CN111579617B - 一种固体接触式聚合物薄膜铜离子选择性电极的制备及其应用 - Google Patents

一种固体接触式聚合物薄膜铜离子选择性电极的制备及其应用 Download PDF

Info

Publication number
CN111579617B
CN111579617B CN202010391575.6A CN202010391575A CN111579617B CN 111579617 B CN111579617 B CN 111579617B CN 202010391575 A CN202010391575 A CN 202010391575A CN 111579617 B CN111579617 B CN 111579617B
Authority
CN
China
Prior art keywords
electrode
ion
copper ion
film
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010391575.6A
Other languages
English (en)
Other versions
CN111579617A (zh
Inventor
秦伟
王俊豪
梁荣宁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yantai Institute of Coastal Zone Research of CAS
Original Assignee
Yantai Institute of Coastal Zone Research of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yantai Institute of Coastal Zone Research of CAS filed Critical Yantai Institute of Coastal Zone Research of CAS
Priority to CN202010391575.6A priority Critical patent/CN111579617B/zh
Publication of CN111579617A publication Critical patent/CN111579617A/zh
Application granted granted Critical
Publication of CN111579617B publication Critical patent/CN111579617B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/333Ion-selective electrodes or membranes
    • G01N27/3335Ion-selective electrodes or membranes the membrane containing at least one organic component
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D127/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers
    • C09D127/02Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
    • C09D127/04Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment containing chlorine atoms
    • C09D127/06Homopolymers or copolymers of vinyl chloride
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • C09D7/62Additives non-macromolecular inorganic modified by treatment with other compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/63Additives non-macromolecular organic

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

本发明涉及重金属铜离子的检测,具体地说是一种固体接触式聚合物薄膜铜离子选择性电极的制备及其应用。电极基体底部依次为离子‑电子传导层和2.5‑10微米厚的聚合物敏感膜;其中,离子‑电子传导层为有序介孔碳。本发明电极可有效抑制主离子由膜界面层往膜本体中的扩散作用,使主离子更多的在膜表面积累,从而增强电位响应信号,达到降低电极检出限、提高灵敏度的目的。

