CN111584644B - 一种用于红外焦平面器件的铁电单晶薄膜制备方法 - Google Patents

一种用于红外焦平面器件的铁电单晶薄膜制备方法 Download PDF

Info

Publication number
CN111584644B
CN111584644B CN202010324650.7A CN202010324650A CN111584644B CN 111584644 B CN111584644 B CN 111584644B CN 202010324650 A CN202010324650 A CN 202010324650A CN 111584644 B CN111584644 B CN 111584644B
Authority
CN
China
Prior art keywords
film
lithium tantalate
single crystal
thickness
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010324650.7A
Other languages
English (en)
Other versions
CN111584644A (zh
Inventor
王旭东
林铁
陈艳
王建禄
孟祥建
沈宏
葛军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Technical Physics of CAS
Original Assignee
Shanghai Institute of Technical Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Technical Physics of CAS filed Critical Shanghai Institute of Technical Physics of CAS
Priority to CN202010324650.7A priority Critical patent/CN111584644B/zh
Publication of CN111584644A publication Critical patent/CN111584644A/zh
Application granted granted Critical
Publication of CN111584644B publication Critical patent/CN111584644B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/09Devices sensitive to infrared, visible or ultraviolet radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1892Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof methods involving the use of temporary, removable substrates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

本发明公开了一种用于红外焦平面器件的铁电单晶薄膜制备方法。其方法是将硅基衬底上的钽酸锂(LiTaO3)单晶薄膜剥离下来转移到特定的衬底上,保留单晶体材料的热释电性能,关键技术包括腐蚀硅基衬底的工艺条件、自支撑薄膜转移、电极制备与性能测试。首先,利用把硅基钽酸锂薄膜放置于腐蚀液中,在一定的温度下反应一段时间,然后转移到酒精中进行二次转移操作,使其在特定衬底上形成自支撑薄膜。然后,利用电子束蒸发制备上下电极,用自制的热释电系数测试系统测量单晶薄膜的热释电系数。该技术可以获得大面积、均匀的自支撑钽酸锂单晶薄膜,可用于制备高灵敏的非制冷红外焦平面器件。

Description

一种用于红外焦平面器件的铁电单晶薄膜制备方法
技术领域
本发明涉及非制冷红外探测技术领域,特别涉及到一种大面积、性能优异且均匀的铁电单晶薄膜材料,用于制备高性能红外焦平面列阵探测器。
背景技术
非制冷热探测器主要包括:热释电、测辐射热计、热电堆型。热释电探测器工作原理是基于热释电效应,即温度变化会引起材料极化的变化。当红外线辐射到由铁电材料组成的电容器上,材料吸收红外辐射后温度发生变化,导致极化大小改变,表现为电容器界面处束缚电荷密度变化,这样就实现了通过电学手段感知红外辐射的过程。热释电探测器工作模式为交流耦合,所以对动态热目标敏感,从而具有许多优点:(1)线性度高,即具有高温度动态范围特点,探测目标温度可以从几K到数百、上千K;(2)低空间噪声;(3)低功耗,仅需驱动读出电路系统;(4)响应速度快,对动态目标尤其敏感,甚至可以探测皮秒脉冲信号。所以热释电探测一直倍受重视,在许多民用领域得到了广泛应用,并且在航天、军事等重要领域,热释电探测也得到了应用,包括平台姿控系统的地球敏感器、空间宽波段探测应用(比如地球辐射收支观测)和空间红外成像等领域获得了广泛的应用。
前面提到获得广泛应用的热释电探测器都是单元或多元结构,因此应用受到限制,因为越来越多领域的应用需要线列和二维列阵探测器。所以,发展铁电薄膜焦平面列阵器件成为必然的趋势。然而由于铁电薄膜生长工艺与硅基电路基片难以兼容,导致铁电薄膜红外焦平面的发展极其缓慢。目前英国的Pyreos公司推出了基于高钛酸铅(PbZrxTi1-xO3,简称PZT)薄膜的512元线列探测器(https://pyreos.com/)。由于PZT薄膜是多晶薄膜,均匀性不足以制备面阵器件。另外,德国DIAS公司(https://www.dias-infrared.com/products)推出了基于钽酸锂(LiTaO3,简称LTO)单晶薄膜的512元线列探测器。该公司利用离子刻蚀工艺把LTO单晶减薄到10微米以下,工艺过程复杂。此外,只有以色列Ophir公司推出了160*160元的基于钽酸锂的红外焦平面 (https://www.ophiropt.com/laser--measurement/beam-profilers/products/Beam-Pr ofiling/Camera-Profiling-with-BeamGage/Pyrocam-IIIHR),探测器相关细节没有公布,该公司具有很强的军方背景,该款探测器对中国是禁运的。目前国内尚未见有研制出钽酸锂线列和面阵探测器的报道。
热释电材料主要有PZT、LTO和硫酸三甘肽((NH2CH2COOH)2·H2SO4,简称TGS)。TGS单晶材料具有优良的热释电特性,但是难以加工成薄膜,所以不能用来制备红外焦平面器件。综上所述,LTO单晶薄膜是最适合用于制备红外焦平面的材料。
由于固体干法刻蚀工艺耗时长,工艺复杂,材料浪费严重,最为关键的是很难用于制备二维焦平面列阵器件。所以传统的干法刻蚀工艺制备钽酸锂单晶薄膜不是一条科学的技术路线。
本发明利用市场上可以获得的硅基钽酸锂薄膜材料,提出了一种新的薄膜转移技术,获得了大面积、性能优异的钽酸锂薄膜材料,为研制高性能红外焦平面列阵器件扫清了最大的障碍。
发明内容
本发明提出了一种大面积、性能优异的铁电单晶薄膜材料的制备方法。
该发明采用溶液湿法把硅基钽酸锂薄膜剥离成自支撑的钽酸锂单晶薄膜,薄膜的热释电系数不低于体单晶材料,介电损耗不高于体单晶材料,为研制红外焦平面列阵探测器解决了核心关键技术。
本发明指一种铁电单晶薄膜的制备方法,其特征在于薄膜的制备过程和顺序:
(1)把硅基钽酸锂薄膜进行物理切割成一定尺寸;
(2)把切割好的硅基钽酸锂薄膜放入预先配置好的腐蚀液中;
(3)加热腐蚀液,保持一定时间;
(4)用聚合物薄膜衬底取出剥离后的钽酸锂薄膜,用去离子水冲洗;
(5)把单晶薄膜放置到无水酒精中清洗;
(6)从无水酒精中取出单晶薄膜后,转移并用光刻胶固定到单晶硅衬底上;
(7)用电子束蒸发制备金属下电极层;
(8)将样品依次浸入丙酮、无水酒精中,去除光刻胶并将样品翻面后再次用光刻胶固定至单晶硅衬底上;
(9)用电子束蒸发制备金属上电极层;
(10)测试热释电系数。
其中:
所述步骤(1)中切割后的硅基钽酸锂薄膜尺寸为:0.5cm×0.5cm、1.0cm ×1.0cm,钽酸锂厚度为4-6μm;
所述步骤(2)中腐蚀液为:浓度为10%的四甲基氢氧化铵;
所述步骤(3)中温度为75-85℃,时间为12-24小时;
所述步骤(4)中聚合物薄膜是Mylar薄膜,厚度7μm、大小2cm×2cm;
所述步骤(5)中清洗时间为5-10分钟;
所述步骤(6)中光刻胶为紫外光刻胶,厚度约1-2μm;
所述步骤(7)中金属下电极材料为钛/金,钛的厚度为20nm,金的厚度为100nm;
所述步骤(8)中样品在丙酮和酒精中的浸泡时间为5-10分钟;
所述步骤(9)中金属上电极材料为钛/金,钛的厚度为20nm,金的厚度为100nm;
所述步骤(10)中热释电测试系统为自制的测量系统。
所述的采用碱性溶液腐蚀硅基钽酸锂单晶薄膜是通过(1)切割硅基钽酸锂薄膜;(2)将硅基钽酸锂薄膜置于碱性溶液中加热至75-85℃并保持12-24 小时;所述的钽酸锂上下电极制备是通过Mylar对钽酸锂晶片在无水酒精中进行转移,结合光刻胶临时键合方法,利用电子束蒸发工艺制备;整个电极制备工艺过程不会对钽酸锂单晶薄膜造成沾污和损伤,极大地保护了钽酸锂单晶的完整性及其热释电性能。
本发明有以下优点:(1)可获得4-6μm厚的大面积钽酸锂自支撑薄膜;(2) 碱性溶液腐蚀温度低,有效保护了钽酸锂薄膜的质量;(3)使用Mylar薄膜在无水乙醇溶液中对钽酸锂进行转移,可极大保护钽酸锂薄膜的完整性;(4)电极制备过程中无需外加机械力,不容易导致钽酸锂薄膜碎片;(5)整个制备工艺可循环利用,降低成本。
本发明最大的特点在于利用碱性溶液腐蚀法,将硅基钽酸锂晶体进行剥离,可获得4-6μm厚的大面积钽酸锂自支撑薄膜,与传统钽酸锂自支撑薄膜制备相比,能够极大程度的保护晶片的完整性和质量,打破了原有工艺中钽酸锂薄膜厚度的限制;另外,本发明中采用Mylar薄膜在无水乙醇溶液中对钽酸锂进行转移操作,有效的避免了电极制备过程中对晶片的损伤,确保钽酸锂晶片优异的热释电性能。
附图说明
图1为钽酸锂单晶薄膜制备方法示意图。
图2为用于测试钽酸锂单晶薄膜热释电特性的电容器器件,图中:1金属下电极、2钽酸锂单晶薄膜、3金属上电极。
图3为钽酸锂单晶薄膜的厚度测试结果。
图4为钽酸锂单晶薄膜的热释电效应测试结果。
具体实施方式
下面结合附图对本发明的具体实施方式作详细说明:
本发明提出一种用于红外焦平面器件的铁电单晶薄膜制备方法,附图1描述了该铁电单晶薄膜的制备工艺流程,具体步骤如下:
(1)样品准备:将硅基钽酸锂单晶薄膜切割成0.5cm×0.5cm或1.0cm× 1.0cm大小,用去离子水清洗,并用氮气吹干。
(2)获得自支撑钽酸锂薄膜:将硅基钽酸锂晶片置于浓度为10%的四甲基氢氧化铵溶液中,水浴加热至75-85℃,并持续12-24小时,待硅完全腐蚀后,将钽酸锂薄膜取出置于无水酒精中,随后用Mylar薄膜将钽酸锂薄膜取出,自然晾干。
(3)将钽酸锂固定在临时载片上:在临时载片上旋涂光刻胶,该光刻胶为正性光刻胶,根据厚度需要用1000-3000转/分的转速旋涂30秒以上,临时载片可选择硅片、石英片、蓝宝石片等,随后将带有光刻胶的临时载片置于无水酒精中,用Mylar膜将钽酸锂薄膜在无水酒精中转移至临时载片上,取出后烘干。
(4)金属下电极制备:根据测试所需,选择相应的金属掩模板覆盖于钽酸锂薄膜上方,随后采用电子束蒸发法制备金属下电极,下电极材料可选择钛、金、铝、铂、铬等金属,厚度为100-300纳米。
(5)剥离:将样品置于丙酮中,待光刻胶溶解后,带有金属下电极的钽酸锂薄膜随即与临时载片分离,取出后置于无水酒精中。
(6)将钽酸锂再次固定在临时载片上:与步骤(3)类似,将钽酸锂薄膜翻转,使得金属下电极的一面与带有光刻胶的临时载片键合。
(7)金属上电极制备:根据测试所需,选择相应的金属掩模板覆盖于钽酸锂薄膜上方,随后采用电子束蒸发法制备金属上电极,上电极材料可选择钛、金、铝、铂、铬等金属,厚度为100-300纳米。
(8)剥离:将样品置于丙酮中,待光刻胶完全溶解后,带有金属下电极和金属上电极的钽酸锂薄膜随即与临时载片分离,取出后依次用无水酒精、去离子水清洗,烘干后即可进行测试。
实施例
(1)将硅基钽酸锂单晶薄膜切割成1.0cm×1.0cm大小,用去离子水清洗,并用氮气吹干。
(2)将硅基钽酸锂晶片置于浓度为10%的四甲基氢氧化铵溶液中,水浴加热至80℃,并持续24小时,待硅完全腐蚀后,将钽酸锂薄膜取出置于无水酒精中,随后用Mylar薄膜将钽酸锂薄膜取出,自然晾干。
(3)利用台阶仪测试Mylar薄膜上的钽酸锂薄膜厚度,分别对5个不同的样品进行测试,测试结果如图3所示,平均厚度约为5.14μm。
(4)在硅片上旋涂光刻胶,光刻胶型号为AZ5214,转速1000转/分,旋涂40秒,随后将带有光刻胶的硅片置于无水酒精中,用Mylar膜将钽酸锂薄膜在无水酒精中转移至硅片上,取出后置于烘箱中90℃,保持30分钟。
(5)将金属掩模板覆盖于钽酸锂薄膜上方,采用电子束蒸发法制备金属下电极,下电极材料为钛/金,钛的厚度为20纳米,金的厚度为100纳米。
(6)将样品置于丙酮中,待光刻胶溶解后,带有金属下电极的钽酸锂薄膜随即与硅片分离,取出后置于无水酒精中。
(7)在另外一片硅片上旋涂光刻胶,光刻胶型号为AZ5214,转速1000 转/分,旋涂40秒,随后将带有光刻胶的硅片置于无水酒精中,用Mylar膜在酒精中将钽酸锂薄膜翻转,使得金属下电极的一面与带有光刻胶的硅片键合。
(8)将金属掩模板覆盖于钽酸锂薄膜上方,随后采用电子束蒸发法制备金属上电极,上电极材料为钛/金,钛的厚度为20纳米,金的厚度为100纳米。
(9)将样品置于丙酮中,待光刻胶完全溶解后,带有金属下电极和金属上电极的钽酸锂薄膜随即与硅片分离,取出后依次用无水酒精、去离子水清洗,烘干后即可进行测试。
(10)制备出的带有金属下电极和金属上电极的钽酸锂电容器器件结构如图2所示,利用自制的热释电系数测试系统测量钽酸锂单晶薄膜的热释电系数,测试结果如图4所示,经计算,该钽酸锂单晶薄膜的热释电系数为258μC/m2·K,该薄膜的热释电系数不低于体单晶材料,介电损耗不高于体单晶材料,为研制红外焦平面列阵探测器解决了核心关键技术。
以上所述仅为本发明的优选实施例,不用于限制本发明,对于本领域内的一般技术人员,本发明可以有各种更改和变化。凡在本发明的思想和原则之内,所作的任何修改、替换、改进等,均包含在本发明的保护范围内。

Claims (1)

1.一种用于红外焦平面器件的铁电单晶薄膜制备方法,其特征在于方法步骤如下:
(1)把硅基钽酸锂单晶薄膜进行物理切割成一定尺寸,切割后的硅基钽酸锂薄膜尺寸为:1.0cm×1.0cm,钽酸锂厚度为4-6μm;
(2)把切割好的硅基钽酸锂单晶薄膜放入预先配置好的腐蚀液中,腐蚀液为浓度10%的四甲基氢氧化铵;
(3)加热腐蚀液至70℃,保持24小时;
(4)用聚合物薄膜衬底取出剥离后的钽酸锂单晶薄膜(2),用去离子水冲洗;所述的聚合物薄膜是Mylar薄膜,厚度7μm、大小2cm×2cm;
(5)把钽酸锂单晶薄膜(2)放置到无水酒精中清洗,清洗时间为5分钟;
(6)从无水酒精中取出钽酸锂单晶薄膜(2)后,转移并用光刻胶固定到单晶硅衬底上,光刻胶采用紫外光刻胶,厚度约1-2μm;
(7)用电子束蒸发制备金属下电极(1);金属下电极(1)的材料为钛和金,钛的厚度为20nm,金的厚度为100nm;
(8)将样品依次浸入丙酮、无水酒精中,去除光刻胶并将样品翻面后再次用光刻胶固定至单晶硅衬底上;样品在丙酮和酒精中的浸泡时间为5分钟;
(9)用电子束蒸发制备金属上电极(3);上电极的材料为钛和金,钛的厚度为20nm,金的厚度为100nm;
(10)测试热释电系数。
CN202010324650.7A 2020-04-23 2020-04-23 一种用于红外焦平面器件的铁电单晶薄膜制备方法 Active CN111584644B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010324650.7A CN111584644B (zh) 2020-04-23 2020-04-23 一种用于红外焦平面器件的铁电单晶薄膜制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010324650.7A CN111584644B (zh) 2020-04-23 2020-04-23 一种用于红外焦平面器件的铁电单晶薄膜制备方法

Publications (2)

Publication Number Publication Date
CN111584644A CN111584644A (zh) 2020-08-25
CN111584644B true CN111584644B (zh) 2022-03-29

Family

ID=72126752

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010324650.7A Active CN111584644B (zh) 2020-04-23 2020-04-23 一种用于红外焦平面器件的铁电单晶薄膜制备方法

Country Status (1)

Country Link
CN (1) CN111584644B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106209003A (zh) * 2016-07-06 2016-12-07 中国科学院上海微系统与信息技术研究所 利用薄膜转移技术制备薄膜体声波器件的方法
CN110011632A (zh) * 2019-03-13 2019-07-12 电子科技大学 单晶薄膜体声波谐振器的制备方法及体声波谐振器
CN110867381A (zh) * 2019-11-07 2020-03-06 中国科学院上海微系统与信息技术研究所 一种带底电极的硅基钽酸锂单晶薄膜衬底及其制备方法和应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090230817A1 (en) * 2005-10-19 2009-09-17 Yamaju Ceramics Co., Ltd. Ferroelectric single crystal, surface acoustic wave filter comprising the same, and production method thereof
JP5835329B2 (ja) * 2011-07-29 2015-12-24 株式会社村田製作所 圧電デバイス、および、圧電デバイスの製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106209003A (zh) * 2016-07-06 2016-12-07 中国科学院上海微系统与信息技术研究所 利用薄膜转移技术制备薄膜体声波器件的方法
CN110011632A (zh) * 2019-03-13 2019-07-12 电子科技大学 单晶薄膜体声波谐振器的制备方法及体声波谐振器
CN110867381A (zh) * 2019-11-07 2020-03-06 中国科学院上海微系统与信息技术研究所 一种带底电极的硅基钽酸锂单晶薄膜衬底及其制备方法和应用

Also Published As

Publication number Publication date
CN111584644A (zh) 2020-08-25

Similar Documents

Publication Publication Date Title
Muralt Micromachined infrared detectors based on pyroelectric thin films
Fujitsuka et al. Monolithic pyroelectric infrared image sensor using PVDF thin film
US7683323B2 (en) Organic field effect transistor systems and methods
CN102095766B (zh) 微型集成温控式co2气体传感器及制备方法
CN104465850B (zh) 基于石墨烯吸收层的热释电红外探测器及其制造方法
CN102509728A (zh) 一种非制冷红外探测器的设计及制备方法
CN101995295B (zh) 非制冷红外焦平面阵列及其制备方法与应用
CN102937607B (zh) 一种串联柔性振动压电隔膜式生物传感器及其制备方法
CN102903789A (zh) 复合材料红外探测器制备方法
CN111584644B (zh) 一种用于红外焦平面器件的铁电单晶薄膜制备方法
Kobayashi et al. Ultra-thin piezoelectric strain sensor 5× 5 array integrated on flexible printed circuit for structural health monitoring by 2D dynamic strain sensing
CN105258806A (zh) 热释电红外探测单元及制造方法及其热释电红外探测器
CN100380587C (zh) 具有自支撑的非晶硅热成像探测器微结构的制作方法
Bell et al. A thin film pyroelectric detector
CN112229533B (zh) 一种用于温度检测的抗变形柔性温度传感器及其制备方法
CN104409554A (zh) 基于炭黑吸收层的热释电红外探测器及其制造方法
Peng et al. An infrared pyroelectric detector improved by cool isostatic pressing with cup-shaped PZT thick film on silicon substrate
Zeng et al. Wafer-Scale Fabrication of Silicon-Based LiTaO 3 Pyroelectric Infrared Detectors by Bonding and Thinning Technology
Tran et al. Encapsulated Aluminum Nitride SAW devices for liquid sensing applications
梁志清 et al. High responsivity of terahertz detector based on ultra-thin LiTaO3 crystal material
Zhang et al. Thickness effect and etching implement of silicon substrate of LiTaO3 thin film infrared detector
Bruckner et al. Investigations of SAW delay lines on c-plane AlN/sapphire at elevated temperatures
Bauer et al. Ferroelectric copolymer and IR sensor technology applied to obstacle detection
Neumann et al. Application of pyroelectric P (VDF/TrFE) thin films in integrated sensors and arrays
Giebeler et al. I1. 1-High performance PZT based pyro-detectors with D* of 2x10E9 cmHzE½/W for presence, gas and spectroscopy applications

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant