CN111595802A - 一种基于nir光谱的忧遁草种源地分类模型的构建方法及应用 - Google Patents
一种基于nir光谱的忧遁草种源地分类模型的构建方法及应用 Download PDFInfo
- Publication number
- CN111595802A CN111595802A CN202010360338.3A CN202010360338A CN111595802A CN 111595802 A CN111595802 A CN 111595802A CN 202010360338 A CN202010360338 A CN 202010360338A CN 111595802 A CN111595802 A CN 111595802A
- Authority
- CN
- China
- Prior art keywords
- classification model
- clinacanthus nutans
- model based
- source
- nir
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 241000123852 Clinacanthus nutans Species 0.000 title claims abstract description 66
- 238000013145 classification model Methods 0.000 title claims abstract description 37
- 238000010276 construction Methods 0.000 title abstract description 7
- 238000004497 NIR spectroscopy Methods 0.000 title description 38
- 238000000034 method Methods 0.000 claims abstract description 39
- 238000001228 spectrum Methods 0.000 claims abstract description 32
- 238000007781 pre-processing Methods 0.000 claims abstract description 17
- 238000002329 infrared spectrum Methods 0.000 claims abstract description 16
- 238000004422 calculation algorithm Methods 0.000 claims abstract description 14
- 238000005457 optimization Methods 0.000 claims description 19
- 239000003814 drug Substances 0.000 abstract description 5
- 230000006870 function Effects 0.000 description 28
- 238000012706 support-vector machine Methods 0.000 description 16
- 238000012549 training Methods 0.000 description 14
- 238000011160 research Methods 0.000 description 8
- 238000010586 diagram Methods 0.000 description 6
- 230000003595 spectral effect Effects 0.000 description 5
- 238000010521 absorption reaction Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 230000002452 interceptive effect Effects 0.000 description 4
- 238000012795 verification Methods 0.000 description 4
- 238000002790 cross-validation Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 235000013305 food Nutrition 0.000 description 3
- 235000012907 honey Nutrition 0.000 description 3
- 241000207965 Acanthaceae Species 0.000 description 2
- 241000270728 Alligator Species 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 238000003909 pattern recognition Methods 0.000 description 2
- 238000002203 pretreatment Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000003672 processing method Methods 0.000 description 2
- 238000000638 solvent extraction Methods 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 208000010201 Exanthema Diseases 0.000 description 1
- 201000005569 Gout Diseases 0.000 description 1
- 241000238631 Hexapoda Species 0.000 description 1
- 208000006877 Insect Bites and Stings Diseases 0.000 description 1
- 241000700584 Simplexvirus Species 0.000 description 1
- 208000004078 Snake Bites Diseases 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000012569 chemometric method Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 206010012601 diabetes mellitus Diseases 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 201000005884 exanthem Diseases 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000002290 gas chromatography-mass spectrometry Methods 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 230000003902 lesion Effects 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 238000004451 qualitative analysis Methods 0.000 description 1
- 206010037844 rash Diseases 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/35—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
- G01N21/3563—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing solids; Preparation of samples therefor
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/35—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
- G01N21/359—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
- G06F18/241—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
- G06F18/2411—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on the proximity to a decision surface, e.g. support vector machines
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2218/00—Aspects of pattern recognition specially adapted for signal processing
- G06F2218/12—Classification; Matching
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Analytical Chemistry (AREA)
- Immunology (AREA)
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Theoretical Computer Science (AREA)
- Data Mining & Analysis (AREA)
- Bioinformatics & Computational Biology (AREA)
- General Engineering & Computer Science (AREA)
- Evolutionary Computation (AREA)
- Evolutionary Biology (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Artificial Intelligence (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Description
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010360338.3A CN111595802A (zh) | 2020-04-30 | 2020-04-30 | 一种基于nir光谱的忧遁草种源地分类模型的构建方法及应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010360338.3A CN111595802A (zh) | 2020-04-30 | 2020-04-30 | 一种基于nir光谱的忧遁草种源地分类模型的构建方法及应用 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111595802A true CN111595802A (zh) | 2020-08-28 |
Family
ID=72182238
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010360338.3A Pending CN111595802A (zh) | 2020-04-30 | 2020-04-30 | 一种基于nir光谱的忧遁草种源地分类模型的构建方法及应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111595802A (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114112983A (zh) * | 2021-10-18 | 2022-03-01 | 中国科学院西北高原生物研究所 | 一种基于Python数据融合的藏药全缘叶绿绒蒿产地判别方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016150130A1 (zh) * | 2015-03-25 | 2016-09-29 | 山东翰能高科科技有限公司 | 一种基于近红外光谱的杂交种纯度鉴别方法 |
CN108760677A (zh) * | 2018-04-19 | 2018-11-06 | 广东药科大学 | 一种基于近红外光谱技术的法半夏掺伪鉴别方法 |
CN109668859A (zh) * | 2019-03-03 | 2019-04-23 | 西南大学 | 基于svm算法的花椒产地和品种的近红外光谱识别方法 |
-
2020
- 2020-04-30 CN CN202010360338.3A patent/CN111595802A/zh active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016150130A1 (zh) * | 2015-03-25 | 2016-09-29 | 山东翰能高科科技有限公司 | 一种基于近红外光谱的杂交种纯度鉴别方法 |
CN108760677A (zh) * | 2018-04-19 | 2018-11-06 | 广东药科大学 | 一种基于近红外光谱技术的法半夏掺伪鉴别方法 |
CN109668859A (zh) * | 2019-03-03 | 2019-04-23 | 西南大学 | 基于svm算法的花椒产地和品种的近红外光谱识别方法 |
Non-Patent Citations (12)
Title |
---|
刘广昊等: "基于近红外光谱的胡椒产地鉴别方法研究", 《中国调味品》 * |
刘广昊等: "基于近红外光谱的胡椒产地鉴别方法研究", 《中国调味品》, no. 05, 10 May 2019 (2019-05-10) * |
刘静 等: "近红外光谱技术结合支持向量机对食用醋品牌溯源的研究", 食品与机械, vol. 32, no. 1, pages 38 - 40 * |
杜敏等: "样品表面近红外光谱结合多类支持向量机快速鉴别枸杞子产地", 《光谱学与光谱分析》 * |
杜敏等: "样品表面近红外光谱结合多类支持向量机快速鉴别枸杞子产地", 《光谱学与光谱分析》, no. 05, 15 May 2013 (2013-05-15) * |
杜科林等: "基于PSO参数优化支持向量机的湿地遥感分类――以鄱阳湖部分区域为例", 《江西科学》 * |
杜科林等: "基于PSO参数优化支持向量机的湿地遥感分类――以鄱阳湖部分区域为例", 《江西科学》, no. 01, 10 February 2018 (2018-02-10) * |
王彩虹 等: "基于SVM的棉麻织物近红外光谱快速无损鉴别", 印染, vol. 41, no. 18, pages 39 - 43 * |
王彩虹等: "基于SVM的棉麻织物近红外光谱快速无损鉴别", 《印染》 * |
王彩虹等: "基于SVM的棉麻织物近红外光谱快速无损鉴别", 《印染》, no. 18, 15 September 2015 (2015-09-15) * |
程志颖 等: "粒子群算法结合支持向量机回归法用于近红外光谱建模", 分析测试学报, vol. 29, no. 12, pages 1215 - 1219 * |
魏从师等: "基于NIRS技术和PCA-SVM算法6种树脂及其他类中药的快速鉴别", 《中国实验方剂学杂志》, no. 09 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114112983A (zh) * | 2021-10-18 | 2022-03-01 | 中国科学院西北高原生物研究所 | 一种基于Python数据融合的藏药全缘叶绿绒蒿产地判别方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110243806B (zh) | 拉曼光谱下基于相似度的混合物组分识别方法 | |
CN108169165B (zh) | 基于太赫兹光谱和图像信息融合的麦芽糖混合物定量分析方法 | |
CN108072626A (zh) | 一种沥青品牌识别方法 | |
CN102564993A (zh) | 一种利用傅里叶变换红外光谱识别大米品种方法及其应用 | |
CN112098358B (zh) | 基于四元数卷积神经网络的近红外光谱并行融合定量检测方法 | |
CN107192686B (zh) | 一种模糊协方差矩阵的可能模糊聚类茶叶品种鉴别方法 | |
Chen et al. | Fast detection of cumin and fennel using NIR spectroscopy combined with deep learning algorithms | |
Hu et al. | Detecting different pesticide residues on Hami melon surface using hyperspectral imaging combined with 1D-CNN and information fusion | |
CN111812058A (zh) | 基于太赫兹成像技术的香椿中农残的定性检测方法 | |
Wei et al. | Tea moisture content detection with multispectral and depth images | |
CN104020128A (zh) | 一种快速鉴别蜂胶胶源的方法 | |
Ning et al. | Rapid evaluation of soil fertility in tea plantation based on near-infrared spectroscopy | |
Yin et al. | Non-destructive detection of foreign contaminants in toast bread with near infrared spectroscopy and computer vision techniques | |
Wang et al. | Extraction and classification of origin characteristic peaks from rice Raman spectra by principal component analysis | |
Wang et al. | Intelligent detection of hard seeds of snap bean based on hyperspectral imaging | |
CN113655027B (zh) | 一种近红外快速检测植物中单宁含量的方法 | |
Yuan et al. | Geographical origin identification of chinese tomatoes using long-wave Fourier-Transform Near-Infrared Spectroscopy combined with deep learning methods | |
Yang et al. | Classification of sugar beets based on hyperspectral and extreme learning machine methods | |
CN114112983A (zh) | 一种基于Python数据融合的藏药全缘叶绿绒蒿产地判别方法 | |
CN111595802A (zh) | 一种基于nir光谱的忧遁草种源地分类模型的构建方法及应用 | |
CN115931773A (zh) | 一种近红外光谱定量分析中的波长选择方法 | |
Liu et al. | ATR‐FTIR Spectroscopy Preprocessing Technique Selection for Identification of Geographical Origins of Gastrodia elata Blume | |
Liu et al. | A modified feature fusion method for distinguishing seed strains using hyperspectral data | |
Zhang et al. | Non-destructive identification of Pseudostellaria heterophylla from different geographical origins by Vis/NIR and SWIR hyperspectral imaging techniques | |
Li et al. | Predicting leaf nitrogen content in wolfberry trees by hyperspectral transformation and machine learning for precision agriculture |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20210603 Address after: 519000 building 17, creative Valley, Huandao East Road, Hengqin New District, Zhuhai City, Guangdong Province Applicant after: ZHUHAI HOPEGENES MEDICAL AND PHARMACEUTICAL INSTITUTE, CO.,LTD. Address before: 519000 unit 1, 33 Haihe street, Hengqin New District, Zhuhai City, Guangdong Province Applicant before: ZHUHAI DAHENGQIN TECHNOLOGY DEVELOPMENT Co.,Ltd. Applicant before: ZHUHAI HOPEGENES MEDICAL AND PHARMACEUTICAL INSTITUTE, CO.,LTD. |
|
TA01 | Transfer of patent application right | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20211221 Address after: 518101 1303, building 8, Qianhai excellence Financial Center (phase I), unit 2, guiwan area, Nanshan street, Qianhai Shenzhen Hong Kong cooperation zone, Shenzhen, Guangdong Applicant after: Lide Laifu (Shenzhen) Biotechnology Co.,Ltd. Address before: 519000 building 17, creative Valley, Huandao East Road, Hengqin New District, Zhuhai City, Guangdong Province Applicant before: ZHUHAI HOPEGENES MEDICAL AND PHARMACEUTICAL INSTITUTE, CO.,LTD. |
|
TA01 | Transfer of patent application right | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20200828 |
|
RJ01 | Rejection of invention patent application after publication |