or avoid the execution of invalid scheduling, reduce the number of scheduling, and improve the System scheduling execution efficiency.
(3)本公开的动态子区划分调度方法,基于树状分支原理综合内外因素进行动态子区划分调度,结合本公开第二方面基于随机森林算法融合用户需求和共享出行吸引力的共享单车需求预测方法,对本公开第一方面所述的基于人非隔离或机非隔离的共享单车流动系统进行补充优化,可以形成各个子区内的需求调度方案,最大限度满足用户调度需求。(3) The dynamic sub-area division and scheduling method of the present disclosure performs dynamic sub-area division and scheduling based on the principle of tree-like branching by synthesizing internal and external factors, combined with the second aspect of the present disclosure based on the random forest algorithm to fuse user needs and shared bicycle demand for shared travel attractiveness The prediction method supplements and optimizes the shared bicycle flow system based on non-isolation of people or non-isolation of machines described in the first aspect of the present disclosure, and can form a demand scheduling scheme in each sub-region to meet the user's scheduling needs to the greatest extent.
附图说明Description of drawings
构成本公开的一部分的说明书附图用来提供对本公开的进一步理解,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的限定。The accompanying drawings, which constitute a part of the present disclosure, are used to provide further understanding of the present disclosure, and the exemplary embodiments of the present disclosure and their descriptions are used to explain the present disclosure, but not to limit the present disclosure.
图1是本公开实施例1的流动系统结构示意图;1 is a schematic structural diagram of a flow system according to Embodiment 1 of the present disclosure;
图2是本公开实施例1的储存装置结构示意图;2 is a schematic structural diagram of a storage device according to Embodiment 1 of the present disclosure;
图3是本公开实施例1的储存装置中各存储层的结构示意图;3 is a schematic structural diagram of each storage layer in the storage device according to Embodiment 1 of the present disclosure;
图4是本公开实施例1的流动系统中流动系统装置设置位置示意图;FIG. 4 is a schematic diagram of the arrangement position of the flow system device in the flow system according to Embodiment 1 of the present disclosure;
图5是本公开实施例1的地上输送装置的结构示意图;5 is a schematic structural diagram of the above-ground conveying device according to Embodiment 1 of the present disclosure;
图6是本公开实施例1的地下输送装置的结构示意图;6 is a schematic structural diagram of an underground conveying device according to Embodiment 1 of the present disclosure;
图7是本公开实施例1的单车运载装置的结构示意图;7 is a schematic structural diagram of a bicycle carrying device according to Embodiment 1 of the present disclosure;
图8是本公开实施例1的单车运载装置中智能感应电子锁结构示意图;8 is a schematic structural diagram of an intelligent induction electronic lock in the bicycle carrier according to Embodiment 1 of the present disclosure;
图9是本公开实施例2的基于子区划分的自动调度系统的框图;9 is a block diagram of an automatic scheduling system based on sub-region division according to Embodiment 2 of the present disclosure;
图10是本公开实施例3的共享单车需求预测方法流程图;10 is a flowchart of a method for predicting demand for shared bicycles according to
图11是本公开实施例4的动态子区划分调度方法流程图;11 is a flowchart of a dynamic sub-area division scheduling method according to
图12是本公开实施例5的执行调度的控制方法;12 is a control method for execution scheduling according to Embodiment 5 of the present disclosure;
其中:1、防护栏,2、地面运输轨道,3、位置传感器,4、自动伸缩门,5、开门按钮,6、取车按钮,7、存车按钮,8、单车运载装置,9、感应式智能锁,10、干簧管,11、磁铁,12、驱动电机,13、定位装置,14、电子锁固定底座,15、太阳能电池板,16、感应装置,17、储存装置,18、单车入口,19、单车出口,20、第一存储层,21、第二存储层,22、第三存储层,23、螺旋式上升轨道,24、出入口轨道,25、车辆存储区,26、地下输送装置,27、地下运输轨道,28、固定平台,29、伸缩驱动动力装置,30、压力伸缩装置,31、单车承载部分,32、压力传感器,33、机非隔离绿化带,34、道路,35、控制模块,36、立柱,37、车辆储存区内固定单车的装置,38、伸缩装置,39、主控制器。Among them: 1. Guardrail, 2. Ground transportation track, 3. Position sensor, 4. Automatic retractable door, 5. Door opening button, 6. Pick-up button, 7. Parking button, 8. Bicycle carrier, 9. Induction Smart Lock, 10, Reed Switch, 11, Magnet, 12, Drive Motor, 13, Positioning Device, 14, Electronic Lock Fixing Base, 15, Solar Panel, 16, Induction Device, 17, Storage Device, 18, Bicycle Entrance, 19, Bicycle exit, 20, First storage level, 21, Second storage level, 22, Third storage level, 23, Spiral ascending track, 24, Entry and exit track, 25, Vehicle storage area, 26, Underground conveyance Device, 27, Underground transportation track, 28, Fixed platform, 29, Telescopic drive power unit, 30, Pressure telescopic device, 31, Bicycle bearing part, 32, Pressure sensor, 33, Machine non-isolated green belt, 34, Road, 35 , control module, 36, column, 37, device for fixing bicycles in the vehicle storage area, 38, telescopic device, 39, main controller.
具体实施方式:Detailed ways:
下面结合附图与实施例对本公开作进一步说明。The present disclosure will be further described below with reference to the accompanying drawings and embodiments.
应该指出,以下详细说明都是示例性的,旨在对本公开提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本公开所属技术领域的普通技术人员通常理解的相同含义。It should be noted that the following detailed description is exemplary and intended to provide further explanation of the present disclosure. Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs.
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本公开的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。需要说明的是,在不冲突的情况下,本公开中的各个实施例及实施例中的特征可以相互组合。下面将结合附图对实施例进行详细描述。It should be noted that the terminology used herein is for the purpose of describing specific embodiments only, and is not intended to limit the exemplary embodiments according to the present disclosure. As used herein, unless the context clearly dictates otherwise, the singular is intended to include the plural as well, furthermore, it is to be understood that when the terms "comprising" and/or "including" are used in this specification, it indicates that There are features, steps, operations, devices, components and/or combinations thereof. It should be noted that the various embodiments in the present disclosure and the features of the embodiments may be combined with each other without conflict. The embodiments will be described in detail below with reference to the accompanying drawings.
实施例1Example 1
在一个或多个实施方式中公开的技术方案中,如图1-8所示,共享单车流动系统,包括设置在各个单车取放点的地上输送装置,连接各个单车取放点地上输送装置的地下输送装置,以及能够为地上输送装置或者地下输送装置提供单车的多层储存装置17;相邻的单车取放点、地上储存装置17通过地上运送装置或者地下运送装置连接,形成共享单车的流动运送网络。In the technical solutions disclosed in one or more embodiments, as shown in FIGS. 1-8 , the shared bicycle flow system includes an above-ground conveying device arranged at each bicycle pick-and-place point, and a ground conveying device connected to each bicycle pick-and-place point Underground conveying devices, and
储存装置17用于存放单车,地上输送装置和地下输送装置用于按照单车需求将单车运送至各个单车取放点。The
本实施例结合利用地上和地下的空间,形成车辆运送网络,根据需要将储存装置17或运输轨道中的车辆运送到各个单车取放点,单车取放点不用长时间储存大量的单车,较小的区域就可以满足单车取放点的面积要求。将储存装置17设置为多层的结构,可以减少单车存放的占地面积,同时通过地上储存装置17进行统一存储,当各个取放点有车辆需求,通过地上输送装置或者地下输送装置对各个取放点投放一定数量的单车。In this embodiment, the above-ground and underground spaces are combined to form a vehicle transport network, and the
如图4所示,以一个常规交叉口为例,地上输送装置设置在机非隔离绿化带33处,地下输送装置可以设置道路34的下方,同时设置地上输送装置和地下输送装置可以有效避免该流动系统对路面交通的影响。As shown in Fig. 4, taking a conventional intersection as an example, the above-ground conveying device is arranged at the non-isolated
可选的,储存装置17用于存放单车,可以设置在地下或者地上,优选的,储存装置设置在地上,可以有效减少建设成本。Optionally, the
可选的,储存装置17的设置位置可以根据需要进行设置,储存装置17可以设置在用车量较大的单车存取点附近,一个或者多个单车存取点共用一个地上储存装置17。具体的,可以设置在机非隔离或人非隔离附近合适地带,例如道路两边的绿化带。Optionally, the location of the
如图1所示,为地上输送装置连接储存装置17的结构示意图,图5为单独的地上输送装置结构示意图。As shown in FIG. 1 , it is a schematic structural diagram of the above-ground conveying device connected to the
储存装置17可以为如图1和图2所示的结构,包括构成单车容纳空间的装置壳体,设置壳体内的多个存储层,以及能够将单车在各个存储层之间移动运输的运输轨道,运输轨道在每一存储层分别设置运输轨道通向该存储层的入口和出口。The
本实施例可以设置三层为例,设置了第一存储层20、第二存储层21和第三存储层22。In this embodiment, three layers may be set as an example, and a
可以理解的,最低的存储层设置单车入口18和单车出口19,分别连接地上输送装置,或者地下输送装置,用于将单车移动至储存装置17,或者将储存装置17的单车运送至各个单车取放点。It can be understood that the lowest storage layer is provided with a
在一些实施例中,可以设置运输轨道的具体结构为:螺旋式上升旋转轨道结构,包括设置在壳体内的立柱36及固定在立柱上的螺旋式上升轨道23。In some embodiments, the specific structure of the transport track may be: a spiral-type ascending rotating track structure, including a
可选的,如图3所示,每个存储层包括设置在该层与螺旋式上升轨道23相连接的出入口轨道24,以及与出入口轨道24通过轨道连接的车辆存储区25。Optionally, as shown in FIG. 3 , each storage layer includes an
为了提高存储区车辆的存储面积,尽可能的多放置单车,车辆存储区25设置为一定弧度和角度的斜面,所述斜面上设置单车固定装置37;可选的,单车固定装置37可以设置为夹紧装置,设置两个夹紧块,通过气动或者电动装置控制夹紧块移动。In order to increase the storage area of vehicles in the storage area, place as many bicycles as possible. The
为实现单车在地上输送装置、地下输送装置和储存装置17之间运输传送,可以在各个装置内设置放置单车的固定装置,如可以在轨道上设置固定平台,可以为设置单独移动的运载设备,可以为相对于各个装置自由移动的单车运载装置8。In order to realize the transportation of bicycles between the above-ground conveying device, the underground conveying device and the
作为一种可以实现的结构,所有单车取放点还设置有控制模块35,如图7和8所示,单车运载装置8包括底板,设置在底板上的驱动底板移动的驱动装置和单车固定装置,单车信息识别装置,主控制器39以及无线通信模块,主控制器39分别与驱动装置、单车固定装置、单车信息识别装置以及无线通信模块分别连接,主控制器39与控制模块35无线连接。As an achievable structure, all bicycle pick-and-place points are also provided with a
具体的,驱动装置可以采用电驱动,包括驱动电机12、与驱动电机12连接的供电电池、与驱动电机12连接的移动机构,优选的,还可以设置太阳能电池板15,所述太阳能电池板15与供电电池电性连接,为驱动电机提供电能。移动机构可以为车轮、履带车轮或者履带。Specifically, the driving device can be driven by electricity, including a driving
可选的,控制模块35可以采用单片机。Optionally, the
可选的,单车固定装置可以包括固定在底板上的感应式智能锁9和感应装置16,所述感应智能锁9和感应装置16分别与主控制器39电连接,用于将感应信息传输至控制模块35。当感应到有共享单车放置到运载装置8上时,感应式智能锁9自动锁上。Optionally, the bicycle fixing device may include an inductive
感应式智能锁可以设置为任意形状,如圆弧状或者多边形等。Inductive smart locks can be set to any shape, such as arcs or polygons.
感应装置16可以为压力传感器,用于确定该底板上是否放置了单车,提高单车运载装置8工作的可靠性和提供单车放置信息的准确性。The
可以理解的,还包括电子锁固定底座14,用于固定感应式智能锁9的锁体。It can be understood that the electronic
可选的,信息识别装置包括设置在共享单车上的干簧管10,设置在单车运载装置8的底板上与干簧管10位置相对的伸缩装置38,设置在伸缩装置38顶端的磁铁11,所述伸缩装置38与主控制器39电连接,干簧管10与主控制器无线连接。Optionally, the information identification device includes a
感应装置16感应到信号后,将感应信号传给运输装置的主控制器39,控制伸缩装置38弹出一定高度,使顶部的磁铁11接近共享单车踏板附近底部壳体内的干簧管10,干簧管10闭合,可以连通共享单车的中心控制单元,中心控制单元通过无线移动通信模块将关锁信号传给主控制器39,进而控制感应式智能锁9关锁,伸缩组件自动收缩回运输装置内。After the
进一步地,本实施例的单车运载装置8上的感应式智能锁9关锁信息与共享单车后台系统联动,共享单车后台系统接收到共享单车上车锁的关闭信息并且接收到感应式智能锁9关锁信息,还车成功;当用户关闭单车上的锁,在未接收到感应式智能锁9关锁信息时,还车操作失败。Further, the lock information of the inductive
共享单车被固定后,再控制共享单车上锁,实现还车操作,可以规范用户停车行为,使共享单车规范停放在流动系统中的运输装置上面,实现共享单车的流通。After the shared bicycle is fixed, the shared bicycle is controlled to be locked to realize the return operation, which can regulate the user's parking behavior, so that the shared bicycle can be parked on the transportation device in the mobile system, and the circulation of the shared bicycle can be realized.
可选的,为了确定单车运载装置8的具体位置,单车运载装置8还可以包括定位模块13。定位模块13可以为GPS定位模块。Optionally, in order to determine the specific position of the
在一些实施例中,地上输送装置可以设置为轨道结构,如图1或5所示,地上输送装置包括控制模块35和铺设在地面的地面运输轨道2,设置在地面运输轨道2两侧的防护栏1,以及设置在防护栏上提供单车出入通道的单车存取口,以及设置在单车存取口处的用于接收交互信息的存取车交互装置,控制模块35分别通过通信模块与单车运载装置8和存取车交互装置通信连接。In some embodiments, the above-ground conveying device may be configured as a track structure. As shown in FIG. 1 or 5 , the above-ground conveying device includes a
控制模块35接收存取车交互装置的信息控制单车运载装置8运载单车至相应的位置。存取车交互装置用于接收用户的存取单车的信息。The
可选的,防护栏1可以为围墙或者为栅栏。Optionally, the protective fence 1 may be a fence or a fence.
在一些实施例中,存取车交互装置包括单车存取口处设置的自动伸缩门4,以及用于控制伸缩门的开关的按钮,可以包括开门按钮5、取车按钮6和存车按钮7。In some embodiments, the access vehicle interaction device includes an automatic
还包括设置在单车存取口处的位置传感器3,位置传感器3与主控制器无线连接,当单车运载装置8移动至位置传感器3处,位置传感器3将动作信号传输至主控制器39,主控制器控制单车运载装置8停车。位置传感器3也可以采用RFID标签,所述单车运载装置8上设置RFID阅读器,当RFID阅读器检测到相应的标签信息,停车。It also includes a
地下输送装置26用于为各个单车取放点之间的车辆转运或者储存装置17和各个单车取放点之间的车辆转运提供地下运输通道,设置在不便于从路面上设置输送装置的位置,如设置在一些交叉口处的地面下。The underground conveying
地下输送装置可以实现共享单车从地面到地下以及从地下到地上的运输。在一些实施例中,如图6所示,地下输送装置可以包括地下运输轨道27,设置在地上地下连接口处的压力伸缩装置30,当压力伸缩装置30伸长至第一位置时,压力伸缩装置30的上端面与地面平齐并对接,当压力伸缩装置30压缩至第二位置时,压力伸缩装置30的上端面与地下运输轨道27平齐并对接。The underground conveying device can realize the transportation of shared bicycles from the ground to the underground and from the underground to the ground. In some embodiments, as shown in FIG. 6 , the underground conveying device may include an
可选的,压力伸缩装置30可以包括从上到下依次设置的单车承载部分31、固定连接单车承载部分31的伸缩机构以及固定平台28、以及设置在固定平台28上电连接伸缩机构的伸缩驱动动力装置29。单车承载部分31可以为承载平板或者为有轨道的承载平板,其轨道的轨道形状结构与地下运输轨道27相匹配。固定平台28提供稳定支撑。单车承载部分31上面还可以设置压力传感器32,用于检测单车承载部分31上是否放置了单车或者单车运载装置8。Optionally, the pressure
具体的,伸缩驱动动力装置29可以为液压驱动装置,伸缩机构压力伸缩杆。Specifically, the telescopic
进一步的,该系统还可以包括控制平台,所述控制平台与流动系统中的控制模块35通信连接。Further, the system may also include a control platform that is in communication with the
上述流动系统的工作原理为:The working principle of the above flow system is as follows:
通过存取车交互装置,获取用户的用车需求,按开门按钮可以直接存取车,当前站点没有车时可以按取车按钮、当前站点没有停车的运载装置8可以按存车按钮;储存装置17,包括正常车辆储存和待维修车辆储存,根据系统内共享单车数量以及需求情况,对系统内车辆进行有必要的补充和储存;控制模块35,实时接收并分析系统中的运行信息,输出控制指令调度整个流动系统内部的单车和单车运载装置8;单车运载装置8,按照控制模块35的控制调度指令运送单车。另外,通过单车运载装置8判断是否规范停车,当用户不能直接存取车时,控制模块35根据各个站点的情况和用户需求,实时调度附近站点或者储存装置17的共享单车或停放的单车运载装置8,最大限度满足用户存取车需求。The user's car needs can be obtained through the car access interaction device, and the car can be accessed directly by pressing the door open button. When there is no car at the current site, you can press the car pickup button. If the current site does not have a car, you can press the save button; the
实施例2Example 2
本实施例提供基于子区划分的自动调度系统,根据用户需求进行共享单车子区划分,对实施例1所述的共享单车流动系统进行自动调度,用于调度流动系统中的每个共享单车或单车运载装置8。This embodiment provides an automatic dispatching system based on sub-area division, divides shared bicycle sub-areas according to user requirements, and automatically dispatches the shared bicycle mobile system described in Embodiment 1, which is used to dispatch each shared bicycle or bicycle in the mobile system.
基于子区划分自动调度系统,如图9所示,包括实施例1所述的共享单车流动系统,以及向共享单车流动系统发送调度指令的控制平台,控制平台包括共享单车需求预测系统和动态子区划分调度系统;The automatic dispatching system based on sub-area division, as shown in FIG. 9 , includes the shared bicycle flow system described in Embodiment 1, and a control platform that sends dispatch instructions to the shared bicycle flow system. The control platform includes a shared bicycle demand prediction system and a dynamic sub-system. Zone division scheduling system;
共享单车需求预测系统:被配置为用于对各个站点不同时段用户需求量进行预测,获得每个单车取放点的预测需求量;给整个流动系统配送车辆数提供理论依据。Shared bicycle demand forecasting system: It is configured to predict the demand of users at different time periods at each site, and obtain the predicted demand for each bicycle pick-up and drop-off point; it provides a theoretical basis for the number of vehicles distributed in the entire mobile system.
动态子区划分调度系统:被配置为用于根据获得的每个单车取放点的预测需求量,进行动态子区的划分,按照子区内部各个单车取放点的单车需求比例调度,生成调度方案发送至控制模块35,以使控制模块35控制流动系统中的单车或单车运载装置8。Dynamic sub-area division scheduling system: It is configured to divide dynamic sub-areas according to the obtained predicted demand of each bicycle pick-and-place point, and schedule according to the bicycle demand ratio of each bicycle pick-and-place point in the sub-area to generate a schedule. The protocol is sent to the
实施例3Example 3
共享单车需求预测方法,基于随机森林算法融合用户需求和共享出行吸引力,能准确获得用户需求,该方法可以在控制模块连接的控制平台上实现,具体的可以由共享单车需求预测系统实现,如图10所示,包括如下步骤:The shared bicycle demand prediction method, based on the random forest algorithm, integrates user needs and shared travel attractiveness, and can accurately obtain user needs. This method can be implemented on the control platform connected to the control module, and can be specifically implemented by the shared bicycle demand prediction system, such as As shown in Figure 10, it includes the following steps:
步骤1、用户需求统计:获取用户出行信息及出行预订信息,统计单车取放点的第一单车需求量X1;Step 1, user demand statistics: obtain user travel information and travel reservation information, and count the first bicycle demand X 1 at the bicycle pick-up and release point;
步骤2、基于共享出行吸引力的需求预测:确定单车取放点附近区域的吸引点,根据每个吸引点的吸引力计算获得单车取放点的第二单车需求量X2;Step 2. Demand prediction based on the attractiveness of shared travel: determine the attraction points in the vicinity of the bicycle pick-up and drop-off point, and calculate the second bicycle demand X 2 of the bicycle pick-up and drop point according to the attractiveness of each attraction point;
步骤3、基于随机森林算法计算获得单车取放点的第三单车需求量X3;
步骤4、对上述步骤中获得的需求量加权求和,获得每个单车取放点的需求量。Step 4: Weighted summation of the demand obtained in the above steps to obtain the demand of each bicycle pick-and-place point.
步骤1中,可以通过激励反馈的方式获取用户的出行信息。激励反馈可以为采用积分激励方式,发送出行问卷,所述问卷包括主要骑行路径起终点、出行时间段以及用户意见,接收到问卷调查信息,为填写问卷的账户增加积分,为保障数据的可靠性,如果用户骑行信息与问卷填写内容严重不符,也会给用户扣除一定积分。用户主要包括持有周卡、月卡或者年卡的固定用户以及一些普通用户。In step 1, the travel information of the user can be obtained by way of incentive feedback. Incentive feedback can be in the form of points incentives, sending travel questionnaires, the questionnaires include the starting and ending points of the main cycling routes, travel time periods and user opinions, receiving questionnaire survey information, adding points to the accounts that fill in the questionnaires, and ensuring the reliability of data. If the user's riding information is seriously inconsistent with the content of the questionnaire, a certain amount of points will be deducted from the user. Users mainly include fixed users with weekly, monthly or annual cards, as well as some ordinary users.
步骤2中,确定单车取放点附近区域的吸引点,根据每个吸引点的吸引力计算获得第二单车需求量的方法,包括如下步骤:In step 2, the method of determining the attraction points in the vicinity of the bicycle pick-and-place point, and calculating the demand for the second bicycle according to the attraction force of each attraction point, includes the following steps:
步骤21、划分吸引点的吸引等级;
吸引点为人流量比较大的公共场所,如医院、学校、公园、公交站、地铁站等。吸引点指吸引人们共享出行的地点。The attraction points are public places with a relatively large flow of people, such as hospitals, schools, parks, bus stations, subway stations, etc. Attraction points refer to places that attract people to share travel.
可选的,可按照人流量大小进行划分,一级:公交站点、地铁站点,二级:小区、超市、学校,三级:餐饮、公园广场,四级:其他;Optionally, it can be divided according to the flow of people, Level 1: bus station, subway station, Level 2: community, supermarket, school, Level 3: restaurant, park square, Level 4: others;
步骤22、确定单车取放点设定区域内的吸引点,根据吸引等级确定每个吸引点的吸引力折减系数λx;
单车取放点设定区域如可以设置为单车取放点周围一公里的范围区域,人流量越大,折减系数越大,需求量越大,可以按照人流比例设定折减系数λx。For example, the setting area of the bicycle pick-up and drop-off point can be set as an area within one kilometer around the bicycle pick-and-place point. The greater the flow of people, the greater the reduction coefficient and the greater the demand. The reduction coefficient λ x can be set according to the proportion of the flow of people.
步骤23、根据吸引力折减系数λx,计算获得共享单车取放点的第二单车需求量X2;Step 23: Calculate the second bicycle demand X 2 at the shared bicycle pick-and-place point according to the attractiveness reduction coefficient λ x ;
第二单车需求量X2求解,可以采用如下计算公式为:To solve the second bicycle demand X 2 , the following calculation formula can be used:
其中,X2为共享单车需求量;S总为吸引点附近一公里区域面积;Si吸为附近某吸引点占地面积,i为第i个单车取放点;K为吸引点慢行出行比例,对于有明显时间特征和年龄特征的站点,出行比例可按年龄层次划分;N为吸引点人数;λx为根据不同等级共享出行吸引点确定的吸引力折减系数。Among them, X 2 is the demand for shared bicycles; S is the area of one kilometer near the attraction point; S i is the area of a nearby attraction point, i is the i-th bicycle pick-up point; K is the attraction point for slow travel Proportion, for sites with obvious time characteristics and age characteristics, the travel proportion can be divided according to age levels; N is the number of attraction points; λ x is the attraction reduction coefficient determined according to different levels of shared travel attraction points.
步骤3、基于随机森林算法计算获得单车取放点的第三单车需求量X3的方法,包括如下步骤:
步骤31、获取样本数据集。Step 31: Obtain a sample data set.
取整个区域系统内所有单车取放点的历史存取车数量的数据和相对应的相关特征数据,包括地理位置、时间、季节、节假日、工作日、天气、温度、湿度、风速等特征数据,以及区域内共享单车运行轨迹以及起终点数据作为原始数据集。Take the historical data on the number of access vehicles and the corresponding relevant characteristic data of all bicycle pick-up and drop-off points in the entire regional system, including geographical location, time, season, holidays, working days, weather, temperature, humidity, wind speed and other characteristic data, As well as the running trajectories of shared bicycles in the area and the starting and ending data as the original data set.
步骤32、样本数据集进行样本抽取,获得多个决策树的训练子集。
采取bootsrap重抽样方法,从总样本中抽取S个训练样本子集,用于构建S个回归树,抽取的训练样本为训练集,总样本中未抽取到的样本作为测试集。The bootsrap resampling method is adopted to extract S subsets of training samples from the total samples to construct S regression trees. The extracted training samples are the training set, and the samples that are not extracted from the total samples are used as the test set.
步骤33、决策树构建:基于损失最小化原则,每个训练子集对应训练获得一个决策树,决策树训练过程中,选取相关性较大的设定数量的特征变量参与决策树节点分裂,多个训练子集训练获得随机森林回归模型;
每个训练样本子集,基于损失最小化原则,生成一个决策树,S个训练样本子集共生成S棵决策树,组成随机森林,为解决因特征变量过多造成的过拟合现象,选取的特征变量设定为不超过log2M+1,其中,M为表示相关联的特征变量的个数,对参与的特征变量根据相关性原则进行选取,根据相关性大小排序,选取相关性G较大的部分特征变量参与决策树节点分裂过程。For each training sample subset, a decision tree is generated based on the loss minimization principle. The S training sample subsets generate S decision trees in total to form a random forest. In order to solve the over-fitting phenomenon caused by too many characteristic variables, select The characteristic variables of are set to no more than log 2 M+1, where M is the number of associated characteristic variables, and the participating characteristic variables are selected according to the principle of correlation, sorted according to the size of the correlation, and the correlation G is selected. The larger part of the feature variables participate in the decision tree node splitting process.
相关性判定方法,可以如下:The correlation determination method can be as follows:
其中,X为需求变量,Yi为某个特征变量,G为需求变量与某特征值的相关性,A为所有需求变量X与所有特征变量Y的数据个数的和,Ai为某个特征所有数据对应A中数据的个数。Among them, X is the demand variable, Y i is a characteristic variable, G is the correlation between the demand variable and a characteristic value, A is the sum of the data of all demand variables X and all characteristic variables Y, and A i is a certain All data of the feature corresponds to the number of data in A.
S个决策树构建完成后,利用测试集数据进行仿真,对决策树误差进行估计,优化决策树参数。将S棵决策树误差估计取平均,得到随机森林泛化误差估计值,对模型参数进行优化。After the S decision trees are constructed, the test set data is used for simulation, the error of the decision tree is estimated, and the parameters of the decision tree are optimized. The error estimates of the S decision trees are averaged to obtain the random forest generalization error estimates, and the model parameters are optimized.
步骤34、随机森林回归模型预测结果:实时获取单车取放点的单车出行数据和对应的特征变量数据,输入至随机森林回归模型,获得各个决策树投票结果,加权获得随机森林回归预测结果即为单车取放点的第三单车需求量X3;Step 34. Prediction results of the random forest regression model: obtain the bicycle trip data and the corresponding characteristic variable data of the bicycle pick-and-place point in real time, input them into the random forest regression model, obtain the voting results of each decision tree, and obtain the weighted random forest regression prediction results. The demand for the third bicycle at the bicycle pick-up and drop-off point X 3 ;
随机森林回归预测模型输出的预测结果由各棵决策树投票结果产生。随机森林回归预测结果如下:The prediction results output by the random forest regression prediction model are generated by the voting results of each decision tree. The random forest regression prediction results are as follows:
其中,Yi为相关特征因素数据,Hik为单棵决策树预测模型,S为构建的总的决策树数目,XY为共享单车需求量回归预测结果。Among them, Y i is the relevant characteristic factor data, H ik is the prediction model of a single decision tree, S is the total number of decision trees constructed, and X Y is the regression prediction result of the demand for shared bicycles.
步骤3中,根据相关性大小限定构建决策树的特征变量数目,优化随机森林算法,从而更精确的预测需求量X3。In
通过步骤1-3,获得整个需求预测的结果由三部分组成,对上述步骤中获得的需求量加权求和,具体如下:Through steps 1-3, the result of obtaining the entire demand forecast consists of three parts, and the weighted summation of the demand obtained in the above steps is as follows:
X=λ1X1+λ2X2+λ3X3 X=λ 1 X 1 +λ 2 X 2 +λ 3 X 3
其中,λ1、λ2和λ3代表相应的权重;X为站点总的需求量;X1为第一单车需求量;X2为基于共享出行吸引力获得的第二单车需求量;X3为基于随机森林算法的预测获得的第三单车需求量。Among them, λ 1 , λ 2 and λ 3 represent the corresponding weights; X is the total demand of the station; X 1 is the first bicycle demand; X 2 is the second bicycle demand obtained based on the attraction of shared travel; X 3 The third bicycle demand obtained for the prediction based on the random forest algorithm.
本实施例融合用户需求、共享出行吸引力和随机森林算法,深度挖掘用户需求,从用户自身经济、便利的角度入手,提供激励反馈服务,主要挖掘一定时间内固定用户(周、月、年卡用户)用车需求,同时综合一些普通用户的预定信息,提高需求预测的精度;引入共享出行吸引力这一指标,充分考虑了站点周边吸引点对需求量造成的变动影响;可以更加便捷的分析各个站点历史数据,选用高精度的随机森林算法,通过特征变量相关性分析,限定构建决策树的特征变量个数,增加随机森林预测的准确性,从而提高需求量预测的准确性。This embodiment integrates user needs, shared travel attraction and random forest algorithm, deeply mines user needs, starts from the perspective of user's own economy and convenience, provides incentive feedback services, and mainly mines fixed users (weekly, monthly, annual card) within a certain period of time. Users) car demand, and at the same time integrate the reservation information of some ordinary users to improve the accuracy of demand forecast; introduce the index of shared travel attraction, fully consider the impact of changes in demand caused by attraction points around the site; it can be more convenient to analyze For the historical data of each site, a high-precision random forest algorithm is used, and through the correlation analysis of characteristic variables, the number of characteristic variables for building a decision tree is limited, and the accuracy of random forest forecasting is increased, thereby improving the accuracy of demand forecasting.
实施例4Example 4
动态子区划分调度方法,通过动态子区划分可以实时调整子区范围,提高调度的灵活性和时效性。该方法可以在控制模块连接的控制平台上实现,具体的可以由动态子区划分调度系统实现,如图11所示,包括如下步骤:The dynamic sub-area division scheduling method can adjust the sub-area range in real time through dynamic sub-area division, and improve the flexibility and timeliness of scheduling. The method can be implemented on a control platform connected to the control module, and specifically can be implemented by a dynamic sub-area division and scheduling system, as shown in Figure 11, including the following steps:
步骤1、获取各个单车取放点的单车存取车数据及单车的轨迹信息;Step 1. Obtain the bicycle access data and the trajectory information of the bicycles at each bicycle pick-up and drop-off point;
步骤2、根据获取的数据,按照不同的特征对单车取放点进行分类;Step 2. According to the obtained data, classify the bicycle pick-and-place points according to different characteristics;
步骤3、根据分类结果,对相邻的单车取放点按照需求量的动态变化进行动态划分,形成多个子区;
步骤4、根据子区划分结果对每个子区进行调度:调度如果不能满足子区的单车需求,执行上述步骤1-3重新进行子区划分。
步骤1中,采集各个站点存取车的历史数据信息和实时的动态存取信息。采用实施例1的流动系统,可以更加方便快捷的获取每个单车取放点的数据信息,从而可以精确分析每个站点的存取车的内在特征。In step 1, the historical data information and real-time dynamic access information of the access vehicles at each site are collected. By using the flow system of Embodiment 1, the data information of each bicycle pick-and-place point can be obtained more conveniently and quickly, so that the inherent characteristics of the access vehicle at each site can be accurately analyzed.
步骤2中,根据获取的数据,按照不同的特征对单车取放点进行分类;In step 2, according to the acquired data, classify the bicycle pick-and-place points according to different characteristics;
按照不同的特征对单车取放点进行分类可以包括按时间特征、按需求等级划分等。The classification of bicycle pick-and-place points according to different characteristics may include classification according to time characteristics, classification according to demand level, and the like.
步骤21、按照时间特征进行分类,可以划分为包括:
分时段站点:在某些特定时间段内单车需求量相对比较大,如早高峰和晚高峰时段。Time-based stations: There is a relatively large demand for bicycles in certain specific time periods, such as the morning peak and evening peak hours.
全时段站点:所有时间段内需求量都相对比较大的站点;All-time sites: sites with relatively large demand in all time periods;
普通站点:没有明显时间特征。Ordinary site: no obvious temporal characteristics.
步骤22、对普通站点按需求等级划分:根据各个单车取放点预测的需求量,按照需求量等级进行划分。Step 22: Divide the common sites according to the demand level: according to the predicted demand of each bicycle pick-and-place point, divide according to the demand level.
步骤3、根据分类结果,对相邻的单车取放点按照需求的动态变化进行动态划分,形成多个动态子区,具体的,可以为:
步骤31、针对分时段站点和全时段站点的时间特征,结合周围站点的动态需求情况,与周围站点形成互补子区并形成相应的调度方案;
步骤32、针对普通站点进行动态子区的划分调度,可以包括如下步骤:Step 32: The division and scheduling of dynamic sub-areas for common sites may include the following steps:
步骤321、对普通站点中的互补性高的站点进行合并,作为一个取放点;互补性为高需求量在时间上不重叠,高需求量的时间段是错开的。Step 321: Merge the sites with high complementarity among the common sites as a pick-and-place point; the complementarity is that the high demand does not overlap in time, and the time periods of the high demand are staggered.
步骤322、动态选择设定区域范围内实时的需求量最大且需求量稳定的取放点作为主站点;Step 322, dynamically selecting the pick-and-place point with the largest real-time demand and stable demand within the set area as the main site;
取放点在地理位置上都是连续性的,根据分层取样的原理,每隔一定数量的站点选取一个主要站点,选取原则可以为:需求量变化没有明显的时间特征;在某段时间内需求量相对周围站点较高,根据实时的需求量动态选择需求最大的单车取放点;Pick-and-place points are geographically continuous. According to the principle of stratified sampling, a major site is selected every certain number of sites. The demand is relatively high relative to the surrounding stations, and the pick-and-place point of the bicycle with the greatest demand is dynamically selected according to the real-time demand;
步骤333、根据树状分支原理进行子区划分:以主站点为中心采用互补性原则和共享出行吸引力原则选取周围最合适站点进行合并,形成一个子区;Step 333: Divide sub-regions according to the principle of tree-like branching: take the main site as the center, adopt the principle of complementarity and the principle of shared travel attraction, select the most suitable sites around and merge to form a sub-region;
所述树状分支原理,是充分结合流动系统站点联动的特点,先选取主要站点作为根部,然后按照一根枝向上的原理生长,当不能满足生长需求时,再选择此枝中的其他节点继续生长。本实施例的系统呈带状或路网状,划分子区时,从主站点开始根据划分条件呈一条线进行划分,当不满足划分条件时再选取此条线上其他站点进行划分。The tree-like branching principle is fully combined with the characteristics of the station linkage of the flow system. First, the main station is selected as the root, and then grows according to the principle of a branch upward. When the growth requirements cannot be met, other nodes in this branch are selected to continue. grow. The system in this embodiment is in the form of a strip or a road network. When dividing sub-areas, the main site is divided in a line according to the division conditions, and when the division conditions are not met, other sites on the line are selected for division.
当前站点继续向下合并,不满足划分原则,则结束此站点的合并,然后检索之前合并的站点是否还存在继续合并的可能,当子区内合并的站点数达到设定数量(如8个时)结束当前子区的划分,具体的,可以如下:If the current site continues to be merged downward, if the division principle is not satisfied, the merge of this site will be terminated, and then it will be searched whether the previously merged sites still have the possibility of continuing to merge. ) to end the division of the current sub-area. Specifically, it can be as follows:
计算站点一定时间内需求差值,具体方法如下:Calculate the demand difference of a site within a certain period of time, the specific method is as follows:
Q=Q现+Q还-Q需 Q= Qnow + Qreturn - Qneed
其中,Q为需求差值;Q现为站点现有车辆数;Q还为站点一定时间内还车数;Q需为站点一定时间内需求车辆数。Among them, Q is the demand difference; Q is the current number of vehicles at the site; Q is also the number of vehicles returned at the site within a certain period of time; Q needs to be the number of vehicles demanded by the site within a certain period of time.
满足互补性原则:某站点与主要站点合并后,总的需求差值Q呈减小趋势。需求互补性的判定具体方法如下:Satisfy the principle of complementarity: After a site is merged with the main site, the total demand difference Q shows a decreasing trend. The specific method for determining the complementarity of needs is as follows:
其中,K为折减系数;Q1为站点合并之前子区的需求差值;Q2为站点合并之后子区的需求差值;H为合并站点后的需求互补性。Among them, K is the reduction coefficient; Q 1 is the demand difference of the sub-area before the site is merged; Q 2 is the demand difference of the sub-area after the site is merged; H is the demand complementarity after the merged site.
满足共享出行吸引力原则:如果当前子区需求差值为负,说明供不应求,则合并站点时选择共享出行吸引力小的站点,如果需求差值为正,说明供过于求,则选取共享出行吸引力大的站点。Satisfy the principle of shared travel attractiveness: If the current sub-district demand difference is negative, indicating that the supply is in short supply, select the site with less shared travel attractiveness when merging sites. If the demand difference is positive, indicating that the supply exceeds demand, select the shared travel attractiveness 's site.
共享出行吸引力的判定方法具体如下:The method for determining the attractiveness of shared travel is as follows:
其中,A表示某站点共享出行吸引力的大小;Di代表站点到附近吸引区域内某一吸引点的距离;λx为根据不同等级共享出行吸引点确定的吸引力折减系数;Ri吸代表吸引区域内某吸引点半径;S总代表吸引区域总面积。Among them, A represents the attractiveness of shared travel at a certain site; D i represents the distance from the site to a certain attraction point in the nearby attraction area; λ x is the attractiveness reduction coefficient determined according to different levels of shared travel attraction points; R i attracts Represents the radius of an attraction point in the attraction area; S total represents the total area of the attraction area.
步骤4中,根据子区划分结果进行调度:针对获得的子区,进行子区内部各个取放点之间的单车调整,当内部调整不能满足需求量要求,进行子区层面即子区之间的单车调整,当子区层面不能满足需求量要求,执行步骤1-4重新进行子区划分。In
本实施例通过在每个子区内部先进行调度,充分考虑子区内的关联度,提高了调度的准确性,提升了调度的效率。In this embodiment, scheduling is performed in each sub-area first, and the correlation degree of the sub-areas is fully considered, thereby improving the accuracy of scheduling and the efficiency of scheduling.
进行子区内部单车取放点之间的调度,具体为:按照需求比例调整单车在子区内部各个单车取放点的分布。Scheduling between bicycle pick-and-place points in the sub-area, specifically: adjusting the distribution of bicycles in each bicycle pick-and-place point in the sub-area according to the demand ratio.
如果某个子区需求差值超过某一阈值,则进行子区之间的调度,若不能有效调整,则调整当前子区的划分。If the demand difference of a certain sub-area exceeds a certain threshold, the scheduling between the sub-areas is performed, and if the adjustment cannot be effectively adjusted, the division of the current sub-area is adjusted.
当前调度方案不能满足用户需求,重新进行动态子区的划分,形成新的调度调整方案,可以实现子区划分的动态调整,提高了调度的灵活性。The current scheduling scheme cannot meet the needs of users, and the dynamic sub-area division is re-divided to form a new scheduling adjustment scheme, which can realize the dynamic adjustment of the sub-area division and improve the flexibility of scheduling.
本实施例的动态子区划分方法,充分结合流动系统站点联动的特点,采用树状分支原理进行点位的选取划分,划分条件充分考虑站点内、外部因素的影响,利用需求互补性原则和共享出行吸引力原则进行站点选取,既考虑周围变动因素的影响,同时也考虑每个站点不同的内在时间特征,分为全时段点位、分时段点位和普通点位,进行相应的子区划分调度,各个子区内实行需求比例调度,可以更好的满足用户调度需求。The dynamic sub-area division method of this embodiment fully combines the characteristics of site linkage in the flow system, adopts the principle of tree branching to select and divide points, and fully considers the influence of internal and external factors in the division conditions, and uses the principle of demand complementarity and sharing. The selection of stations is based on the principle of travel attractiveness, which not only considers the influence of surrounding factors, but also considers the different inherent time characteristics of each station. It is divided into full-time points, sub-period points and ordinary points, and the corresponding sub-areas are divided. Scheduling, each sub-region implements demand proportional scheduling, which can better meet user scheduling needs.
实施例5Example 5
本实施例提供基于子区划分的自动调度方法,该方法在实施例2所述的系统中的控制平台中实现,根据用户需求进行共享单车子区划分,对实施例1所述的共享单车流动系统进行自动调度,调度流动系统中的每个共享单车或单车运载装置8。This embodiment provides an automatic scheduling method based on sub-area division. The method is implemented in the control platform in the system described in Embodiment 2. The shared bicycle sub-areas are divided according to user needs. The system automatically dispatches each shared bicycle or
基于子区划分的自动调度方法,包括如下步骤:The automatic scheduling method based on sub-area division includes the following steps:
S1、获取单车取放点的单车取放数据,基于随机森林算法融合用户需求和共享出行吸引力的方法,对各个单车取放点的需求量进行预测;S1. Obtain the bicycle pick-and-place data of the bike pick-and-place point, and predict the demand of each bike pick-and-place point based on the method of integrating user needs and the attractiveness of shared travel based on the random forest algorithm;
S2、根据需求量的预测结果,基于树状分支原理结合内外因素,对单车取放点进行子区动态划分,根据划分结果生成调度方案;S2. According to the prediction result of the demand, based on the principle of tree-like branching combined with internal and external factors, dynamically divide the bicycle pick-and-place point into sub-areas, and generate a scheduling plan according to the division result;
S3、按照调度方案执行调度的控制。S3. Execute scheduling control according to the scheduling scheme.
步骤1采用实施例3所述的共享单车需求预测方法,步骤2采用实施例4所述动态子区划分调度方法,获得调度方案;还包括控制模块35按照调度方案执行的控制方法。Step 1 adopts the shared bicycle demand forecasting method described in
控制模块35执行的控制方法,如图12所示,包括如下:The control method performed by the
步骤1、单车存放点之间的输送控制:按照调度方案,在相邻站点之间通过控制运载装置8调整各个站点的单车数量;Step 1. Conveying control between bicycle storage points: According to the scheduling scheme, the number of bicycles at each station is adjusted by controlling the
运载装置8接收控制模块35发出的信号,按照地上输送装置和地下输送装置26,移动至指定位置。The
当有取车或者停车需求时,启动运载装置8的驱动电机12,进而控制共享单车运输至相应的伸缩门4处;当系统没有存取车需求时,系统检测到所有门都关闭时,控制模块35根据每个运载装置8底部定位装置3的定位数据,实现每个站点内共享单车的等距排放;When there is a demand for car pickup or parking, the
当通过交叉口时通过地下输送装置26进行调度,共享单车以及其运载装置8运输到地下输送装置的压力传感器32时,压力传感器32将信号传给伸缩驱动动力装置29启动压力伸缩杆30,进而控制单车承载部分31将共享单车向下运送,最后压力伸缩杆全部收缩到固定平台28内,共享单车运送到地下之后,再通过地下运输轨道27进行运输,到指定地点时,再通过与向下运输相同的方法,通过压力伸缩装置30将共享单车运送到地面上,继续进行调度任务。When dispatching through the underground conveying
步骤2、存取车的存取控制:获取存取车交互装置的用户需求信息;Step 2. Access control of the access vehicle: obtain the user demand information of the access vehicle interactive device;
当用户需要取车时,接收到取车信息,控制伸缩门打开;调度距离最近的单车调度至该伸缩门位置;When the user needs to pick up the car, it receives the car pick-up information and controls the retractable door to open; dispatches the nearest bicycle to the retractable door position;
当用户需要停车,接收到停车信息,控制伸缩门打开;调度距离最近的运载装置8调度至该伸缩门位置;When the user needs to park, the parking information is received, and the telescopic door is controlled to open; the
用户停车后,位于运载装置两端的感应装置(16)感应到有车辆放置时自动锁上,完成停车。After the user parks the vehicle, the sensing devices (16) located at both ends of the carrier device sense that a vehicle is placed and automatically lock the vehicle to complete the parking.
其中,距离最近的单车或者运载装置8,可以在当前站点,当前站点没有可以调度的单车或者运载装置8,可以在相邻站点或者在储存装置17中。Wherein, the nearest bicycle or
步骤3、单车的存储控制:统计子区内的单车数量数据,包括正常车辆和待维修车辆,并将正常车辆和维修车辆分开放置;
当数量不满足需求量要求时,向该子区的储存装置17补充单车;When the quantity does not meet the demand requirement, replenish the bicycles to the
当单车数量大于需求量要求,将该子区的储存装置中多余的单车调度至需求量没有满足的子区。When the number of bicycles is greater than the demand, the excess bicycles in the storage device of the sub-area are dispatched to the sub-area where the demand is not met.
为便于维修人员维修,若车辆需要维修,则将其储存到储存装置的第一存储层20的位置上,当需维修的车辆数超过此储存装置17的总储存车辆数的设定数值,发送维修指令至维修人员的终端。In order to facilitate maintenance by maintenance personnel, if the vehicle needs to be repaired, it will be stored in the
设置了第一存储层20、第二存储层21和第三存储层22。A
当车辆不需维修时,共享单车随着螺旋式上升轨道23向上运输储存,储存时,先通过螺旋式上升轨道23向上运输,在经过第二存储层21时,通过第二存储层21与螺旋式上升轨道23相连接的出入口24进入第二层,共享单车存放、固定装置是围绕着中心旋转一周排列开的,通过不断的旋转储存从螺旋式上升轨道23到达的车辆,当储存满第二存储层21时,然后再相继储存第一存储层20、第三存储层22;当从储存装置17调度共享单车时,先调度第一存储层20处的车辆,当底层车辆不够调度时,再依次调度上层储存装置的共享单车。When the vehicle does not need maintenance, the shared bicycle is transported and stored upward along the
系统根据实时的用户需求,按照上述步骤方法及时进行调度调整,最大限度满足用户需求。According to the real-time user needs, the system performs scheduling adjustments in a timely manner according to the above steps and methods to meet the user needs to the greatest extent.
以上所述仅为本公开的优选实施例而已,并不用于限制本公开,对于本领域的技术人员来说,本公开可以有各种更改和变化。凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。The above descriptions are only preferred embodiments of the present disclosure, and are not intended to limit the present disclosure. For those skilled in the art, the present disclosure may have various modifications and changes. Any modification, equivalent replacement, improvement, etc. made within the spirit and principle of the present disclosure shall be included within the protection scope of the present disclosure.
上述虽然结合附图对本公开的具体实施方式进行了描述,但并非对本公开保护范围的限制,所属领域技术人员应该明白,在本公开的技术方案的基础上,本领域技术人员不需要付出创造性劳动即可做出的各种修改或变形仍在本公开的保护范围以内。Although the specific embodiments of the present disclosure have been described above in conjunction with the accompanying drawings, they do not limit the protection scope of the present disclosure. Those skilled in the art should understand that on the basis of the technical solutions of the present disclosure, those skilled in the art do not need to pay creative efforts. Various modifications or variations that can be made are still within the protection scope of the present disclosure.
Claims (10)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010455032.6A CN111598481B (en) | 2020-05-26 | 2020-05-26 | Shared bicycle flow system, automatic scheduling system and method based on subarea division |
PCT/CN2021/070687 WO2021238231A1 (en) | 2020-05-26 | 2021-01-07 | Shared bicycle flowing system, and automatic scheduling system and method based on sub-region division |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010455032.6A CN111598481B (en) | 2020-05-26 | 2020-05-26 | Shared bicycle flow system, automatic scheduling system and method based on subarea division |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111598481A true CN111598481A (en) | 2020-08-28 |
CN111598481B CN111598481B (en) | 2023-09-01 |
Family
ID=72188712
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010455032.6A Active CN111598481B (en) | 2020-05-26 | 2020-05-26 | Shared bicycle flow system, automatic scheduling system and method based on subarea division |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN111598481B (en) |
WO (1) | WO2021238231A1 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112766591A (en) * | 2021-01-27 | 2021-05-07 | 同济大学 | Shared bicycle scheduling method |
CN112836951A (en) * | 2021-01-26 | 2021-05-25 | 深圳市泰比特科技有限公司 | Intelligent shared bicycle cloud platform scheduling method and system based on big data |
WO2021238231A1 (en) * | 2020-05-26 | 2021-12-02 | 山东交通学院 | Shared bicycle flowing system, and automatic scheduling system and method based on sub-region division |
CN114547471A (en) * | 2020-10-10 | 2022-05-27 | 北京骑胜科技有限公司 | Position determination method, device, storage medium and electronic equipment |
CN115936240A (en) * | 2022-12-23 | 2023-04-07 | 暨南大学 | Shared bicycle demand forecasting and delivering scheduling method |
CN116824861A (en) * | 2023-08-24 | 2023-09-29 | 北京亦庄智能城市研究院集团有限公司 | Method and system for scheduling sharing bicycle based on multidimensional data of urban brain platform |
CN118365501A (en) * | 2024-06-17 | 2024-07-19 | 中南大学 | Shared bicycle rebalancing method guided by balancing area division and rewarding mechanism |
WO2024244896A1 (en) * | 2023-05-30 | 2024-12-05 | 宋云波 | Smart delivery method for smart bicycles |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114492955A (en) * | 2022-01-07 | 2022-05-13 | 重庆市地矿测绘院有限公司 | Digital twin space-time big data platform based on three-dimensional live-action modeling and CIM |
CN114596667B (en) * | 2022-03-08 | 2023-08-11 | 北京物资学院 | Data sharing method, system and computer storage medium |
CN114626766B (en) * | 2022-05-12 | 2022-08-23 | 深圳市伟创高科电子有限公司 | Shared electric vehicle scheduling method, device, equipment and medium based on big data |
CN114841610A (en) * | 2022-05-26 | 2022-08-02 | 北京理工大学 | Shared bicycle scheduling method, device, equipment and readable storage medium |
CN115936409A (en) * | 2023-02-27 | 2023-04-07 | 北京阿帕科蓝科技有限公司 | Work order information generation method and device and computer equipment |
CN116611565B (en) * | 2023-05-23 | 2023-12-29 | 岭南师范学院 | User behavior monitoring system based on data analysis |
CN117808377B (en) * | 2024-03-01 | 2024-04-26 | 交通运输部公路科学研究所 | A highway engineering quality evaluation system based on index reduction and sample size reduction |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150161718A1 (en) * | 2013-12-06 | 2015-06-11 | International Business Machines Corporation | Device and method for implementing a vehicle sharing reward program |
CN108038578A (en) * | 2017-12-28 | 2018-05-15 | 东南大学 | Public bicycles static scheduling method based on requirement forecasting and hub-and-spoke networks |
CN108460537A (en) * | 2018-03-23 | 2018-08-28 | 华南理工大学 | A method of bicycle demand is shared based on big data and user psychology prediction |
CN109102590A (en) * | 2018-08-27 | 2018-12-28 | 浪潮电子信息产业股份有限公司 | A kind of underground based on cloud computing share bicycle parking system and operation method |
CN109208961A (en) * | 2018-10-15 | 2019-01-15 | 上海市城市建设设计研究总院(集团)有限公司 | Shared bicycle automated transport system and its application method |
CN109555340A (en) * | 2018-11-01 | 2019-04-02 | 齐齐哈尔大学 | Shared bicycle intelligently descends parking system |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107767659B (en) * | 2017-10-13 | 2021-01-26 | 东南大学 | Shared bicycle attraction amount and occurrence amount prediction method based on ARIMA model |
CN108416513B (en) * | 2018-02-12 | 2021-02-19 | 杭州电子科技大学 | A Dynamic Scheduling Method of Public Bicycles Based on Hybrid Heuristic Algorithm |
JP7077681B2 (en) * | 2018-03-12 | 2022-05-31 | トヨタ自動車株式会社 | Shared vehicle management server and shared vehicle management program |
CN111598481B (en) * | 2020-05-26 | 2023-09-01 | 山东交通学院 | Shared bicycle flow system, automatic scheduling system and method based on subarea division |
-
2020
- 2020-05-26 CN CN202010455032.6A patent/CN111598481B/en active Active
-
2021
- 2021-01-07 WO PCT/CN2021/070687 patent/WO2021238231A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150161718A1 (en) * | 2013-12-06 | 2015-06-11 | International Business Machines Corporation | Device and method for implementing a vehicle sharing reward program |
CN108038578A (en) * | 2017-12-28 | 2018-05-15 | 东南大学 | Public bicycles static scheduling method based on requirement forecasting and hub-and-spoke networks |
CN108460537A (en) * | 2018-03-23 | 2018-08-28 | 华南理工大学 | A method of bicycle demand is shared based on big data and user psychology prediction |
CN109102590A (en) * | 2018-08-27 | 2018-12-28 | 浪潮电子信息产业股份有限公司 | A kind of underground based on cloud computing share bicycle parking system and operation method |
CN109208961A (en) * | 2018-10-15 | 2019-01-15 | 上海市城市建设设计研究总院(集团)有限公司 | Shared bicycle automated transport system and its application method |
CN109555340A (en) * | 2018-11-01 | 2019-04-02 | 齐齐哈尔大学 | Shared bicycle intelligently descends parking system |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021238231A1 (en) * | 2020-05-26 | 2021-12-02 | 山东交通学院 | Shared bicycle flowing system, and automatic scheduling system and method based on sub-region division |
CN114547471A (en) * | 2020-10-10 | 2022-05-27 | 北京骑胜科技有限公司 | Position determination method, device, storage medium and electronic equipment |
CN112836951A (en) * | 2021-01-26 | 2021-05-25 | 深圳市泰比特科技有限公司 | Intelligent shared bicycle cloud platform scheduling method and system based on big data |
CN112836951B (en) * | 2021-01-26 | 2023-10-24 | 深圳市泰比特科技有限公司 | Intelligent scheduling method and system for shared bicycle cloud platform based on big data |
CN112766591A (en) * | 2021-01-27 | 2021-05-07 | 同济大学 | Shared bicycle scheduling method |
CN115936240A (en) * | 2022-12-23 | 2023-04-07 | 暨南大学 | Shared bicycle demand forecasting and delivering scheduling method |
CN115936240B (en) * | 2022-12-23 | 2024-03-15 | 暨南大学 | Shared bicycle demand prediction and delivery scheduling method |
WO2024244896A1 (en) * | 2023-05-30 | 2024-12-05 | 宋云波 | Smart delivery method for smart bicycles |
CN116824861A (en) * | 2023-08-24 | 2023-09-29 | 北京亦庄智能城市研究院集团有限公司 | Method and system for scheduling sharing bicycle based on multidimensional data of urban brain platform |
CN116824861B (en) * | 2023-08-24 | 2023-12-05 | 北京亦庄智能城市研究院集团有限公司 | Method and system for scheduling sharing bicycle based on multidimensional data of urban brain platform |
CN118365501A (en) * | 2024-06-17 | 2024-07-19 | 中南大学 | Shared bicycle rebalancing method guided by balancing area division and rewarding mechanism |
CN118365501B (en) * | 2024-06-17 | 2024-09-10 | 中南大学 | Shared bicycle rebalancing method guided by balancing area division and rewarding mechanism |
Also Published As
Publication number | Publication date |
---|---|
WO2021238231A1 (en) | 2021-12-02 |
CN111598481B (en) | 2023-09-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111598481B (en) | Shared bicycle flow system, automatic scheduling system and method based on subarea division | |
CN111915923B (en) | Multi-mode high-density intelligent parking lot system and vehicle storing and taking method | |
CN105303882B (en) | Parking management system and method based on Spatial dimensionality dynamic Car park payment strategy | |
CN111497671B (en) | Method and system for orderly charging of electric vehicles based on automatic license plate recognition and guidance | |
US20220410750A1 (en) | System and method for smart charging management of electric vehicle fleets | |
CN104260724B (en) | Vehicle intelligent predictive control system and method | |
Xi et al. | Simulation–optimization model for location of a public electric vehicle charging infrastructure | |
CN110458456B (en) | Demand response type public transportation system scheduling method and system based on artificial intelligence | |
CN110047318A (en) | Periphery parking stall method for pushing, device and computer readable storage medium | |
CN109034566A (en) | A kind of intelligent dispatching method and device based on passenger flow above and below bus station | |
CN113033959A (en) | TOD development mode-based rail transit station surrounding construction environment evaluation method | |
Zhu et al. | Solar photovoltaic generation for charging shared electric scooters | |
CN106530810A (en) | Traffic guidance system based on information of parking lot | |
CN112700029B (en) | Customized bus planning method based on simulation optimization framework | |
CN113947287B (en) | A method and system for regional dispatching of electric buses | |
CN109800940A (en) | A kind of charging pile site selecting method and device | |
CN105390019A (en) | Intelligent parking lot system implementation method based on Wi-Fi fingerprint positioning and indoor navigation technology | |
CN109658729A (en) | A kind of control method of the sky parking based on big data analysis | |
CN109785658A (en) | A kind of control method of sky parking's vehicle reservation management | |
CN113192357A (en) | Parking lot management method, edge server and area management server | |
CN114971328B (en) | A regional scheduling method for shared cars based on PSO-DE | |
CN118627698B (en) | A method and system for predicting electric vehicle charging load based on spatiotemporal characteristics | |
CN113657681A (en) | Method, system and storage medium for linking intelligent bus station and shared traffic | |
CN118968814A (en) | Intelligent parking charging pile positioning method and system combined with solar energy | |
CN109523064A (en) | A kind of micro- hinge of intelligence based on multi-internet integration |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |