CN111587365A - 用于量化组织的生物标志物的方法和系统 - Google Patents

用于量化组织的生物标志物的方法和系统 Download PDF

Info

Publication number
CN111587365A
CN111587365A CN201980008015.3A CN201980008015A CN111587365A CN 111587365 A CN111587365 A CN 111587365A CN 201980008015 A CN201980008015 A CN 201980008015A CN 111587365 A CN111587365 A CN 111587365A
Authority
CN
China
Prior art keywords
spectral
tissue
variability
subintervals
biomarker
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201980008015.3A
Other languages
English (en)
Other versions
CN111587365B (zh
Inventor
泽维尔·哈杜
弗罗拉·辉
彼得·范·韦恩哈登
乔纳森·盖伊·克劳斯顿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Australian Eye Research Center Ltd
Original Assignee
Australian Eye Research Center Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU2018901319A external-priority patent/AU2018901319A0/en
Application filed by Australian Eye Research Center Ltd filed Critical Australian Eye Research Center Ltd
Publication of CN111587365A publication Critical patent/CN111587365A/zh
Application granted granted Critical
Publication of CN111587365B publication Critical patent/CN111587365B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/12Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for looking at the eye fundus, e.g. ophthalmoscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/14Arrangements specially adapted for eye photography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0075Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence by spectroscopy, i.e. measuring spectra, e.g. Raman spectroscopy, infrared absorption spectroscopy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0077Devices for viewing the surface of the body, e.g. camera, magnifying lens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14507Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue specially adapted for measuring characteristics of body fluids other than blood
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/40Detecting, measuring or recording for evaluating the nervous system
    • A61B5/4076Diagnosing or monitoring particular conditions of the nervous system
    • A61B5/4088Diagnosing of monitoring cognitive diseases, e.g. Alzheimer, prion diseases or dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7264Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7271Specific aspects of physiological measurement analysis
    • A61B5/7275Determining trends in physiological measurement data; Predicting development of a medical condition based on physiological measurements, e.g. determining a risk factor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/02Devices for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computerised tomographs
    • A61B6/037Emission tomography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0229Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using masks, aperture plates, spatial light modulators or spatial filters, e.g. reflective filters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/10Arrangements of light sources specially adapted for spectrometry or colorimetry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/2823Imaging spectrometer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/46Measurement of colour; Colour measuring devices, e.g. colorimeters
    • G01J3/50Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors
    • G01J3/51Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors using colour filters
    • G01J3/513Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors using colour filters having fixed filter-detector pairs
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/10Image acquisition
    • G06V10/12Details of acquisition arrangements; Constructional details thereof
    • G06V10/14Optical characteristics of the device performing the acquisition or on the illumination arrangements
    • G06V10/143Sensing or illuminating at different wavelengths
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • G06V10/60Extraction of image or video features relating to illumination properties, e.g. using a reflectance or lighting model
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/60Type of objects
    • G06V20/69Microscopic objects, e.g. biological cells or cellular parts
    • G06V20/693Acquisition
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/60Type of objects
    • G06V20/69Microscopic objects, e.g. biological cells or cellular parts
    • G06V20/695Preprocessing, e.g. image segmentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/18Eye characteristics, e.g. of the iris
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H10/00ICT specially adapted for the handling or processing of patient-related medical or healthcare data
    • G16H10/40ICT specially adapted for the handling or processing of patient-related medical or healthcare data for data related to laboratory analysis, e.g. patient specimen analysis
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H30/00ICT specially adapted for the handling or processing of medical images
    • G16H30/40ICT specially adapted for the handling or processing of medical images for processing medical images, e.g. editing
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/20ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H70/00ICT specially adapted for the handling or processing of medical references
    • G16H70/60ICT specially adapted for the handling or processing of medical references relating to pathologies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/102Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for optical coherence tomography [OCT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4842Monitoring progression or stage of a disease
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J2003/003Comparing spectra of two light sources
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/10Arrangements of light sources specially adapted for spectrometry or colorimetry
    • G01J2003/102Plural sources
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/10Arrangements of light sources specially adapted for spectrometry or colorimetry
    • G01J2003/102Plural sources
    • G01J2003/104Monochromatic plural sources
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/10Arrangements of light sources specially adapted for spectrometry or colorimetry
    • G01J2003/102Plural sources
    • G01J2003/106Plural sources the two sources being alternating or selectable, e.g. in two ranges or line:continuum
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J2003/1226Interference filters
    • G01J2003/1247Tuning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/2823Imaging spectrometer
    • G01J2003/2826Multispectral imaging, e.g. filter imaging
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10032Satellite or aerial image; Remote sensing
    • G06T2207/10036Multispectral image; Hyperspectral image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • G06V10/58Extraction of image or video features relating to hyperspectral data
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V2201/00Indexing scheme relating to image or video recognition or understanding
    • G06V2201/03Recognition of patterns in medical or anatomical images

Abstract

本公开涉及用于量化生物组织的生物标志物的方法和系统。从以使得至少两个光谱子区间中的图像数据的组合与感兴趣的临床变量相关联的方式,使用成像传感器在主波长区间内的离散波长处获取的组织的多个图像确定两个光谱子区间。使用具有在至少两个光谱子区间内的波长的一个或更多个光源照射组织。使用成像传感器获取由组织反射的光的测量结果;并使用所获取的测量结果来计算组织的生物标志物的量度。主波长区间比至少两个光谱子区间中的每一个都宽,且引起所获取的图像的光谱变异性的至少一个光谱混杂因子存在于组织中。

Description

用于量化组织的生物标志物的方法和系统
技术领域
本公开涉及基于组织成像诊断医学状况或确定老化的影响的领域。更具体地,本公开涉及使用成像和图像数据处理算法来量化生物组织的生物标志物的方法和系统。
背景技术
成像技术通常用于帮助检测和诊断各种疾病。考虑到检测异常,分析受试者的生物组织的图像以量化他们的生理参数。检测淀粉样蛋白和其它异常的常用技术包括正电子发射断层摄影术(PET)扫描。PET扫描是昂贵的、耗时的,并且可能导致受试者的不适。
例如,患者视网膜中异常淀粉样蛋白的存在可用于诊断视网膜的状况。特别地,已经示出,受试者视网膜中淀粉样蛋白的存在可以指示阿尔茨海默病的发作。还提出了其他疾病的诊断,例如青光眼、糖尿病、糖尿病性视网膜病、高血压、心血管疾病、脑血管疾病、黄斑变性、帕金森病、其他淀粉样病变和其他蛋白病可以基于对受试者视网膜内异常的检测。
最近,已经提出了涉及眼睛的高光谱图像的视觉分析和数字图像处理两者的技术,以检测根源在于受试者的其他器官的疾病的表现。
基于生物组织的高光谱图像,特别是眼睛的图像的生物标志物的定量分析是用于诊断若干健康状况的非常有前景的工具。然而,用于获取高光谱图像的商业系统仍然非常昂贵且不易访问。
发明内容
本发明的实施例提供了使用成像和图像数据处理算法来量化组织的生物标志物的技术。特别地,本发明的各方面提供了获取和处理来自生物组织的高光谱图像数据并量化与疾病相关联的组织中的生物标志物的系统和方法。本发明的另外各方面提供了从组织获取多光谱图像数据并处理图像数据以量化生物标志物的系统和方法。
根据第一方面,本发明提供了一种用于量化组织的生物标志物的方法,所述方法包括:
使用成像传感器在主波长区间内的离散波长处获取组织的多个图像;
使用处理器以使得至少两个光谱子区间中的图像数据的组合与感兴趣的临床变量相关的方式确定至少两个光谱子区间;以及
利用处理器使用至少两个光谱子区间中的图像数据来计算组织的生物标志物的量度;
其中,主波长区间比至少两个光谱子区间中的每个都宽,且引起所获取的图像的光谱变异性的至少一个光谱混杂因子存在于组织中。
根据第二方面,本发明提供了一种用于量化组织的生物标志物的方法,所述方法包括:
使用处理器从以使得至少两个光谱子区间中的图像数据的组合与感兴趣的临床变量相关的方式,使用成像传感器在主波长区间内的离散波长处获取的组织的多个图像,确定至少两个光谱子区间;
使用具有在至少两个光谱子区间内的波长的一个或更多个光源照射组织;
使用成像传感器获取由组织反射的光的测量结果;以及
使用所获取的测量结果来计算组织的生物标志物的量度;
其中,主波长区间比至少两个光谱子区间中的每个都宽,且引起所获取的图像的光谱变异性的至少一个光谱混杂因子存在于组织中。
在实施例中,感兴趣的临床变量包括疾病、疾病的严重性或亚型、已知的生物标志物或生理状态中的任一种或组合。
在实施例中,主波长区间使得所获取的图像表示组织的高光谱或多光谱表示。
在实施例中,该方法包括获取多个图像,包括使用在不同波长处操作的一个或更多个相机。
在实施例中,该方法包括提取至少两个光谱子区间中的每一个的光谱参数以形成组织的多光谱表示。
在实施例中,该方法包括识别引起所获取的图像中的光谱变异性的至少一个光谱混杂因子。
在实施例中,确定至少两个光谱子区间是以使得至少两个光谱子区间的组合的光谱信息与光谱混杂因子是正交的、不相关的或独立的方式来执行的。
在实施例中,确定至少两个光谱子区间是通过应用频带选择方法、机器学习算法或人工智能引擎来执行的。
在实施例中,感兴趣的变量包括使用正电子发射断层摄影术(PET)在脑中测量的或在脑脊液(CSF)中测量的β淀粉样蛋白的量或分布。
在实施例中,确定至少两个光谱子区间包括使用多变量统计、机器学习或人工智能技术。
在实施例中,使用多变量统计、机器学习或人工智能技术计算生物标志物的量度。
在实施例中,多变量统计包括回归、逻辑回归或判别
在实施例中,机器学习或人工智能技术考虑图像数据中的人口统计信息、临床信息、其它感兴趣的变量或多个感兴趣的区域。
在实施例中,确定至少两个光谱子区间是由机器学习算法执行的,该机器学习算法将多光谱数据变换成表示生物标志物的评分。
在实施例中,该方法包括将光学滤波器应用于一个或更多个光源。
在实施例中,该方法包括沿着由一个或更多个光源产生的光的光路应用光学滤波器。
在实施例中,组织是人的视网膜,且光学滤波器被嵌入在施加于人的眼睛上的隐形眼镜片内。
根据第二方面,本发明提供了一种用于量化组织的生物标志物的系统,该系统包括:
光学组件,所述光学组件包括一个或更多个光源,所述光学组件被布置成以至少两个预定的光谱区间内的波长照射组织的一部分;以及
成像组件,所述成像组件包括成像传感器,所述成像传感器被布置成接收从组织的部分反射的光并将所述光转换成数字数据;
其中至少两个预定的光谱子区间是已知的感兴趣的变量所特有的。
在实施例中,该系统包括生物标志物选择组件,所述生物标志物选择组件被布置成基于用户所选择的组织的生物标志物选择至少两个光谱区间。
在实施例中,该系统包括处理模块,所述处理模块被布置成从成像传感器接收数据,并且所述处理模块被配置为:
结合并处理从成像传感器接收的数据以提取光谱信息并形成组织的多光谱表示;以及
处理组织的多光谱表示以量化生物标志物。
在实施例中,组织为视网膜的一部分,生物标志物是用于预测/分级风险、筛查或诊断阿尔茨海默病的β淀粉样蛋白(AB)的量度,至少两个光谱区间包括位于475nm中的约100nm内、545nm中的约100nm内和725nm中的约100nm内的三个波段,每个波段均具有低于约200nm的带宽。
在实施例中,光学组件被布置成产生具有在至少两个光谱区间内的光谱的光。
在实施例中,照明组件包括光学滤波器,所述光学滤波器被布置成在至少两个子光谱区间内对所生成的光路或反射光路进行滤波。
在一个实施例中,组织是视网膜的一部分,感兴趣的变量是与阿尔茨海默病相关的脑或脑脊液的β淀粉样蛋白水平,至少两个光谱区间包括位于475nm的约100nm内、545nm的约100nm内和725nm的约100nm内的三个波段,且每个波段均具有低于约200nm的带宽。
根据第三方面,本发明提供了一种用于量化组织的生物标志物的方法,所述方法包括:
使用成像传感器在连续波长区间内获取组织的高光谱图像;
识别引起高光谱图像的光谱变异性的至少一个光谱混杂因子;
以使得光谱模型与所识别的光谱混杂因子的相关性最小化的方式来推导出组织的光谱模型;以及
使用所推导出的光谱模型来计算组织的生物标志物的量度。
在实施例中,组织的光谱模型被推导为与所识别的光谱混杂因子正交、不相关或独立。
在实施例中,光谱模型是从两个组之间的主光谱差异推导出的,每个组具有不同量的感兴趣的变量。
在实施例中,推导出组织的光谱模型包括通过以使得组织的干净高光谱表示具有由至少一个光谱混杂因子的光谱特征所引起的减小的变异性的方式处理组织的高光谱表示和至少一个光谱混杂因子的光谱特征来推导出组织的干净高光谱表示。
在实施例中,获取组织的高光谱图像包括使用一个或更多个光源,利用在连续的预定的波长范围内的单色或窄带宽光,顺序地照射组织,且对于每个波长,使用成像传感器来获取由组织反射的光的测量结果。
在实施例中,识别至少一个光谱混杂因子包括从光谱数据库读取光谱混杂因子的一个或更多个光谱曲线并处理来自高光谱图像的光谱信息以及一个或更多个光谱曲线。
在实施例中,推导出干净高光谱表示包括从光谱信息中去除由至少一个光谱混杂因子的光谱曲线引起的光谱变异性。
在实施例中,识别至少一个光谱混杂因子包括使用特定的光谱混杂因子作为参考混杂因子并计算Δ高光谱图像,该Δ高光谱图像表示两个高光谱图像之间的逐像素和逐波长的差值。
在实施例中,根据以下步骤处理光谱信息:
计算在感兴趣的变量方面不同的组之间的组间光谱变异性;
提取组内光谱数据库的第一主特征向量集;以及
使用正交投影去除一个或更多个特征向量以产生中间数据集,在所述中间数据集中组内变异性基本上被去除;
其中,生物标志物是基于组织的干净光谱表示使用光谱维数减小来量化的。
在实施例中,根据以下步骤处理光谱信息:
计算光谱数据库的不同组之间的组间光谱变异性;
提取不同组之间的组间变异性的第一主特征向量集;
使用基于第一主特征向量集的正交投影从不同组的组合去除组间变异性以产生中间数据集,在所述中间数据集中组间变异性基本上被去除;
计算中间数据集内的组内变异性;提取中间数据集的组内变异性的第二主特征向量集;以及
提取统计数据库中的多个干净光谱表示的第三主特征向量集;
其中,从临时光谱信息中去除由至少一个非特异性混杂因子引起的光谱变异性包括使用基于第二主特征向量集的正交投影从临时光谱信息中去除组内变异性以创建组织的干净光谱表示;以及
其中,使用基于组织的干净光谱表示上的第三主特征向量集的投影来量化生物标志物。
在实施例中,至少一个光谱混杂因子包括至少一个眼部混杂因子,并且量化的生物标志物指示人的视网膜中存在或不存在感兴趣的变量。
在实施例中,至少一个眼部光谱混杂因子包括黑色素含量、白内障、晶状体变色、血红蛋白含量、视网膜病、视网膜色素上皮厚度或密度、RNFL厚度、脉络膜厚度、黄斑色素含量和/或其组合的变化。
根据第五方面,本发明提供了一种用于量化组织的生物标志物的系统,所述系统包括:
照明组件,所述照明组件被布置成利用连续波长范围内的单色或窄带宽光依次照射组织的一部分;
成像组件,所述成像组件包括成像传感器,所述成像传感器被布置成接收由组织的部分反射的光并将所述光转换成数字数据;以及
处理模块与存储模块,所述处理模块与存储模块被布置成从成像传感器接收数据并被配置成执行指令以执行根据第四方面的方法。
本发明适用于任何测量指示疾病状态或疾病倾向的任何生物标志物。示例包括但不限于用于阿尔茨海默病的β淀粉样蛋白、受试者的以及受试者之间的视网膜(眼内和两眼之间)中白内障和黑色素含量的变化水平、以及通过PET扫描测量的脑中的β淀粉样蛋白、或脑脊液中的β淀粉样蛋白、RNFL厚度、视网膜厚度、视网膜内或视网膜下方血液。
通过阅读以下仅参照附图以示例方式给出的对说明性实施例的非限制性描述,前述和其它特征将变得更加明显。
附图说明
将仅参考附图通过示例的方式来描述本公开的实施例,其中:
图1示出了具有用于基于高光谱成像来量化组织的生物标志物的方法步骤的流程图;
图2示出了从白内障和色素沉着去除光谱效应之前和之后的光谱数据;
图3和10示出了用于量化组织的生物标志物的系统的示意图;
图4示出了四只眼睛的代表性HS蒙太奇,其示出了由于视网膜和脉络膜脉管系统、眼部色素和眼部介质透明度(A-D)而导致的具有阳性脑β淀粉样蛋白PET扫描(阿尔茨海默病)的个体的固有变异性和不具有眼内和眼间数据的个体(PET阴性对照)的固有变异性;采样的中央凹位置,具有主内视网膜血管的分割的颞血管弧的上方和下方(E)和在对照和病例的不同采样位置处的归一化反射光谱(F到K);
图5示出了来自具有阳性脑β淀粉样蛋白PET扫描(阿尔茨海默病)的个体和不具有阳性脑β淀粉样蛋白PET扫描的个体(PET阴性对照)的视网膜成像数据的两种主光谱混杂因子的估计曲线图。(A)示出了在指定的采样位置(B)处的校正的反射光谱曲线图,(C)示出了使用用于所有波长的显著性的错误发现率控制的组之间的双侧未配对t检验的P值的曲线图,以及在对应于两组之间的主光谱差异的指定采样位置处的光谱模型的曲线图(D);
图6示出了描述在不同采样位置处使用HS评分的具有阳性脑β淀粉样蛋白PET扫描(阿尔茨海默病)的个体和不具有阳性脑β淀粉样蛋白PET扫描的个体(PET阴性对照)之间的区别的曲线图;
图7示出了描述在验证数据集中HS评分如何能够区分具有阳性脑β淀粉样蛋白PET扫描(阿尔茨海默病)的个体和不具有阳性脑β淀粉样蛋白PET扫描的个体(PET阴性对照)的曲线图。
图8,在(A)中示出了研究眼和对侧眼的HS评分之间的相关性,以及在(B)中示出了白内障手术前的HS评分和白内障手术后的HS评分之间的相关性;
图9示出了具有用于基于多光谱成像来量化生物组织的生物标志物的方法步骤的流程图;
图10示出了用于基于多光谱成像来量化生物组织的生物标志物的系统的示意图;
图11示出了在眼底相机的光学光路中的不同位置处具有带通滤波器的视网膜多光谱成像的示意图,该眼底相机具有宽带光源和在成像传感器处具有传统颜色阵列;
图12示出了使用光源和在成像传感器处的定制与修改的滤波器阵列的视网膜多光谱成像的示意图;
图13示出了在成像传感器处使用具有相对窄的光带和传统颜色阵列的照明的视网膜多光谱成像的示意图;
图14示出了使用具有相对窄的频带的顺序波段照明和成像传感器的视网膜多光谱成像的示意图;
图15示出了用于阿尔茨海默病的视网膜多光谱成像的三个波段的选择。ADSF示出了在针对检测视网膜中的淀粉样蛋白的情况下使用哪些波段(滤波器1、2、3);
图16示出了用具有阳性脑β淀粉样蛋白PET扫描(阿尔茨海默病)的个体和不具有阳性脑β淀粉样蛋白PET扫描的个体(PET阴性对照)的高光谱(HS)和多光谱(MS)视网膜成像获得的评分之间的关联;
图17示出了与常规颜色(RGB)图像(左)相比,分别来自两个青光眼患者的MS评分图像(右)的对比增强的表示(A和B),以及在来自常规照片的每个单独RGB颜色通道的评分、来自RGB眼底图像的评分与来自MS图像的评分之间实现的对比增强的比较(C);
图18示出了通过OCT测量的视网膜神经纤维层(RNFL)厚度的图像(A)、使用具有三个光谱区间的MS成像估计的RNFL厚度的图像(B)以及示出了通过OCT测量的RNFL厚度与使用MS成像估计的厚度之间的相关性的曲线图(C);
图19示出了如(A)中所示的传统RGB眼底图像上难以检测视网膜下的和视网膜内的液体。使用MS成像(B),液体是清楚明显的;
图20示出了脉络膜新生血管(CNV)通常难以用如(A)中所示的传统RGB眼底成像检测。使用MS成像(B)CNV更明显;以及
图21是描绘基于视网膜MS图像的年龄预测的曲线图。
具体实施方式
本公开的各方面通常解决与可能损害医学成像技术的性能的混杂因子的存在有关的问题中的一个或更多个。
广义上讲,混杂因子也称为混杂因素,当该因素不与旨在被测量的量或变量直接相关时,该混杂因素可以是影响生物特征识别的测量的内容和/或质量的任何因素。在受试者的视网膜的高光谱(HS)或多光谱(MS)成像的特定情况下,期望获取关于视网膜或关于视网膜的一部分的光谱信息,受试者的眼睛中存在的各种因素可能影响该光谱信息。例如,具有蓝色眼睛的受试者在他/她的虹膜和眼底的基质中具有非常少的黑色素。相反,具有褐色眼睛的受试者的基质具有高的黑色素含量。黑色素含量倾向于改变HS图像的光谱含量,这种改变与视网膜的实际状况无关。其它混杂因子可包括但不限于白内障、晶状体的变色、血液血红蛋白水平与厚度、视网膜病、光谱密度、RNFL厚度和黄斑色素含量。给定的受试者可以具有任何数量的这些混杂因子。
本文描述的技术的一个方面涉及获得生物组织(例如受试者的视网膜)的高光谱图像,并通过使用从多个受试者获得的统计信息来减轻一个或更多个潜在的眼部混杂因子对该图像的影响,该多个受试者中的一些具有类似的光谱混杂因子。考虑到量化生物标志物(例如考虑到确定受试者的视网膜中β淀粉样蛋白的存在)获得生物组织的光谱表示。或者,可通过选择允许减轻一个或更多个潜在的眼部混杂因子的影响的适当的波长区间来获取生物组织(例如,受试者的视网膜)的多光谱图像。数值参数与每个光谱区间相关联以量化生理参数,例如考虑到确定受试者的视网膜中β淀粉样蛋白的存在。
例如,在阿尔茨海默病(AD)中,称为β淀粉样蛋白的蛋白质多年来在脑中和眼中积累。虽然一旦发生记忆缺陷,有一些测试可用于证实AD的诊断,但是这些测试是昂贵的、不能广泛获得的和侵入性的。这些测试中没有一个用于筛选没有记忆损伤的人以识别处于疾病风险中的人。这很重要,就好像对AD进行有效的治疗一样,很可能需要在疾病晚期之前开始治疗。
现在参考图1,示出了具有用于从HS图像开始量化组织的生物标志物的方法步骤的流程图100。在步骤102处,使用成像传感器在连续的波长区间内获取组织的至少一个高光谱图像。在步骤104处,识别引起高光谱图像的光谱变异性的至少一个光谱混杂因子。在步骤106处,以使得光谱模型与所识别的光谱混杂因子的相关性最小化的方式推导出组织的光谱模型。在步骤108处,使用推导出的光谱模型计算组织的生物标志物的量度。
推导出光谱模型的优选方式需要计算生物组织的干净HS表示。该表示可以通过处理具有至少一个光谱混杂因子的光谱特征的HS数据来计算,目的是使由至少一个光谱混杂因子的光谱特征引起的变异性最小化。
HS图像包括受试者的视网膜的多个图像,每个图像在不同的波长处获得。图像可以被预处理,并且预处理可以包括例如在HS图像的各种波长处的光强度的归一化。可以进行图像配准以确保在任何给定波长下拍摄的图像的像素与在任何其他波长下拍摄的图像的对应像素对准,使得对应像素表示受试者的视网膜的相同元素。配准可以克服在各种波长下拍摄图像时由受试者的眼睛的运动引起的未对准。例如,当在介入之前和之后拍摄图像时,可以在不同时间拍摄的受试者的视网膜的图像之间进行联合配准。
推导出光谱模型的优选方式需要计算生物组织的干净HS表示。该表示可以通过处理具有该至少一个光谱混杂因子的光谱特征的HS数据来计算,目的是使由至少一个光谱混杂因子的光谱特征引起的变异性最小化。
HS图像包括受试者的视网膜的多个图像,每个图像在不同的波长处获得。图像可以被预处理,并且预处理可以包括例如在HS图像的各种波长处的光强度的归一化。可以进行图像配准以确保在任何给定波长下拍摄的图像的像素与在任何其他波长下拍摄的图像的对应像素对准,使得对应像素表示受试者的视网膜的相同元素。配准可以克服在各种波长下拍摄图像时由受试者的眼睛的运动引起的未对准。
可以对视网膜的HS图像进行分割,以便识别特定的感兴趣的区域(ROI)。例如,当需要确定在受试者的组织中是否存在β淀粉样蛋白时,分割可以导致选择受试者的生物组织的特定区域(诸如视网膜)作为ROI。
为了研究给定组的特定光谱信号在不同时间的变异性,例如当在白内障手术之前和之后拍摄图像时,为了评估特定混杂因子(例如在该示例中,天生的晶状体的变色),可以在AD或另一种疾病的评估中去除该混杂因子的特定光谱信号。例如,可以使用非负矩阵分解(NMF)、主成分分析(PCA)、线性判别分析(LDA)、奇异值分解(SVD)或分离来确定经历白内障手术的受试者的组内的特定光谱信号的变异性。这些技术使得能够从HS图像提取有意义的光谱特征,这些光谱特征与实际混杂因子(例如白内障)有关,并使得能够解释HS图像光谱的变异性的大百分比。这种光谱特征的影响可以从各种HS图像中去除,使得可以针对AD和/或其他疾病评估所得到的数据,有效地最小化或去除特定混杂因子的影响。
为了去除特定混杂因子的影响,计算所谓的“立方体”。立方体是HS图像的表示,其中多个单波长2D图像在彼此顶部堆叠,由图像的累积的波长定义三维,从而形成3D表示或“立方体”。
眼睛的HS成像包括从光在返回到传感器之前与该光相互作用的所有眼部结构接收光谱信息。为了减少受试者之间的、受试者内的、会话间的变异性以确定群体内视网膜组织中的不同生物标志物,这允许开发作为适当的筛查工具并且还用于纵向监测。生物标志物包括但不限于受试者内(眼睛内和两只眼睛之间)和受试者之间的视网膜中的不同水平的白内障和黑色素含量。
现在参考图2A至2C,通过使用高光谱相机对n=9名患者在进行白内障手术之前和之后成像获得对应于白内障的特定混杂因子。将高光谱图像进行联合配准,使得两个图像中的相同像素对应于相同的视网膜位置。计算与白内障手术前后的比率相对应的HS图像,并且对所得图像进行对数变换。排除具有伪影或异常值的HS图像的区域,并将剩余数据馈送到主成分分析中。负责大部分数据变化的主轴被保存到存储器中。
通过对具有不同程度的视网膜色素沉着并且在临床检查中没有可见的白内障迹象的n=7名健康参与者进行成像来获得对应于色素沉着的特定的混杂因子。将来自高光谱图像的光谱数据进行组合、对数变换并馈送到主成分分析中。负责数据变化的最大来源的主轴被保存到存储器中。
获得来自n=9名在临床检查中具有不同程度的视网膜色素沉着和可见的白内障的患者的高光谱数据,并进行对数转换(图2A至C,黑色曲线)。对于每个参与者,对来自视网膜的中央凹区域的光谱数据进行采样,以说明清洁过程。该光谱数据首先被投影成与白内障去除的主光谱效应正交(图2A),与视网膜色素沉着去除的主光谱效应正交(图2B),以及与两种光谱混杂因子正交(图2C)。
现在参考图3,示出了基于HS成像量化生物组织的生物标志物的系统300的示意图。该系统具有光学照明组件310,该光学照明组件310利用连续波长范围内的单色光提供对生物组织的一部分的照明。光学组件310包括一个或更多个光源。对于每个波长,所生成的光312从光学组件310被引导朝向生物组织,在图2的示例中,该生物组织是视网膜组织314。对于每个波长,成像组件316接收由视网膜组织的部分反射的光,并将该光转换成数字数据。
提供处理模块318以从成像传感器316接收数据,并组合和处理从成像传感器接收的数据以提取光谱信息并形成生物组织的高光谱表示。另外,处理模块318从存储器检索至少一个图像混杂因子的光谱特征并通过处理生物组织的高光谱表示和至少一个光谱混杂因子的光谱特征来推导出生物组织的光谱模型。光谱模型由处理模块计算,使得与混杂因子的相关性最小化,或者优选地,以便与所识别的光谱混杂因子正交。此外,处理模块基于光谱模型来处理生物组织的高光谱表示以量化生理参数。
处理模块318可以被配置成通过通信接口和通信网络与外部统计数据库通信以检索至少一个图像混杂因子的光谱特征。
虽然图3所示的成像传感器模块316包括同步滤波器,但是应当理解,滤波器也可以放置在连续光源之后,或者放置在光学路径中的其他地方。
光学照明组件310可以被配置成提供400nm至1000nm之间的光。光源可以被设置为宽带LED、氙气闪光灯光源、钨源、超连续谱激光器,并可以与波长选择机构(诸如同步滤波器)配合使用。
现在参考图4,示出了眼睛之间的天然的光谱变化,其排除了关于PET上β淀粉样蛋白状态的病例和对照之间的区别。(A-D)表示4只眼睛的代表性HS蒙太奇(n=2个对照,n=2个病例,从450nm-900nm,以5nm的步长),其示出了由于视网膜和脉络膜脉管系统、眼部色素和眼部介质的透明度所致的眼内和眼间固有的变异性。(E)用于分析HS图像的系统采样方法,包括两个中央凹位置(F1,F2),其位于具有主内视网膜血管的分割的颞血管弧的上方(S1,S2)和下方(I1,I2)。(F-K)为针对对照(n=20,较黑的)和病例(n=15,较浅的)在不同采样位置处的归一化反射光谱,其使用未校正的光谱数据突出了受试者间的很大程度的变异性,这排除了病例和对照之间的区别。数据显示为平均数±SEM。
为了考虑受试者内的变异性并避免选择偏差,基于明确定义的解剖标志的视网膜的六个区域被系统地采样。使用以中央凹(F1)为中心的感兴趣的圆形区域(60像素直径)对中央凹进行采样。使用以中央凹(F2)为中心的环(直径100-200像素)对副中央凹进行采样。在关于颞缝水平取向的固定模板上,使用正方形(200×200像素)对颞血管弧上方(S1)和下方到中央凹(I1)的区域以及颞血管弧上方(S2)和下方到视神经乳头的区域(I2)进行采样。
在每个采样位置,使用伪彩色图像的绿色通道自动分割内视网膜中可见的血管。使用方差参数1和20计算高斯差(DoG)图像,以增加血管和背景之间的对比度,同时去除噪声和伪影。保守地,DoG图像中40%的像素具有最高强度则被认为是血管,并从分析中排除。在图F至K中显示了被归一化为第一群组的平均光谱的反射光谱,突出了由于每个位置处的视网膜结构的变化而在6个采样位置处观察到的光谱的差异。发现了很大程度的受试者间光谱变异性。尽管在每个位置都可以观察到趋势,但是基于未校正的反射数据,在病例和对照之间没有发现统计学上的显著差异。这些发现表明,在个体之间进行有意义的比较之前,必须考虑眼部反射率的关键决定因素的变异性的影响。
现在参考图5,示出了如何推导出光谱混杂因子和光谱模型。(A)示出了受试者内变异性的两个主要光谱分量的估计。这些分量可以主要通过来自已知眼部成分的光谱的组合来解释,并可以用于校正每个反射光谱。(B)描述了在采样位置S1(n=20个对照,n=15个病例,数据显示为平均值±SEM)的未掩蔽两组之间的光谱差异的校正的反射光谱。(C)示出了使用用于所有波长的显著性(n.s.代表无显著性)的错误发现率(FDR)对照的组间双侧未配对t检验的P值。(D)中描述了在采样位置S1处的光谱模型,该光谱模型对应于两组之间的主光谱差异。
为了变换视网膜结构和反射率之间的倍增相互作用,可以首先对测量的光谱进行对数变换。然后,可以使用诸如具有宽度为13的5阶内核的Savitzky-Golay滤波器的光谱平滑过程来计算和平滑每个采样位置处的平均光谱。在每个位置处,通过使用用于判别的正交投影降维(DROP-D)来组合光谱变量,从而获得单个HS评分。这种线性判别方法用于推导出HS评分,因为它对过拟合是鲁棒的,且非常适合于与变量(波长)的数目相比,观察(参与者)的数目较小的问题。简言之,DROP-D分两步工作。首先,DROP-D估计(A)并从数据中去除组内变异性的主光谱轴(B)(即,对判别问题不利的变异性的光谱源)。其次,DROP-D通过计算已校正的数据的组间变异性的主光谱轴来推导出模型(D)。通过利用光谱模型取其内积,获得给定光谱的HS评分(单个数字)。注意,通过构造,HS评分对被去除的组内轴的任何线性组合不敏感。为进一步避免过度拟合,使用留一法交叉验证来识别光谱轴的数目以优化组间的区别。
现在参考图6,使用视网膜HS评分示出了具有阳性脑β淀粉样蛋白PET扫描的个体(阿尔茨海默病,病例)和没有阳性脑β淀粉样蛋白PET扫描的个体(PET阴性对照)之间的区别。病例与对照相比,在不同采样位置处获取的HS评分的平均值更高(F(1,33)=7.1,p=0.01,双向重复测量ANOVA)。误差线代表每组平均值的95%CI。成对比较示出了采样位置F1和S1之间的显著差异。
使用对每个采样位置推导出的光谱模型来推导出每个参与者的HS评分。总之,在所有视网膜位置上,病例与对照相比,病例的这些HS评分更高(F(1,33)=7.1,p=0.01,双向重复测量ANOVA),这表明病例和对照之间的普通光谱差异,该普通光谱差异仅在校正眼睛之间的固有光谱变化之后可见。
在每个位置处使用成对比较,示出了在S1采样位置处发现各组之间的最大差异(p=0.002,95%CI:0.06-0.22)。这与死后视网膜免疫组织化学研究的发现一致,其表明在上层视网膜中β淀粉样蛋白积聚出现最大。在F1位置处也发现了病例和对照之间的显着差异。
现在参考图7,示出了在验证数据集中HS评分如何有效地区分具有阳性脑β淀粉样蛋白PET扫描(阿尔茨海默病)的个体和不具有阳性脑β淀粉样蛋白PET扫描的个体(PET阴性对照)。
谱模型的验证。(A)对于每个数据集(对于每组意味着约95%CI)获得高光谱(HS)评分。使用相同的成像方法,在相同模型的两个不同相机上获得主群组(研究眼和对侧眼)和验证群组的HS图像。在两个群组中的病例和对照之间获得显著差异(对于每个数据集,双侧未配对的t检验控制错误发现率)。(B)主群组(黑色)和验证群组(橙色)的接受者操作特征曲线(ROC)和曲线下的面积(AUC)显示病例和对照之间的良好区别。(C)定量PETβ淀粉样蛋白负荷和HS评分的散点图,显示了两个度量之间的显著正相关。
现在参考图8,示出了在应用所描述的处理方法之后,不管晶状体状态(存在天生或人工晶状体)的相同个体的眼睛之间的鲁棒一致性。
图8A描绘了相关性,示出了研究眼和对侧眼的HS评分之间的良好一致性。图8B描述了相关性,示出了在应用所描述的处理方法之后,在白内障手术前和白内障手术后个体的HS评分之间的良好一致性的。
为了评估模型对晶状体浑浊化(白内障)和人工眼内晶状体的存在的鲁棒性,研究了计划进行选择性门诊白内障手术的10名参与者的群组。在白内障手术之前和之后8周拍摄视网膜HS图像。从主群组获得的光谱模型用于推导出白内障手术前和白内障手术后的HS评分。使用配对的双侧t检验来检验手术前和手术后HS评分的差异。使用皮尔森(Pearson)的相关系数估计手术前和手术后HS评分的一致性。
为了检验模型的鲁棒性,将来自主群组中每个个体的研究眼和对侧眼的HS评分相关联。在一些个体中,与研究眼相比,对侧眼具有更多的眼部病状(例如,玻璃疣的存在)。尽管一些对侧眼和研究眼之间存在差异,但在研究眼和对侧眼的HS评分之间存在显著的相关性(r=0.6,p=0.0002,95%CI=0.32-0.78)(图8A),这表明HS评分对于眼部病状的变化程度是鲁棒的。
除此之外,研究了晶状体状态对HS评分的影响。对于视觉上显著的白内障,招募进行常规手术的个体,并在白内障摘除和人工眼内晶状体植入之前和之后对他们进行成像。在手术前和手术后的HS评分中没有发现差异(p=0.88,95%CI=-0.15-0.18,双侧配对t检验)。重要的是,在手术前和手术后测量的HS评分之间发现了强的相关性(r=0.8,p=0.01,95%CI:0.23-0.94,图8的图B),这表明晶状体状态(白内障或人工眼内晶状体)对HS评分具有最小的影响。
现在参考图9,示出了具有用于基于多光谱成像来量化组织的生物标志物的方法步骤的流程图800。
多光谱成像用于检测生物标志物,例如视网膜中的淀粉样蛋白。在一些实施例中,多光谱成像在按比例缩小HS成像方面是有利的,例如,在设备成本方面,在数据采集和数据分析的复杂性方面。
在步骤902处,使用处理器,从使用成像传感器在主波长区间内的离散波长处获取的组织的多个图像中确定至少两个光谱子区间。确定子区间,使得至少两个光谱子区间中的图像数据的组合与感兴趣的临床变量相关。
在步骤904处,使用波长在至少两个光谱子区间内的一个或更多个光源照射组织。在步骤906处,使用成像传感器获取反射光的图像。在步骤908处,针对至少两个光谱区间中的每一个提取光谱参数以形成生物组织的多光谱表示。在步骤910处,使用所获取的测量结果来计算组织的生物标志物的量度。
在主波长区间内的离散波长处获取的组织的多个图像可以包括不同参与者和/或相同参与者在不同时间的一个或更多个高光谱图像。从具有预定义的感兴趣的区域上的潜在平均值的图像中提取光谱数据。使用例如临床数据(例如,疾病的负担、疾病的存在或不存在)和/或人口统计学(例如,年龄、性别)数据来建立一个或更多个因变量。将光谱数据和因变量馈送到ADSF算法(和/或其它变量/波长/光谱区间选择算法)中。这种算法的输出对应于给定预测问题的优化光谱区间。建立光谱区间的最佳组合,该最佳组合可以涉及使用因变量、统计建模技术(多变量回归、逻辑回归、判别分析等)和/或机器学习技术(支持向量机、偏最小二乘、人工神经网络等)。最佳组合还可以涉及使用先前记录的图像、图像中存在的空间信息(血管的分割、视神经乳头的位置、中央凹、肌理分析)或利用其它多光谱、高光谱或其它医学成像(例如OCT、PET扫描)和非成像模态(诸如临床数据(年龄、血压、问卷))拍摄的其它图像。
现在参考图10,示出了用于基于多光谱成像来量化生物组织的生理参数的系统950的示意图。
该系统具有光学照明组件952,该光学照明组件952向生物组织954的一部分(在这种情况下是眼睛的视网膜的一部分)提供照明。组件952包括一个或更多个光源,所述一个或更多个光源被布置成以至少两个预定光谱区间内的波长照射组织的一部分。
光谱区间由生物标志物选择组件基于正被研究的生物标志物来选择。在一些实施例中,系统可以设置有适于研究一个或更多个特定生物标志物的特定光学照明组件。在这些情况下,不存在生物标志物选择组件。
所产生的光被从照明组件952导向生物组织954。对于每个波长,成像组件956接收由生物组织的该部分反射的光,并将该光转换成数字数据。数据可由系统的处理器958在本地进行处理或根据本文描述的方法由系统进行可用的处理。
系统950还能够在本地保存图像数据并保存到中央数据库。系统可以利用新数据的累积来更新预测能力(机器学习)。系统还可以能够辨别在学习时使用/引入哪个多光谱滤波器,并且将该信息发送到本地/中央数据库。该系统能够测量/收集/存储/传输光谱和/或空间校准数据。系统可以具有子系统以帮助成像系统与患者眼睛的对准(具有或不具有对用户的反馈和/或将相机移入/移出、向左/向右、向上/向下移动的指示)。该系统可以具有手动或自动聚焦由成像传感器接收的视网膜图像的子系统。
在一些实施例中,仅使用选定的波段的视网膜成像可能具有实现与HS成像(即,PET状态/疾病状态的确认)类似的结果的潜力。因此,这可能产生创建缩小设备的尺寸的机会,但是在检测诸如阿尔茨海默病的各种疾病的生物标志物或诊断特征方面具有与HS相机类似的能力。
在一些实施例中,本文的装置、设备/相机、系统和方法可以在选择的波段处获取图像。在一些实施例中,本文的定制的装置、设备/相机、系统和方法可在选择的波段处获取图像,可选地具有使用现有设备/相机的各种改进选项。这种改进的非限制性示例包括:(1)在现有的相机上添加定制的滤波器组(例如,单个多带通滤波器或允许在指定波段处的多个带通滤波的多个滤波器),该滤波器组可以被放置在但不限于沿着如图11所示的相机的光路的位置(滤波器可以选择地被放置在沿着光路的其他位置,包括在个体的角膜的隐形眼镜片位置(图11中未示出))处;(2)创建定制设备/相机,该设备/相机例如可以包括以下各项的任何组合:(a)改进的成像传感器和/或改进的颜色滤波阵列,(b)改进的光源,和/或(c)如图12-14所示的顺序波段照明;以及(3)相机,该相机是(1)和(2)的选项的组合。
在一些实施例中,使用不同光波段的一个或更多个多光谱图像可以被组合和/或一起分析以提高诊断能力和/或鲁棒性(例如,针对β淀粉样蛋白的阿尔茨海默病滤波器和针对τ淀粉样蛋白的阿尔茨海默病滤波器;针对β淀粉样蛋白的阿尔茨海默病滤波器和针对不同类型的眼内晶状体的滤波器)。
在一些实施例中,使用本文的设备、系统和方法,在护理点处,可选地在短时间段内,获得生物标志物的量度(例如,多光谱评分)。在一些实施例中,获得生物标志物的量度包括使用本文的设备/系统获取受试者的视网膜的一个或更多个图像和/或分析在单个或多个成像会话(如果需要的话)期间获取的图像数据。在一些实施例中,可以通过使用本文的设备/系统获取受试者的视网膜的一个或更多个图像和/或通过分析在多个成像会话(如果需要的话)上获取的图像数据而随时间推移来跟踪生物标志物的量度。在一些实施例中,这种随时间推移的纵向研究可促进监测疾病随时间推移的进展和/或治疗随时间推移的评估。
在一些实施例中,ADSF用于确定从原始反射率高光谱数据所需的波段,如图15A所示。在检测视网膜中的淀粉样蛋白的这种情况下,选择至少三个波段。从这三个不同形状和宽度的带通滤波器得到的光谱信息以加权方式(黑色轨迹)组合以推导出多光谱评分。ADSF可能不是唯一的可以用于确定用于多光谱成像的波段的方法。另外,波段的形状/曲线(例如,近似高斯分布)可以改变(如图15B中所示的矩形频带的示例),并且所需的波段的数量及其带宽(图15C)和/或中心频率可以改变。在一些情况下,除了数量不同之外,波段还可以具有不同的宽度。在一些实施例中,如图15B-15C所示,这些波段可以不相互重叠。在一些实施例中,两个或更多个光波段部分重叠,例如滤波器1和2。在一些实施例中,指定的光波段中没有一个与其它光波段重叠。在一些实施例中,指定光波段中没有一个包括与指定光波段中的另一个的中心频率大致相同的中心频率。在一些实施例中,每个指定光波段的中心频率和/或全宽半最大带宽基于群体、年龄、存在的混杂因子或其他因素而变化。在一些实施例中,在光产生、图像获取期间同时应用滤波器的波段。在一些实施例中,在光产生、图像获取或图像分析期间依次应用滤波器的波段。
在一些实施例中,以加权方式算术组合从这些波段确定的光谱信息。在一些实施例中,根据加权组合计算评分(生物标志物水平的量度)(可选地以单个数字)以描述来自所选波段的光谱信息。在对阿尔茨海默病参与者进行成像的情况下,多光谱成像评分与视网膜β淀粉样蛋白负荷相关联。
如图15所示,计算的生物标志物水平可以与HS评分进行比较。在这种情况下,尽管仅使用3个波段从原始反射率数据中推导出生物标志物水平的量度(仅使用具有较宽频带的少数选择波长,生物标志物水平的量度非常类似于使用HS导出的量度),但是在HS和多光谱成像评分之间发现了强一致性(r=0.89,p=8.1e-13),这表明本文中作为使用来自较少波长的光谱信息的缩减版本的生物标志物水平的量度是从完整的高光谱数据推导出的量度的很好的近似值。
在生物组织诸如视网膜中发生的光谱变化可用于检测不限于阿尔茨海默病的疾病范围内的变化。在一些实施例中,波段的数量/带宽与波长可以与AD的多光谱成像中可以使用的波段的数量/带宽与波长相同或不同。除了AD之外,多光谱成像的应用可以包括但不限于:检测眼睛状况(诸如(但不排除)青光眼、年龄相关性黄斑变性和糖尿病性视网膜病等)中视网膜组织的结构变化。多光谱成像也可用于其它状况,诸如路易(Lewy)体痴呆、创伤性脑损伤、帕金森氏病,以及检测组织中的重金属与药物和/或毒素沉积。
除了上述实施例,发明人确定,经由多光谱成像增加来自视杯的视神经视网膜边缘(衬在视神经盘的边缘的神经组织,其中视杯在中心)的对比度允许比传统眼底摄影更容易地检测组织损失,以用于引起视网膜神经纤维层损失的疾病(例如但不限于青光眼)的筛查/检测和纵向监测。
在该实施例中,拍摄了n=7名确定具有青光眼的患者的高光谱图像。在每个图像中,提取神经视网膜边缘上的十个点和来自中心视杯的十个点的光谱。使用这些光谱,(使用ADSF方法)估计哪些光谱区间对于辨别神经视网膜色素边缘与视杯是最佳的。然后从高光谱图像选择光谱区间以获得多光谱图像。此后,将多光谱通道组合以提供展示出神经视网膜边缘和视杯之间的增加的对比度的评分图像。图17A和17B中的每一个均示出了与分别针对两个青光眼患者的传统眼底摄影相比,从MS评分图像推导出的神经视网膜边缘的增加的对比度的表示。在以下之间进行神经视网膜边缘和视杯之间的对比度变化的统计学比较:RGB图像的每个通道、从组合RGB通道推导出的评分图像与从多光谱图像推导出的评分图像(图17C)。
显然,在传统RGB图像中,与绿色和红色相比,蓝色通道中的对比度更大。将RGB通道组合在一起仅与其自身的蓝色通道一样好。MS图像对比度显著大于从传统RGB图像获得的对比度,从而允许更容易地判别神经视网膜边缘。
发明人已经发现,根据本发明的方法可以用于从多光谱图像估计RNFL组织厚度。为了测试该提议,用光学相干断层扫描(OCT)和高光谱相机对患有青光眼的患者的视网膜成像。RNFL层的厚度通过OCT相机软件分割,如图18A所示,由OCT图像(左上图)产生了伪彩色组织厚度图。将该OCT推导出的厚度图与高光谱图像进行联合配准。提取从OCT厚度图中可获得RNFL厚度的高光谱数据的每个像素,并将该像素馈送到ADSF方法中,以估计用于RNFL厚度估计的3个最优光谱区间。
然后从高光谱图像选择这些光谱区间以获得多光谱图像。随后计算使用OCT厚度作为因变量和使用MS图像的通道作为解释变量的多变量线性回归。图18B(左下图)示出了来自图中所示的MS图像的估计的RNFL厚度的伪彩色图。图18C示出了通过OCT测量的厚度和使用MS成像估计的厚度之间的像素方面的相关性。
在本发明的另一实施例中,发明人已经确定使用MS成像的方法可应用于检测视网膜的/视网膜下的液体。为了测试该方法的应用,利用高光谱照相机对在OCT上可见的患有糖尿病性视网膜病和黄斑水肿形式的视网膜液体的患者进行成像。在(基于OCT图像)存在液体的区域和不存在液体的邻近视网膜组织中选择光谱。使用ADSF选择对于增加具有和没有液体的视网膜位置之间的可见度而言最佳的3个光谱区间。使用这些光谱区间从高光谱图像获得MS图像。通过将MS通道投影到最佳区分受影响的视网膜的位置和未受影响的视网膜的位置的子空间上,计算MS评分图像。图19A示出了传统的眼底图像,显然,几乎不可能确定视网膜中的液体的位置,然而,如在图19B中清晰可见的,当观察多光谱评分图像时,液体的位置变得显而易见。
为了测试该方法能够用于验证源自脉络膜的新血管生长(脉络膜新生血管[CNV])的提议,利用高光谱相机对在传统OCT上可见的患有年龄相关性黄斑变性(AMD)和CNV发展的患者成像。
光谱是在(基于OCT图像的)CNV存在的区域和在CNV不存在的邻近视网膜组织中选择的。使用ADSF选择对于增加具有CNV的和没有CNV的视网膜位置之间的可见度而言最佳的3个光谱区间。使用这些光谱区间从高光谱图像获得MS图像。通过将MS通道投影到最佳区分受影响的视网膜的位置和未受影响的视网膜的位置的子空间上,计算MS评分图像。如图20a所示,利用传统的眼底摄影难以确定CNV的位置,但是当观察多光谱评分图像时(见图20B)CNV的位置变得显而易见。
在又一个实施例中,方法能够用于提供衰老的视网膜生物标志物。为了验证该方法的应用,使用高光谱相机对三十九名患者进行成像。提取每个患者的平均黄斑光谱数据。使用ADSF选择对于预测患者年龄最佳的4个光谱区间。然后使用这些光谱区间从高光谱图像获得MS图像,并通过将MS通道投影到对于预测患者的年龄而言最佳的子空间上来计算MS评分图像。将使用在采样位置处的MS评分的预测年龄用于创建图21中所示的相对于真实患者的年龄绘制的说明性预测模型。
根据本公开,本文描述的组件、过程操作和/或数据结构可以使用各种类型的操作系统、计算平台、网络设备、计算机程序和/或通用机器来实现。此外,本领域的普通技术人员将认识到,也可以使用较少通用性质的设备,诸如硬连线的设备、现场可编程门阵列(FPGA)、专用集成电路(ASIC)等。在包括一系列操作的方法由计算机、操作地连接到存储器的处理器或机器实现的情况下,这些操作可以被存储为由机器、处理器或计算机可读的一系列指令,且可以被存储在非暂时性的有形介质上。
本文描述的系统和模块可以包括软件、固件、硬件或适于本文描述的目的的软件、固件或硬件的任何组合。软件和其他模块可以由处理器执行,并保存在服务器、工作站、个人计算机、计算机化平板、个人数字助理(PDA)、智能电话和适合于本文描述的目的的其他设备的存储器上。软件和其它模块可以经由本地存储器、经由网络、经由浏览器或其它应用程序或经由适于本文所描述的目的的其它方式来访问。本文描述的数据结构可以包括计算机文件、变量、编程阵列、编程结构、或任何电子信息存储方式或方法、或适合于本文描述的目的的任何组合。
上述说明书中已经通过作为示例提供的非限制性的说明性实施例描述了本公开。这些说明性实施例可以任意修改。权利要求的范围不应被实例中阐述的示例限制,而应被给予与作为整体的描述一致的最宽泛的解释。
术语和定义
临床变量:个体的任何可测量的特征或性质,其涉及包括疾病亚型或严重性的生理、病理或疾病状态,且在个体之间和个体内可以具有不同的定量或定性值。临床变量可用于对患有给定疾病的人做出临床决策。
生物标志物:一些生物状态或状况的指示物,通过该指示物可以识别或测量特定的病理或生理过程或疾病。
高光谱成像(HS):其中图像中的每个像素获取大量(可以是几十到几千)连续的、窄(<20nm)的等区间波长频带的光强度,使得每个像素包含连续光谱。
多光谱成像(MS):指的是使用超过1个特定带宽的波长频带的成像。不像高光谱成像,这些频带不必是等宽或等区间的频带。
波段:在具有特定带宽和中心频率的特定波长范围的光的频带。
多带通滤波器:带通滤波器、带阻滤波器或允许期望的多个波段通过的多个滤波器的组合。
多光谱成像评分(生物标志物水平的量度的非限制性示例):多光谱评分是来自选定光波段的加权光谱信息的线性或非线性组合。
ADSF:专用于选择滤波器的应用、用于为特定应用选择最佳波长的算法(在这种情况下,用于检测视网膜中的淀粉样蛋白的多光谱成像的波长选择)。这可能不是可用来确定要使用的最佳波长的唯一方法。另外,波段的形状可变。
AD:阿尔茨海默病。
PET:正电子发射断层摄影术。
PET Centiloid:Centiloid是综合来自PET成像中使用的不同放射性示踪剂的SUVR(标准化摄取值比)结果的一般性评分,以便可以进行有意义的比较。
Aβ:β淀粉样蛋白,一种已知存在于阿尔茨海默病中的蛋白质。
AUC:接收器工作特性曲线的曲线下的面积。

Claims (38)

1.一种用于量化组织的生物标志物的方法,所述方法包括:
使用成像传感器在主波长区间内的离散波长处获取所述组织的多个图像;
使用处理器以使得至少两个光谱子区间中的图像数据的组合与感兴趣的临床变量相关的方式确定所述至少两个光谱子区间;以及
利用所述处理器使用所述至少两个光谱子区间中的所述图像数据来计算所述组织的所述生物标志物的量度;
其中,所述主波长区间比所述至少两个光谱子区间中的每个都宽,且引起所获取的图像的光谱变异性的至少一个光谱混杂因子存在于所述组织中。
2.一种用于量化组织的生物标志物的方法,所述方法包括:
使用处理器,以使得至少两个光谱子区间中的图像数据的组合与感兴趣的临床变量相关的方式,从使用成像传感器在主波长区间内的离散波长处获取的所述组织的多个图像,确定所述至少两个光谱子区间;
使用具有在所述至少两个光谱子区间内的波长的一个或更多个光源照射所述组织;
使用成像传感器获取由所述组织反射的光的测量结果;以及
使用所获取的测量结果来计算所述组织的所述生物标志物的量度;
其中,所述主波长区间比所述至少两个光谱子区间中的每个都宽,且引起所获取的图像的光谱变异性的至少一个光谱混杂因子存在于所述组织中。
3.根据权利要求1或2所述的方法,其中,所述感兴趣的临床变量包括疾病、疾病的严重性或亚型、已知的生物标志物或生理状态中的任一种或组合。
4.根据权利要求1至3中任一项所述的方法,其中,所述主波长区间使得所获取的图像表示所述组织的高光谱或多光谱表示。
5.根据权利要求1至4中任一项所述的方法,其中获取多个图像包括使用在不同波长处操作的一个或更多个相机。
6.根据权利要求1至5中任一项所述的方法,包括提取所述至少两个光谱子区间中的每一个的光谱参数以形成所述组织的多光谱表示。
7.根据权利要求1至6中任一项所述的方法,包括识别引起所获取的图像中的光谱变异性的至少一个光谱混杂因子。
8.根据权利要求1至7中任一项所述的方法,其中确定至少两个光谱子区间以使得所述至少两个光谱子区间的所述组合的所述光谱信息与所述光谱混杂因子正交、不相关或独立方式来执行。
9.根据权利要求1至8中任一项所述的方法,其中,确定至少两个光谱子区间是通过应用频带选择方法、机器学习算法或人工智能引擎来执行的。
10.根据权利要求1至10中任一项所述的方法,其中感兴趣的变量包括使用正电子发射断层摄影术(PET)在脑中测量的或在脑脊液(CSF)中测量的β淀粉样蛋白的量或分布。
11.根据权利要求1至10中任一项所述的方法,其中,确定至少两个光谱子区间包括使用多变量统计、机器学习或人工智能技术。
12.根据权利要求1至11中任一项所述的方法,其中使用多变量统计、机器学习或人工智能技术计算所述生物标志物的量度。
13.根据权利要求12所述的方法,其中所述多变量统计包括回归、逻辑回归或判别。
14.根据权利要求11或12所述的方法,其中所述机器学习或人工智能技术考虑所述图像数据中的人口统计信息、临床信息、其它感兴趣的变量或多个感兴趣的区域。
15.根据权利要求1到14中任一项所述的方法,其中确定至少两个光谱子区间是通过机器学习算法执行的,所述机器学习算法将多光谱数据变换成表示所述生物标志物的评分。
16.根据权利要求2至16中任一项所述的方法,还包括将光学滤波器应用于所述一个或更多个光源。
17.根据权利要求16所述的方法,其中,还包括沿着由所述一个或更多个光源产生的光的光路应用光学滤波器。
18.根据权利要求16或17所述的方法,其中,所述组织是人的视网膜,且光学滤波器被嵌入在应用在所述人的眼睛上的隐形眼镜片内。
19.一种用于量化组织的生物标志物的系统,所述系统包括:
光学组件,所述光学组件包括一个或更多个光源,所述光学组件被布置成以至少两个预定的光谱区间内的波长照射所述组织的一部分;
成像组件,所述成像组件包括成像传感器,所述成像传感器被布置成接收从所述组织的所述部分反射的光并将所述光转换成数字数据;
其中至少两个预定的光谱子区间是感兴趣的已知变量所特有的。
20.根据权利要求19所述的系统,包括生物标志物选择组件,所述生物标志物选择组件被布置成基于用户所选择的组织的生物标志物选择所述至少两个光谱区间。
21.根据权利要求19或20所述的系统,包括处理模块,所述处理模块被布置成从所述成像传感器接收数据,且所述处理模块被配置为:
结合并处理从所述成像传感器接收的所述数据以提取光谱信息并形成所述组织的多光谱表示;以及
处理所述组织的所述多光谱表示以量化所述生物标志物。
22.根据权利要求19-21中任一项所述的系统,其中所述组织是视网膜的一部分,且所述生物标志物是用于预测/分级风险、筛查或诊断阿尔茨海默病的β淀粉样蛋白(AB)的量度,所述至少两个光谱区间包括位于475nm的约100nm内、545nm的约100nm内和725nm的约100nm内的三个波段,每个波段均具有低于约200nm的带宽。
23.根据权利要求19-22中任一项所述的系统,其中所述光学组件被布置成产生具有在所述至少两个光谱区间内的光谱的光。
24.根据权利要求19至23中任一项所述的系统,其中,所述照明组件包括光学滤波器,所述光学滤波器被布置成在所述至少两个子光谱区间内对所生成的光路或所反射的光路进行滤波。
25.根据权利要求19至24中任一项所述的系统,其中所述组织是视网膜的一部分,所述感兴趣的变量是与阿尔茨海默病相关的脑或脑脊液的β淀粉样蛋白水平,所述至少两个光谱区间包括位于475nm的约100nm内、545nm的约100nm内和725nm的约100nm内的三个波段,且每个波段均具有低于约200nm的带宽。
26.一种用于量化组织的生物标志物的方法,所述方法包括:
使用成像传感器在连续波长区间内获取所述组织的高光谱图像;
识别引起所述高光谱图像的光谱变异性的至少一个光谱混杂因子;
以使得光谱模型与所识别的光谱混杂因子的相关性最小化的方式来推导出所述组织的所述光谱模型;以及
使用所推导出的光谱模型来计算所述组织的所述生物标志物的量度。
27.根据权利要求26所述的方法,其中,所述组织的光谱模型被推导为与所识别的光谱混杂因子正交、不相关或独立。
28.根据权利要求26或27所述的方法,其中,所述光谱模型是从两个组之间的主光谱差异推导出的,每个组具有不同量的所述感兴趣的变量。
29.根据权利要求26至28中任一项所述的方法,其中推导出所述组织的光谱模型包括通过以使得所述组织的干净高光谱表示已经减小由所述至少一个光谱混杂因子的光谱特征引起的变异性的方式处理所述组织的高光谱表示和所述至少一个光谱混杂因子的光谱特征来推导出所述组织的所述干净高光谱表示。
30.根据权利要求26至29中任一项所述的方法,其中获取所述组织的高光谱图像包括使用一个或更多个光源,利用在连续的预定的波长范围内的单色或窄带宽光,顺序地照射所述组织,且对于每个波长,使用所述成像传感器来获取由所述组织反射的所述光的测量结果。
31.根据权利要求26至30中任一项所述的方法,其中识别至少一个光谱混杂因子包括从光谱数据库读取光谱混杂因子的一个或更多个光谱曲线,并处理来自所述高光谱图像的光谱信息和所述一个或更多个光谱曲线。
32.根据权利要求26至31中任一项所述的方法,其中推导出干净高光谱表示包括从光谱信息中去除由所述至少一个光谱混杂因子的光谱曲线引起的光谱变异性。
33.根据权利要求26至32中任一项所述的方法,其中识别至少一个光谱混杂因子包括:
使用特定的光谱混杂因子作为参考混杂因子并计算Δ高光谱图像,该Δ高光谱图像表示两个高光谱图像之间的逐像素和逐波长的差值。
34.根据权利要求26至33中任一项所述的方法,其中,根据以下步骤处理光谱信息:
计算在感兴趣的变量方面不同的组之间的组间光谱变异性;
提取组内光谱数据库的第一主特征向量集;以及
使用正交投影去除一个或更多个特征向量以产生中间数据集,在所述中间数据集中所述组内变异性基本上被去除;
其中,所述生物标志物是基于所述组织的所述干净光谱表示使用光谱维数减小来量化的。
35.根据权利要求26至34中任一项所述的方法,其中,根据以下步骤处理所述光谱信息:
计算所述光谱数据库的不同组之间的所述组间光谱变异性;
提取所述不同组之间的所述组间变异性的第一主特征向量集;
使用基于所述第一主特征向量集的正交投影从所述不同组的组合去除所述组间变异性以产生中间数据集,在所述中间数据集中所述组间变异性基本上被去除;
计算所述中间数据集内的组内变异性;提取所述中间数据集的所述组内变异性的第二主特征向量集;以及
提取所述统计数据库中的多个干净光谱表示的第三主特征向量集;
其中从临时光谱信息中去除由至少一个非特异性混杂因子引起的所述光谱变异性包括使用基于所述第二主特征向量集的正交投影从所述临时光谱信息中去除所述组内变异性以创建所述组织的所述干净光谱表示;以及
其中,使用基于所述组织的所述干净光谱表示上的所述第三主特征向量集的投影来量化所述生物标志物。
36.根据权利要求35所述的方法,其中所述至少一个光谱混杂因子包括至少一个眼部混杂因子,并且所量化的生物标志物指示人的视网膜中存在或不存在感兴趣的变量。
37.根据权利要求36所述的方法,其中至少一个眼部光谱混杂因子包括黑色素含量、白内障、晶状体变色、血红蛋白含量、视网膜病、视网膜色素上皮厚度或密度、RNFL厚度、脉络膜厚度、黄斑色素含量和/或组合的变化。
38.一种用于量化组织的生物标志物的系统,所述系统包括:
照明组件,所述照明组件被布置成利用连续波长范围内的单色光依次照射组织的一部分;
成像组件,所述成像组件包括成像传感器,所述成像传感器被布置成接收由所述组织的所述部分反射的光,并将所述光转换成数字数据;以及
处理模块与存储模块,所述处理模块与存储模块被布置成从所述成像传感器接收数据,并被配置成执行指令以执行根据权利要求27至38中的任一项所述的方法。
CN201980008015.3A 2018-01-11 2019-01-11 用于量化组织的生物标志物的方法和系统 Active CN111587365B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201862616240P 2018-01-11 2018-01-11
US62/616,240 2018-01-11
AU2018901319 2018-04-20
AU2018901319A AU2018901319A0 (en) 2018-04-20 Method and system for quantifying a physiological parameter of a biological tissue
PCT/AU2019/000003 WO2019136513A1 (en) 2018-01-11 2019-01-11 Method and system for quantifying biomarker of a tissue

Publications (2)

Publication Number Publication Date
CN111587365A true CN111587365A (zh) 2020-08-25
CN111587365B CN111587365B (zh) 2023-11-03

Family

ID=67218194

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201980008015.3A Active CN111587365B (zh) 2018-01-11 2019-01-11 用于量化组织的生物标志物的方法和系统

Country Status (10)

Country Link
US (1) US11963721B2 (zh)
EP (1) EP3737922A4 (zh)
JP (1) JP7251873B2 (zh)
KR (1) KR20200105920A (zh)
CN (1) CN111587365B (zh)
AU (1) AU2019207516B2 (zh)
CA (1) CA3088201A1 (zh)
IL (1) IL275840A (zh)
SG (1) SG11202006461VA (zh)
WO (1) WO2019136513A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115294191A (zh) * 2022-10-08 2022-11-04 武汉楚精灵医疗科技有限公司 基于电子内镜的标志物尺寸测量方法、装置、设备及介质
CN116849612A (zh) * 2023-07-07 2023-10-10 广东省新黄埔中医药联合创新研究院 一种多光谱舌象图像采集分析系统

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2021209954A1 (en) * 2020-01-23 2022-09-01 Retispec Inc. Systems and methods for disease diagnosis
CN111358573B (zh) * 2020-02-26 2023-06-20 西安交通大学医学院第二附属医院 高光谱成像的术区快速检测、标记的设备及检测方法
US11890094B2 (en) * 2020-03-12 2024-02-06 Spectricity Illuminant correction for a spectral imager

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102137618A (zh) * 2008-07-25 2011-07-27 健康与环境慕尼黑德国研究中心赫姆霍茨中心(有限公司) 组织生物标志物的定量多光谱光声断层摄影(msot)
CN102186504A (zh) * 2008-09-18 2011-09-14 西塞医疗中心 用于检测阿尔兹海默病的光学方法
WO2013086516A1 (en) * 2011-12-09 2013-06-13 Regents Of The University Of Minnesota Hyperspectral imaging for early detection of alzheimer's disease
US20140378843A1 (en) * 2012-01-20 2014-12-25 The Trustees Of Dartmouth College Method And Apparatus For Quantitative Hyperspectral Fluorescence And Reflectance Imaging For Surgical Guidance
WO2016041062A1 (en) * 2014-09-19 2016-03-24 Optina Diagnostics, Inc. Apparatus and method for producing a spectrally resolved image of a fundus of a subject
US20160253817A1 (en) * 2013-09-30 2016-09-01 Ventana Medical Systems, Inc. Systems and methods for adaptive histopathology image unmixing

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040063216A1 (en) * 2000-12-24 2004-04-01 Iser Lubocki Method for detecting biomarkers
WO2007032224A1 (ja) * 2005-09-13 2007-03-22 Arblast Co., Ltd. 培養細胞シート及びその作製方法
CA2667673C (en) * 2006-10-25 2016-08-23 Ellex R&D Pty Ltd Retinal regeneration
WO2008154578A1 (en) 2007-06-11 2008-12-18 Board Of Regents, The University Of Texas System Characterization of a near-infrared laparoscopic hyperspectral imaging system
WO2009109975A2 (en) * 2008-03-05 2009-09-11 Tamir Gil Snapshot spectral imaging of the eye
KR101548032B1 (ko) * 2008-05-29 2015-09-04 노스이스턴 유니버시티 세포의 질병 검출에 유용한 세포 스펙트럼의 재구성 방법
WO2010019515A2 (en) 2008-08-10 2010-02-18 Board Of Regents, The University Of Texas System Digital light processing hyperspectral imaging apparatus
US8593630B2 (en) * 2009-10-07 2013-11-26 The Board Of Trustees Of The University Of Illinois Discrete frequency spectroscopy and instrumentation
CA2814198A1 (en) * 2010-10-25 2012-05-10 Steven Verdooner Apparatus and method for detecting amyloid in a retina in a diagnosis, advancement, and prognosing of alzheimer's disease, traumatic brain injury, macular degeneration and a plurality of neurodegenerative dissorders, and ocular diseases
US20150044098A1 (en) 2012-01-30 2015-02-12 Scanadu Incorporated Hyperspectral imaging systems, units, and methods
CA2895982A1 (en) * 2012-12-31 2014-07-03 Omni Medsci, Inc. Short-wave infrared super-continuum lasers for early detection of dental caries
WO2015060897A1 (en) * 2013-10-22 2015-04-30 Eyenuk, Inc. Systems and methods for automated analysis of retinal images
US9606002B2 (en) * 2014-01-18 2017-03-28 Daylight Solutions, Inc. Spectral imaging of a sample using a plurality of discrete mid-infrared wavelengths
US11304604B2 (en) 2014-10-29 2022-04-19 Spectral Md, Inc. Reflective mode multi-spectral time-resolved optical imaging methods and apparatuses for tissue classification
US10314473B2 (en) * 2015-09-09 2019-06-11 New York University System and method for in vivo detection of fluorescence from an eye
WO2018073784A1 (en) * 2016-10-20 2018-04-26 Optina Diagnostics, Inc. Method and system for detecting an anomaly within a biological tissue
US11071459B2 (en) * 2016-12-08 2021-07-27 Koninklijke Philips N.V. Surface tissue tracking

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102137618A (zh) * 2008-07-25 2011-07-27 健康与环境慕尼黑德国研究中心赫姆霍茨中心(有限公司) 组织生物标志物的定量多光谱光声断层摄影(msot)
CN102186504A (zh) * 2008-09-18 2011-09-14 西塞医疗中心 用于检测阿尔兹海默病的光学方法
WO2013086516A1 (en) * 2011-12-09 2013-06-13 Regents Of The University Of Minnesota Hyperspectral imaging for early detection of alzheimer's disease
US20140378843A1 (en) * 2012-01-20 2014-12-25 The Trustees Of Dartmouth College Method And Apparatus For Quantitative Hyperspectral Fluorescence And Reflectance Imaging For Surgical Guidance
US20160253817A1 (en) * 2013-09-30 2016-09-01 Ventana Medical Systems, Inc. Systems and methods for adaptive histopathology image unmixing
WO2016041062A1 (en) * 2014-09-19 2016-03-24 Optina Diagnostics, Inc. Apparatus and method for producing a spectrally resolved image of a fundus of a subject

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115294191A (zh) * 2022-10-08 2022-11-04 武汉楚精灵医疗科技有限公司 基于电子内镜的标志物尺寸测量方法、装置、设备及介质
CN116849612A (zh) * 2023-07-07 2023-10-10 广东省新黄埔中医药联合创新研究院 一种多光谱舌象图像采集分析系统
CN116849612B (zh) * 2023-07-07 2024-01-09 广东省新黄埔中医药联合创新研究院 一种多光谱舌象图像采集分析系统

Also Published As

Publication number Publication date
JP7251873B2 (ja) 2023-04-04
JP2021510810A (ja) 2021-04-30
CN111587365B (zh) 2023-11-03
AU2019207516A1 (en) 2020-08-27
US11963721B2 (en) 2024-04-23
KR20200105920A (ko) 2020-09-09
IL275840A (en) 2020-08-31
EP3737922A4 (en) 2021-10-20
US20200375521A1 (en) 2020-12-03
WO2019136513A1 (en) 2019-07-18
EP3737922A1 (en) 2020-11-18
SG11202006461VA (en) 2020-08-28
CA3088201A1 (en) 2019-07-18
AU2019207516B2 (en) 2024-03-14

Similar Documents

Publication Publication Date Title
CN111587365B (zh) 用于量化组织的生物标志物的方法和系统
Badar et al. Application of deep learning for retinal image analysis: A review
Syed et al. Automated diagnosis of macular edema and central serous retinopathy through robust reconstruction of 3D retinal surfaces
Sandhu et al. Automated diagnosis and grading of diabetic retinopathy using optical coherence tomography
Raja et al. Clinically verified hybrid deep learning system for retinal ganglion cells aware grading of glaucomatous progression
JP2022542473A (ja) 視力を予測するための眼の画像を処理するための深層学習の使用
Hassan et al. Automated retinal edema detection from fundus and optical coherence tomography scans
US20220151568A1 (en) Supervised machine learning based multi-task artificial intelligence classification of retinopathies
Odstrcilik et al. Thickness related textural properties of retinal nerve fiber layer in color fundus images
Vázquez et al. Improvements in retinal vessel clustering techniques: towards the automatic computation of the arterio venous ratio
Adalarasan et al. Automatic detection of blood vessels in digital retinal images using soft computing technique
Raja et al. Glaucoma detection using optical coherence tomography images: a systematic review of clinical and automated studies
Giancardo Automated fundus images analysis techniques to screen retinal diseases in diabetic patients
Muller et al. Application of deep learning methods for binarization of the choroid in optical coherence tomography images
Samagaio et al. Automatic segmentation of diffuse retinal thickening edemas using Optical Coherence Tomography images
Kolar et al. Analysis of visual appearance of retinal nerve fibers in high resolution fundus images: a study on normal subjects
Bhuiyan et al. A review of disease grading and remote diagnosis for sight threatening eye condition: Age Related Macular Degeneration
Raman et al. The effects of spatial resolution on an automated diabetic retinopathy screening system's performance in detecting microaneurysms for diabetic retinopathy
Leopold et al. Deep learning for ophthalmology using optical coherence tomography
Pathan et al. A methodological review on computer aided diagnosis of glaucoma in fundus images
Abdel-Hamid Retinal image analysis using image processing techniques
Odstrčilík Analysis of retinal image data to support glaucoma diagnosis
Oommen et al. A research insight toward the significance in extraction of retinal blood vessels from fundus images and its various implementations
Gadde et al. Eye Diseases Detection and Classification in Fundus Image Database with Optimization Model in Machine Learning Architecture
Carnimeo et al. Monitoring of retinal vessels for diabetic patients in home care assistance

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 40036465

Country of ref document: HK

GR01 Patent grant
GR01 Patent grant