Description

一种固体接触式聚合物薄膜铜离子选择性电极的制备及其 应用
技术领域
本发明涉及重金属铜离子的检测,具体地说是一种固体接触式聚合物薄膜铜离子选择性电极的制备及其应用。
背景技术
传统离子选择性电极的检出限难以低于微摩尔浓度数量级,同时电极的响应模式与两种过程有关:第一种发生在水相,即溶液中的待测离子(主离子)向电极膜表面的扩散;第二种过程发生在膜相,即电极膜表面的主离子向膜内部的扩散。根据电极电位理论,聚合物膜离子选择性电极的定量基于液膜界面间的电位响应,只有聚集在液膜界面处的主离子才会产生电位响应信号,所以提高主离子在水相扩散层中的扩散速率或者降低在膜相扩散层中的扩散速率,均将显著提高检测灵敏度。通常使用的聚合物敏感度厚度达200微米,而液膜界面的扩散层厚度为5-20微米,当主离子由待测溶液扩散到敏感膜表面后会继续往本体中扩散,影响电极检测灵敏度。基于非对称性聚合物膜离子选择性电极技术将亲酯性的离子交换剂层直接涂于聚合物膜基表面,从而减少或消除电极膜表面主离子向膜内部的扩散,从而提高电极的检测灵敏度,降低检出限。但是,涂在膜表面的离子交换剂会随时间的延长由膜表面逐渐溶解渗漏到膜内部,影响电极寿命,对抑制主离子由膜表面往膜内部的扩散作用降低,使主离子富集在膜表面层的作用减弱。
本发明有效弥补了非对称膜技术的不足,通过将聚合物敏感膜的厚度减小至液膜界面扩散层厚度,有效抑制了电极膜表面主离子向膜内部的扩散,提高了电极检测灵敏度,降低检出限。
发明内容
本发明的目的在于提供一种固体接触式聚合物薄膜铜离子选择性电极的制备及其应用。
为实现上述目的本发明采用的技术方案为:
一种固体接触式聚合物薄膜铜离子选择性电极的制备方法,电极底部附有敏感膜,电极基体底部依次为离子-电子传导层和2.5-10微米厚的聚合物敏感膜;其中,离子-电子传导层为有序介孔碳。
进一步的说,将有序介孔碳材料分散于有机溶剂中,形成终浓度为1-3mg/mL的分散液,而后将分散液滴于电极基体表面形成离子-电子传导层,干燥后于其表面滴涂聚合物敏感膜溶液干燥后形成2.5-10微米厚的聚合物敏感膜,即形成固体接触式聚合物薄膜铜离子选择性电极。
上述本发明电极中将聚合物敏感膜的厚度由200微米减小至液膜界面扩散层厚度2.5-10微米,以及离子-电子传导层中有序介孔碳材料分散液中其有效含量,进而有效抑制了主离子由膜界面层往膜本体中的扩散作用,使主离子更多的在膜表面积累,从而增强电位响应信号,达到降低电极检出限、提高灵敏度的目的;并且所得电极具有最强的电位稳定性、最低的检出限性能。
所述离子-电子传导层制备为:称取有序介孔碳材料分散于有机溶剂中,并超声处理1h,而后量取有序介孔碳分散液滴于玻碳电极表面,在红外灯下烤干备用。
所述聚合物敏感膜溶液为称取1wt%铜离子载体(ETH 1062),1wt%四(3,5-二(三氟甲基)苯基)硼酸钠(NaTFPB),33wt%聚氯乙烯(PVC),65wt%邻-硝基苯辛醚(o-NPOE),溶于四氢呋喃(THF)中,搅拌2h,搅拌后经四氢呋喃稀释,待用。
所述有机溶剂可相同或不同的选自四氢呋喃、乙醇、二氯甲烷、三氯甲烷、N,N-二甲基甲酰胺中的一种或几种。
一种所述的方法制备所得电极的应用,所述电极在检测铜离子中的应用。
所述电极在检测样品中0.56-2.5nM的重金属铜离子中的应用。
本发明的优点在于:
本发明固体接触式聚合物薄膜铜离子选择性电极,以有序介孔碳作为离子-电子传导层,并将溶有铜离子载体的薄膜粘附在电极表面形成接近液膜界面扩散层厚度,2.5-10微米的敏感膜;进而使其在检测过程中有效抑制了待检测离子铜离子(同时对铅离子、汞离子、铬离子、镉离子或银离子也可有效的检测)由膜界面层往膜本体中的扩散作用,使待检测离子铜离子(铅离子、汞离子、铬离子、镉离子或银离子)更多的在膜表面积累,从而增强电位响应信号,达到降低电极检出限、提高灵敏度的目的;具体为:
1.本发明采用滴涂法制备有序介孔碳离子-电子传导层,该方法操作简单而且省时。有序介孔碳由于具有多孔结构,因而具有更加良好的导电性能,快速的电子传导性能以及大的双电层电容,能够加快离子-电子的传导速率,并且有效防止了水层的产生,使响应更加快速,稳定。
2.本发明所使用的聚合物敏感膜厚度接近液膜界面扩散层厚度(2.5-10微米),聚合物膜厚度的减小有效抑制了主离子由膜界面层往膜本体中的扩散作用,使主离子更多的在膜界面层中累积,显著提高液膜界面响应电位,从而降低电极检出限、提高电极检测灵敏度。
3.本发明制备的固体接触式聚合物薄膜铜离子选择性电极对铜离子的检测灵敏度高,检出限低,检测快速,稳定性好。能够检测到0.56nM氯化铜溶液。
附图说明
图1A为本发明实施例提供的聚合物膜厚度不同的固体接触式聚合物薄膜铜离子选择性电极对铜离子的实时电位响应。
图1B为聚合物膜厚度为200微米的固体接触式聚合物膜铜离子选择性电极对铜离子的实时电位响应。
图2为本发明实施例提供的滴加不同介孔碳分散液体积制备的固体接触式聚合物薄膜铜离子选择性电极对铜离子的电位响应;所述图中横坐标代表的是介孔碳分散液的体积,纵坐标是测定10nM Cu2+的电位变化(与背景的电位差),最大电位变化所对应的的介孔碳分散液体积即为最优体积。
图3A为本发明实施例提供的固体接触式聚合物薄膜(5微米)对不同浓度铜离子的动力学电位响应图。
图3B为本发明实施例提供的固体接触式聚合物薄膜(5微米)对不同浓度铜离子所得标准工作曲线。
具体实施方式
以下结合实例对本发明的具体实施方式做进一步说明,应当指出的是,此处所描述的具体实施方式只是为了说明和解释本发明,并不局限于本发明。
实施例1
固体接触式聚合物薄膜铜离子选择性电极的具体制备步骤如下:
a.有序介孔碳离子-电子传导层的制备:称取1mg有序介孔碳材料分散于1mL四氢呋喃(THF)中,并超声处理1h。量取6μL有序介孔碳分散液滴于玻碳电极表面,在红外灯下烤干备用。
b.聚合物薄膜的制备:(1)称取1wt%铜离子载体(ETH 1062),1wt%四(3,5-二(三氟甲基)苯基)硼酸钠(NaTFPB),33wt%聚氯乙烯(PVC),65wt%邻-硝基苯辛醚(o-NPOE),共360mg溶于3.6mL THF中,搅拌2h,备用。
(2)分别取上述配制好的膜溶液50μL、100μL、200μL,用2mL THF稀释。取40μL稀释后的膜溶液分别滴于上述经修饰离子-电子传导层的玻碳电极表面,室温下自然挥发,干燥后获得聚合物薄膜厚度不同(厚度分别为2.5微米、5微米、10微米)的固体接触式聚合物薄膜铜离子选择性电极。
c.聚合物厚膜(200微米)电极的制备:取上述配制好的膜溶液100μL(不经THF稀释)滴于上述经修饰离子-电子传导层的玻碳电极表面,室温下自然挥发,干燥后获得聚合物膜厚度为200微米的固体接触式聚合物膜铜离子选择性电极。
实施例2
将上述获得的不同厚度聚合物薄膜的固体接触式聚合物薄膜铜离子选择性电极分别在0.01M氯化钠溶液中活化1小时。
将活化好的电极分别依次测定一系列不同浓度的氯化铜溶液(氯化铜溶液浓度依次为1,3.2,10,20,40,60,80,100nM),实时电位响应信号如图1所示。
由图1可见,聚合物敏感膜厚度为200微米(B图)的电极仅对1μM的氯化铜有响应,将聚合物敏感膜厚度减小至10微米(A图曲线c),电极对10nM氯化铜的电位响应约为4mV,电极检测性能得到很大的改善。其原理归因于,常用的聚合物敏感膜厚度远大于液膜界面的扩散层厚度,铜离子由溶液相扩散至敏感膜表面会继续往膜本体中扩散,将聚合物敏感膜厚度减小至与扩散层厚度相近,能够有效抑制铜离子由膜表面往膜本体中的扩散作用,使铜离子大量聚集在膜表面,从而显著提高液膜界面的电位响应。当敏感膜厚度减小至5微米时(A图曲线b),电极对1nM的氯化铜电位响应约为3.5mV,电极的检出限达到纳摩尔浓度范围,然而进一步减小膜厚度至2.5微米(A图曲线a),电极对1nM的氯化铜电位响应可忽略不计。因此,本发明所述的聚合物薄膜的最优厚度为5微米。
实施例3
a.有序介孔碳离子-电子传导层的制备:称取1mg有序介孔碳材料分散于1mL THF中,并超声处理1h。分别取不同量的有序介孔碳分散液(3μL或12μL)滴于玻碳电极表面,在红外灯下烤干备用。
b.(1)称取1wt%铜离子载体(ETH 1062),1wt%四(3,5-二(三氟甲基)苯基)硼酸钠(NaTFPB),33wt%聚氯乙烯(PVC),65wt%邻-硝基苯辛醚(o-NPOE),共360mg溶于3.6mLTHF中,搅拌2h,备用。
(2)取上述配制好的膜溶液100μL,用2mL THF稀释。取40μL稀释后的膜溶液分别滴于上述经修饰离子-电子传导层的玻碳电极表面,室温下自然挥发,干燥后获得聚合物薄膜厚度为5微米的滴加不同介孔碳分散液体积的固体接触式聚合物薄膜铜离子选择性电极。
实施例4
将上述实施例获得的滴加不同介孔碳分散液体积制备的固体接触式聚合物薄膜铜离子选择性电极分别在0.01M氯化钠溶液中活化1小时。
将活化好的电极分别测定对10nM氯化铜溶液的电位响应,ΔE变化如图2所示。
由图2可见滴加介孔碳分散液体积为3μL获得的固体接触式聚合物薄膜铜离子选择性电极对10nM氯化铜的响应约为4mV,增加介孔碳分散液体积为6μL后,电极对10nM氯化铜的响应约为12mV。然而继续增加介孔碳分散液的体积,电极对10nM氯化铜的响应减小,故本发明将使用介孔碳分散液的最优体积为6μL。
实施例5
由上述各实施例制备所得选取优选条件制备所得电极进行检测:
a.有序介孔碳离子-电子传导层的制备:称取1mg有序介孔碳材料分散于1mL THF中,并超声处理1h。量取6μL有序介孔碳分散液滴于玻碳电极表面,在红外灯下烤干备用。
b.聚合物薄膜的制备:(1)称取1wt%铜离子载体(ETH 1062),1wt%四(3,5-二(三氟甲基)苯基)硼酸钠(NaTFPB),33wt%聚氯乙烯(PVC),65wt%邻-硝基苯辛醚(o-NPOE),共360mg溶于3.6mL THF中,搅拌2h,备用。
(2)取上述配制好的膜溶液100μL用2mL THF稀释。取40μL稀释后的膜溶液分别滴于上述经修饰离子-电子传导层的玻碳电极表面,室温下自然挥发,干燥后获得聚合物薄膜厚度为5微米的固体接触式聚合物薄膜铜离子选择性电极。
将上述获得的电极使用前在0.01M氯化钠溶液中活化1小时。将活化好的电极测定一系列不同浓度的氯化铜溶液(氯化铜溶液浓度依次为0.5,1,10,20,40,60,80,100,150nM,每根电极每次仅测定一个浓度),动力学电位响应(参见图3A)。由不同浓度(1,10,20,40,60,80,100nM)的动力学电位响应值获得标准曲线(参见图3B),由标准曲线中获知通过最适电极检测铜离子的最低检出限浓度。
由图3B中可见,电极对铜离子的响应在1-100nM浓度范围内呈线性且误差较小,并由标准曲线可以获知本发明的固体接触式聚合物薄膜铜离子选择性电极可检测到0.56nM的铜离子浓度,达到了灵敏度高、检出限低的目的。

Claims (4)

1.一种固体接触式聚合物薄膜铜离子选择性电极的制备方法,电极底部附有敏感膜,其特征在于:电极基体底部依次为离子-电子传导层和2.5-10微米厚的聚合物敏感膜;其中,离子-电子传导层为有序介孔碳;
将有序介孔碳材料分散于有机溶剂中,形成终浓度为1-3 mg/mL的分散液,而后将分散液滴于电极基体表面形成离子-电子传导层,干燥后于其表面滴涂聚合物敏感膜溶液干燥后形成2.5-10微米厚的聚合物敏感膜,即形成固体接触式聚合物薄膜铜离子选择性电极;
所述聚合物敏感膜溶液为称取1wt%铜离子载体ETH 1062,1wt%四(3,5-二(三氟甲基)苯基)硼酸钠,33wt%聚氯乙烯,65wt%邻-硝基苯辛醚,溶于四氢呋喃中,搅拌2 h,搅拌后经四氢呋喃稀释,待用。
2.按权利要求1所述的制备方法,其特征在于:所述有机溶剂为乙醇、四氢呋喃、二氯甲烷、三氯甲烷、N, N-二甲基甲酰胺中的一种或几种。
3.一种按权利要求1所述的方法制备所得电极的应用,其特征在于:所述电极在检测铜离子中的应用。
4.按权利要求3所述的应用,其特征在于:所述电极在检测样品中0.56-2.5 nM铜离子中的应用。
CN202010391575.6A 2020-05-11 2020-05-11 一种固体接触式聚合物薄膜铜离子选择性电极的制备及其应用 Active CN111579617B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010391575.6A CN111579617B (zh) 2020-05-11 2020-05-11 一种固体接触式聚合物薄膜铜离子选择性电极的制备及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010391575.6A CN111579617B (zh) 2020-05-11 2020-05-11 一种固体接触式聚合物薄膜铜离子选择性电极的制备及其应用

Publications (2)

Publication Number Publication Date
CN111579617A CN111579617A (zh) 2020-08-25
CN111579617B true CN111579617B (zh) 2022-11-15

Family

ID=72115367

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010391575.6A Active CN111579617B (zh) 2020-05-11 2020-05-11 一种固体接触式聚合物薄膜铜离子选择性电极的制备及其应用

Country Status (1)

Country Link
CN (1) CN111579617B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114544728B (zh) * 2020-11-25 2023-10-27 中国科学院烟台海岸带研究所 基于脉冲恒电流控制的薄层聚合物膜离子选择性电极及检测方法
CN113671005A (zh) * 2021-07-01 2021-11-19 广州大学 一种基于mof的铜离子选择性电极及其制备方法与应用
CN113484394A (zh) * 2021-07-16 2021-10-08 香港中文大学深圳研究院 多孔三维电极及其制备方法与应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5584979A (en) * 1994-05-27 1996-12-17 Kone Instruments Oy Ion-selective electrode and procedure for producing an ion-selective electrode
WO2016141337A1 (en) * 2015-03-04 2016-09-09 University Of Central Florida Research Foundation, Inc. Ion-selective electrode systems and methods utilizing same
CN106198663A (zh) * 2015-05-05 2016-12-07 中国科学院烟台海岸带研究所 一种固体接触式聚合物膜镉离子选择性电极及其应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9874539B2 (en) * 2014-05-23 2018-01-23 Regents Of The University Of Minnesota Ion-selective electrodes and reference electrodes with a solid contact having mesoporous carbon
CN108398474B (zh) * 2018-02-13 2021-03-05 中国科学院烟台海岸带研究所 一种可用于沉积物中离子检测的电位型微电极传感器及其应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5584979A (en) * 1994-05-27 1996-12-17 Kone Instruments Oy Ion-selective electrode and procedure for producing an ion-selective electrode
WO2016141337A1 (en) * 2015-03-04 2016-09-09 University Of Central Florida Research Foundation, Inc. Ion-selective electrode systems and methods utilizing same
CN106198663A (zh) * 2015-05-05 2016-12-07 中国科学院烟台海岸带研究所 一种固体接触式聚合物膜镉离子选择性电极及其应用

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
A simple approach for fabricating solid-contaction-selective electrodes using nanomaterials as transducers;Rongning Liang 等;《Analytica Chimica Acta》;20141027;第853卷;第291-296页 *
Inkjet-printed Solid-state Potentiometric Nitrate Ion Selective Electrodes for Agricultural Application;Hongjie Jiang 等;《IEEE》;20200113;第1-4页 *
Real-time monitoring of the dissolution of silver nanoparticles by using a solid-contact Ag+-selective electrode;Tanji Yin 等;《Analytica Chimica Acta》;20191211;第1101卷;第50-57页 *
Redox-Active Self-Assembled Monolayers for Solid-Contact Polymeric Membrane Ion-Selective Electrodes;Monia Fibbioli 等;《CHEMISTRY OF MATERIALS》;20020313;第14卷(第4期);第1721-1729页 *
Thin Layer Membrane Systems as Rapid Development Tool for Potentiometric Solid Contact Ion-selective Electrodes;Tara Forrest 等;《ELECTROANALYSIS》;20200108;第32卷(第4期);第799-804页 *
Trace-Level Potentiometric Detection in the Presence of a High Electrolyte Background;Wei Qin 等;《ANALYTICAL CHEMISTRY》;20121119;第84卷(第24期);第10509-10513页 *

Also Published As

Publication number Publication date
CN111579617A (zh) 2020-08-25

Similar Documents

Publication Publication Date Title
CN111579617B (zh) 一种固体接触式聚合物薄膜铜离子选择性电极的制备及其应用
Kang et al. Methyl parathion sensors based on gold nanoparticles and Nafion film modified glassy carbon electrodes
Shahrokhian et al. Application of pyrolytic graphite modified with nano-diamond/graphite film for simultaneous voltammetric determination of epinephrine and uric acid in the presence of ascorbic acid
Wu et al. Amperometric cholesterol biosensor based on zinc oxide films on a silver nanowire–graphene oxide modified electrode
Ananthi et al. Facile one-step direct electrodeposition of bismuth nanowires on glassy carbon electrode for selective determination of folic acid
Thomas et al. Voltammetric sensor for the determination of TBHQ in coconut oil
Wang et al. Simultaneous detection of copper, lead and zinc on tin film/gold nanoparticles/gold microelectrode by square wave stripping voltammetry
Kawde et al. Cathodized gold nanoparticle‐modified graphite pencil electrode for non‐enzymatic sensitive voltammetric detection of glucose
Arancibia et al. Ex situ prepared nafion-coated antimony film electrode for adsorptive stripping voltammetry of model metal ions in the presence of pyrogallol red
Yeon et al. based electrochromic glucose sensor with polyaniline on indium tin oxide nanoparticle layer as the optical readout
Souza et al. Polymer modified carbon paste electrode as a sensitive sensor for the electrochemical determination of riboflavin and its application in pharmaceutical and biological samples
Fakhari et al. Development of an Electrochemical Sensor Based on Reduced Graphene Oxide Modified Screen‐Printed Carbon Electrode for the Determination of Buprenorphine
Ensafi et al. Highly Sensitive Differential Pulse Voltammetric Determination of Cd, Zn and Pb Ions in Water Samples Using Stable Carbon‐Based Mercury Thin‐Film Electrode
CN108387624B (zh) 三维多孔碳/聚硫堇复合物修饰电极及其制备和应用
Jiang et al. Porous carbon-based robust, durable, and flexible electrochemical device for K+ detection in sweat
Gan et al. Electrochemical detection method for chlorotetracycline based on enhancement of yolk–shell structured carbon sphere@ MnO2
Gao et al. Electrochemical determination of catechol based on cadmium telluride quantum dots/graphene composite film modified electrode
Liu et al. Highly efficient detection of Cd (Ⅱ) ions in water by graphitic carbon nitride and tin dioxide nanoparticles modified glassy carbon electrode
Cheemalapati et al. A sensitive amperometric detection of dopamine agonist drug pramipexole at functionalized multi-walled carbon nanotubes (f-MWCNTs) modified electrode
Wang et al. An electrochemical enzyme-free glucose sensor based on bimetallic PtNi materials
Robak et al. A carbon ceramic electrode modified with bismuth oxide nanoparticles for determination of syringic acid by stripping voltammetry
CN114544728B (zh) 基于脉冲恒电流控制的薄层聚合物膜离子选择性电极及检测方法
CN113295749B (zh) 氮掺杂石墨烯/离子液体复合材料修饰玻碳电极、其制备方法及肾上腺素定量检测方法
CN114778638A (zh) 用于检测丙烯酰胺的光电化学传感器及其制备方法和应用
Hadi et al. Electroanalytical sensing of piperazine at carbon nanotubes/nafion composite-modified glassy carbon and screen-printed carbon electrodes in human plasma

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant