CN111578373B - 温湿度独立控制的节能型空调系统 - Google Patents

温湿度独立控制的节能型空调系统 Download PDF

Info

Publication number
CN111578373B
CN111578373B CN202010383263.0A CN202010383263A CN111578373B CN 111578373 B CN111578373 B CN 111578373B CN 202010383263 A CN202010383263 A CN 202010383263A CN 111578373 B CN111578373 B CN 111578373B
Authority
CN
China
Prior art keywords
reduction
air conditioning
water tank
conditioning system
heat exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010383263.0A
Other languages
English (en)
Other versions
CN111578373A (zh
Inventor
罗荣邦
王飞
董旭
许文明
张心怡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao Haier Air Conditioner Gen Corp Ltd
Haier Smart Home Co Ltd
Original Assignee
Qingdao Haier Air Conditioner Gen Corp Ltd
Haier Smart Home Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao Haier Air Conditioner Gen Corp Ltd, Haier Smart Home Co Ltd filed Critical Qingdao Haier Air Conditioner Gen Corp Ltd
Priority to CN202010383263.0A priority Critical patent/CN111578373B/zh
Publication of CN111578373A publication Critical patent/CN111578373A/zh
Application granted granted Critical
Publication of CN111578373B publication Critical patent/CN111578373B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0003Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station characterised by a split arrangement, wherein parts of the air-conditioning system, e.g. evaporator and condenser, are in separately located units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • F24F1/0063Indoor units, e.g. fan coil units characterised by heat exchangers by the mounting or arrangement of the heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0083Indoor units, e.g. fan coil units with dehumidification means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/14Heat exchangers specially adapted for separate outdoor units
    • F24F1/16Arrangement or mounting thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/36Drip trays for outdoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/30Arrangement or mounting of heat-exchangers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Power Engineering (AREA)
  • Central Air Conditioning (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

本发明涉及空气调节技术领域,具体涉及一种温湿度独立控制的节能型空调系统。本发明旨在解决现有的降能耗方案存在的效果差的问题。为此目的,本发明的空调系统包括换热单元、除湿单元、喷淋单元和光伏单元,换热单元包括传统空调结构;除湿单元包括除湿箱,除湿箱内设置有固体吸附组件;还原组件包括还原盘管,还原盘管部分盘设于固体吸附组件,其内部允许换热介质流过;喷淋单元包括降温水箱和喷淋管,喷淋管的第一端与降温水箱连通,第二端延伸至室外换热器且设置有喷淋孔,喷淋管上设置有水泵;光伏单元用以将光能转换为电能并因此向空调系统供电。本申请能够保证固体吸附剂的再生效果,并降低空调的运行功率和能耗。

Description

温湿度独立控制的节能型空调系统
技术领域
本发明涉及空气调节技术领域,具体涉及一种温湿度独立控制的节能型空调系统。
背景技术
空调是家庭中的主要耗电设备,在炎热的夏季,其耗电量通常要占到家庭整体耗电量的80%甚至更高。因此,如何降低空调的能耗,减少用户的费用支出,实现节能减排,是各大空调厂商在研发过程中关注的重点。
研究表明,造成空调能耗居高不下的原因主要有两个,其一为空调的运行功率高、效率低,其二为温湿度不能独立控制。针对问题一,目前行业内的主要解决方案围绕增大换热器面积、提高压缩机的效率、采用高效冷媒等方法来进行,这些方法虽然能够带来一定的效率提升,但是受到成本等因素的影响,上述方案的研发已经进入瓶颈,无法满足用户的要求。针对问题二,现有解决方案大多采用转轮除湿技术或溶液除湿技术来实现对温湿度的独立控制。但转轮除湿技术由于固体吸附剂的再生温度需求高,仅通过热气流实现固体吸附剂的再生存在效果不好的问题。而溶液除湿技术则需要利用蒸发热来降低液体温度的同时,再利用冷凝热来实现溶液的浓缩再生,导致系统复杂、冷热量不匹配等问题。
相应地,本领域需要一种新的温湿度独立控制的节能型空调系统来解决上述问题。
发明内容
为了解决现有技术中的上述至少一个问题,即现有解决空调能耗高的技术方案存在的效果差的问题,本发明提供了一种温湿度独立控制的节能型空调系统,所述空调系统包括换热单元、除湿单元、喷淋单元和光伏单元,所述换热单元包括室外机和室内机,所述室外机包括机箱和设置于所述机箱内的压缩机、室外换热器、第一节流元件,所述室内机包括室内换热器,所述压缩机、所述室外换热器、所述第一节流元件和所述室内换热器之间通过冷媒管连接;所述除湿单元包括除湿箱、固体吸附组件、和还原组件,所述除湿箱上开设有除湿进气口、除湿出气口、还原进气口和还原出气口,所述除湿进气口或所述除湿出气口设置有除湿风机,所述还原进气口或所述还原出气口设置有还原风机,所述固体吸附组件固设于所述除湿箱内,所述固体吸附组件包括固体吸附剂,所述还原组件包括还原盘管,所述还原盘管部分盘设于所述固体吸附组件,所述还原盘管内允许换热介质流过;所述喷淋单元包括降温水箱和喷淋管,所述降温水箱内存放有冷却液,所述喷淋管的第一端与所述降温水箱连通,第二端延伸至所述室外换热器处并且所述第二端设置有喷淋孔,所述喷淋管上设置有水泵;所述光伏单元包括光伏板,所述光伏板用以将光能转换为电能并因此向所述空调系统供电。
在上述温湿度独立控制的节能型空调系统的优选技术方案中,还原水箱,所述还原水箱内存放有换热液体,所述还原盘管的第一端和第二端分别与所述还原水箱连通,并且所述还原盘管上设置有循环泵;换热盘管,所述换热盘管部分盘设于所述还原水箱内,所述换热盘管的第一端伸出所述还原水箱并与空调系统的压缩机的排气口连通,第二端伸出所述还原水箱并与所述空调系统的室外换热器的进口连通。
在上述温湿度独立控制的节能型空调系统的优选技术方案中,所述喷淋单元还包括集水器和集水管,所述集水器设置于所述光伏板的下方,所述集水管的第一端与所述集水器连通,第二端与所述降温水箱连通。
在上述温湿度独立控制的节能型空调系统的优选技术方案中,所述喷淋单元还包括室外接水盘和回水管,所述机箱上设置有下水孔,所述室外接水盘设置于所述下水孔的下方,所述回水管的一端与所述室外接水盘连通,另一端与所述降温水箱连通。
在上述温湿度独立控制的节能型空调系统的优选技术方案中,所述喷淋管的第二端延伸至所述室外换热器的进风侧,所述喷淋孔朝向所述室外换热器设置或者沿所述室外机的进风方向背向所述室外换热器设置。
在上述温湿度独立控制的节能型空调系统的优选技术方案中,所述还原盘管的第二端与所述降温水箱连通,所述降温水箱通过管路与所述还原水箱连通。
在上述温湿度独立控制的节能型空调系统的优选技术方案中,所述除湿单元还包括降温换热器,所述降温换热器设置于所述还原盘管上并位于所述固体吸附组件与所述还原盘管的第二端之间,所述降温换热器还配置有降温风机。
在上述温湿度独立控制的节能型空调系统的优选技术方案中,所述还原盘管部分盘设于所述固体吸附组件的内部。
在上述温湿度独立控制的节能型空调系统的优选技术方案中,所述换热单元还包括第一电控阀,所述第一电控阀设置于所述冷媒管上并位于所述换热盘管的第一端与第二端之间,所除湿单元还包括第二节流元件,所述第二节流元件设置于所述换热盘管上并位于所述还原水箱与所述换热盘管的第二端之间。
在上述温湿度独立控制的节能型空调系统的优选技术方案中,所述光伏单元还包括储电部件和太阳能控制器,所述光伏板通过所述太阳能控制器与所述储电部件连接,所述储电部件与所述空调系统的总控制器连接。
本领域技术人员能够理解的是,在本发明的优选技术方案中,所述空调系统包括换热单元、除湿单元、喷淋单元和光伏单元,换热单元包括室外机和室内机,室外机包括机箱和设置于机箱内的压缩机、室外换热器、第一节流元件,室内机包括室内换热器,压缩机、室外换热器、第一节流元件和室内换热器之间通过冷媒管连接;除湿单元包括除湿箱、固体吸附组件、和还原组件,除湿箱上开设有除湿进气口、除湿出气口、还原进气口和还原出气口,除湿进气口或除湿出气口设置有除湿风机,还原进气口或还原出气口设置有还原风机,固体吸附组件固设于除湿箱内,固体吸附组件包括固体吸附剂,还原组件包括还原盘管,还原盘管部分盘设于固体吸附组件,还原盘管内允许换热介质流过;喷淋单元包括降温水箱和喷淋管,降温水箱内存放有冷却液,喷淋管的第一端与降温水箱连通,第二端延伸至室外换热器处并且第二端设置有喷淋孔,喷淋管上设置有水泵;光伏单元包括光伏板,光伏板用以将光能转换为电能并因此向空调系统供电。
通过设置除湿单元,使得空调系统能够对室内的温湿度进行独立控制,保证固体吸附剂再生效果,降低空调系统的复杂度和能耗。具体而言,通过在除湿箱内设置固体吸附组件,当需要室内除湿时,仅需打开除湿风机,此时室内空气通过除湿进气口进入除湿箱,在经过固体吸附组件时空气中的水分被吸附在固体吸附剂上而变为干燥空气,干燥空气通过除湿出气口返回室内。当固体吸附组件需要再生时,打开还原风机,室内空气从还原进气口进入除湿箱,并从还原出气口排出至室外。此时利用还原盘管内流过的换热介质加热固体吸附组件,固体吸附组件中的水分被换热介质加热蒸发为水蒸气,最终在还原风机的带动下随室内空气一起排出至室外。
通过在空调系统中设置喷淋单元,使得空调系统在运行时能够通过向室外换热器喷洒冷却液的方式辅助室外换热器进行热交换,提高室外换热器的换热能力,降低空调系统的运行功率,从而降低系统能耗。
通过利用光伏单元给空调系统的用电部件供电,使得本申请的空调系统的运行能耗大大降低,甚至可以实现电能的零消耗。
进一步地,通过在还原组件中设置还原水箱和换热盘管,使得固体吸附组件需要再生时,能够利用空调系统运行过程中压缩机排出的高温冷媒通过换热盘管加热还原水箱内的换热液体,然后利用循环泵带动换热液体循环的方式实现对固体吸附组件的加热再生。此外,由于空调运行过程中部分冷媒还能够通过换热盘管与还原水箱内的换热液体进行换热,因而本申请还能够增强冷媒的换热效果,提高空调系统的运行效率,降低空调运行能耗。
通过在光伏板下方设置集水器和集水管,本申请的空调系统能够巧妙地借助光伏板实现对雨水的收集,使得降温水箱内的冷却液可以由收集的雨水提供,实现自然资源的利用,节约水资源,降低系统能耗,并且对于多雨地区来说上述优势格外明显。
进一步地,通过设置室外接水盘和回水管,并在室外机箱上开设下水孔,使得喷淋水能够循环利用,节约水资源。
进一步地,通过将还原盘管的第二端与降温水箱连通,能够使用降温水箱为还原水箱供水,并且保证换热液体处于适当加热温度,防止由于换热液体温度过高而导致的蒸发过快、缺水等情况出现。再者,降温水箱的设置还能够在空调运行时进一步提升冷媒的换热效果,提高空调的运行效率,降低运行能耗。
进一步地,通过在还原盘管上设置降温换热器和降温风机,使得流回降温水箱的换热液体温度下降,保证降温水箱内的水温保持在较低的范围,避免由于水温过高而影响喷淋效果。
进一步地,通过将还原盘管部分盘设于固体吸附组件的内部,能够提高固体吸附组件的再生效率,保证再生效果。
进一步地,通过在换热盘管上设置第二节流元件,还使得固体吸附组件的再生过程可以独立运行,不必借助空调系统的制冷模式实现,避免再生过程伴随室内温度的降低而导致的用户体验下降。
进一步地,通过在光伏单元中设置储电部件,使得光伏单元转换的电能能够得到存储和利用,避免光照强度不足时无法使用光伏单元为空调系统供电,进一步节省电能。
附图说明
下面参照来描述本发明的温湿度独立控制的节能型空调系统。附图中:
图1为本发明的温湿度独立控制的节能型空调系统的第一种实施方式的系统图;
图2为本发明的温湿度独立控制的节能型空调系统的第二种实施方式的系统图;
图3为本发明的温湿度独立控制的节能型空调系统的第二种实施方式中喷淋管的喷淋方向示意图;
图4为本发明的温湿度独立控制的节能型空调系统的第三种实施方式的系统图;
图5为本发明的温湿度独立控制的节能型空调系统的第四种实施方式中喷淋管的喷淋方向示意图。
附图标记列表
1、换热单元;11、压缩机;111、第一电控阀;12、室外换热器;121、外风机;123、室外接水盘;124、回水管;13、第一节流元件;14、室内换热器;141、内风机;142、室内接水盘;143、冷凝水管;15、总控制器;16、机箱;161、下水孔;
2、除湿单元;21、除湿箱;211、除湿进气口;212、除湿出气口;213、还原进气口;214、还原出气口;215、除湿风机;216、还原风机;22、固体吸附组件;23、还原水箱;24、还原盘管;241、循环泵;242、降温换热器;243、降温风机;25、换热盘管;251、第二节流元件;252、第二电控阀;
3、喷淋单元;31、降温水箱;311、管路;312、液位阀;32、喷淋管;321、水泵;
4、光伏单元;41、光伏板;42、储电部件;43、太阳能控制器;44、集水器;45、集水管。
具体实施方式
下面参照附图来描述本发明的优选实施方式。本领域技术人员应当理解的是,这些实施方式仅仅用于解释本发明的技术原理,并非旨在限制本发明的保护范围。例如,虽然以下具体实施方式是结合单制冷模式的空调系统进行描述的,但是这并非旨在于限制本申请的保护范围,在不偏离本申请原理的前提下,本领域技术人员还可以将本申请应用于其他空调系统。比如,本申请还可以应用于带有四通阀的空调系统等。
需要说明的是,在本发明的描述中,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方向或位置关系的术语是基于附图所示的方向或位置关系,这仅仅是为了便于描述,而不是指示或暗示所述装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
此外,还需要说明的是,在本发明的描述中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域技术人员而言,可根据具体情况理解上述术语在本发明中的具体含义。
实施例1
首先参照图1,对本发明的空调系统进行描述。其中,图1为本发明的温湿度独立控制的节能型空调系统的第一种实施方式的系统图。
如图1所示,为了解决现有技术方案中空调的降能耗方案存在的效果差的问题,本申请的温湿度独立控制的节能型空调系统(以下或简称空调系统或系统)主要包括换热单元1、除湿单元2、喷淋单元3和光伏单元4。换热单元1包括压缩机11、室外换热器12、外风机121、第一节流元件13、室内换热器14、内风机141和总控制器15。压缩机11、室外换热器12、外风机121、第一节流元件13和总控制器15设置在室外机的机箱16中,室内换热器14和内风机141设置在室内机中。其中,压缩机11、室外换热器12、第一节流元件13和室内换热器14之间通过冷媒管连接形成冷媒循环,压缩机11排气口设置有第一电控阀111。总控制器15分别与压缩机11、外风机121、第一电控阀111、第一节流元件13和内风机141连接,用以控制上述部件运行。本实施方式中,第一节流元件13可以为电子膨胀阀等开度可控的阀体,第一电控阀111可以为电磁阀等可以实现开闭的阀体。
需要说明的是,本实施方式为描述清楚上述各部件之间的连接关系,特将室外机的各个部件打散后绘制于附图1中,本领域技术人员能够理解的是,这些部件在附图中的设置位置并非真实设置位置。
继续参照图1,除湿单元2包括除湿箱21、固体吸附组件22和还原组件(图中未示出)。除湿箱21上开设有除湿进气口211、除湿出气口212、还原进气口213和还原出气口214,除湿进气口211和除湿出气口212分别与室内连通,除湿出气口212设置有除湿风机215,还原进气口213与室内连通,还原出气口214与室外连通,还原出气口214设置有还原风机216。固体吸附组件22固设于除湿箱21内,固体吸附组件22包括固体吸附剂。还原组件包括还原盘管24,还原盘管24部分盘设于固体吸附组件22,还原盘管24的第一端与压缩机11的排气口连通,第二端与室外换热器12的进口连通,从而还原盘管24允许冷媒(即换热介质)从中流过。此外,还原盘管24上靠近第一端的位置设置有第二电控阀252。其中,第二电控阀252在本实施方式中可以为电磁阀等能够实现开闭功能的阀体。
继续参照图1,喷淋单元3包括降温水箱31和喷淋管32,降温水箱31内存放有冷却液,喷淋管32的第一端与降温水箱31连通,第二端设置有喷淋孔并延伸至室外换热器12处,喷淋管32上靠近第一端的位置设置有水泵321。
仍参照图1,光伏单元4包括光伏板41,光伏板41能够将光能转换为电能并向空调系统的用电部件供电,如向压缩机11、外风机121、第一节流元件13、内风机141、水泵321、除湿风机215和还原风机216等供电。
总控制器15还分别与水泵321、除湿风机215、还原风机216和第二电控阀252连接,用以控制上述部件运行。
当室内需要降温时,总控制器15控制压缩机11、外风机121、水泵321和内风机141启动,控制第一电控阀111开启、第二电控阀252关闭、第一节流元件13开启到设定开度,并优先使用光伏单元4为上述部件供电。此时降温水箱31内的冷却液在水泵321的带动下由喷淋管32喷出至室外换热器12的盘管上,压缩机11排出高温高压气态冷媒,高温高压气态冷媒进入室外换热器12与室外空气和喷淋水进行双重热交换后变为中温高压液态冷媒,中温高压液态冷媒经过第一节流元件13后变为低温低压气液两相冷媒,低温低压气液两相冷媒进入室内换热器14中与室内空气进行热交换后变为低温低压气态冷媒,室内温度随之下降。然后低温低压气态冷媒由吸气口返回压缩机11实现冷媒的循环。
当室内需要除湿时,总控制器15控制除湿风机215启动运行,光伏单元4为除湿风机215供电,室内空气在除湿风机215的带动下从除湿进气口211进入除湿箱21,并在经过固体吸附组件22时空气中的水分被吸附在固体吸附剂上而变为干燥空气,干燥空气通过除湿出气口212返回室内,室内湿度随之下降。
当固体吸附组件22吸附一定量的水分需要再生时,总控制器15控制压缩机11、外风机121、水泵321、内风机141和还原风机216启动,控制第一电控阀111关闭、第二电控阀252开启、第一节流元件13开启到设定开度,并优先使用光伏单元4为上述部件供电。室内空气从还原进气口213进入除湿箱21,并从还原出气口214排出至室外,喷淋水对室外换热器12喷淋降温,压缩机11排出的高温高压气态冷媒先通过还原盘管24循环至固体吸附组件22后进入室外换热器12并按照常规制冷循环流动,固体吸附组件22中的水分被高温高压冷媒加热蒸发为水蒸气而析出,析出的水蒸气随室内空气一起被排出至室外,固体吸附组件22实现再生。
由上述描述可以看出,通过在空调系统中设置喷淋单元3,使得空调系统在运行时能够通过向室外换热器12喷洒冷却液的方式辅助室外换热器12进行热交换,提高室外换热器12的换热能力,降低空调系统的运行功率。通过在空调系统中设置除湿单元2,使得空调系统能够对室内的温湿度进行独立控制,除湿过程无须借助制冷模式实现,从而大幅降低空调系统的能耗,避免通过制冷模式除湿导致的室内温度骤降。通过采用还原盘管24直接加热固体吸附组件22,使得本申请的固体吸附组件22的再生效果能够得到保证。通过利用光伏单元4给空调系统的用电部件供电,使得本申请的空调系统的运行能耗大大降低,甚至可以实现电能的零消耗。本申请的申请人发现,通过现有空调架构上设置喷淋单元3、除湿单元2和光伏单元4,当空调系统运行时,上述各单元各既能够各自自发挥的功效,又能够彼此相辅相成,实现了一加一大于二的效果。
实施例2
下面参照图2和图3,对本申请的一种较为优选地实施方式进行介绍。其中,图2为本发明的温湿度独立控制的节能型空调系统的第二种实施方式的系统图;图3为本发明的温湿度独立控制的节能型空调系统的第二种实施方式中喷淋管的喷淋方向示意图。
如图2所示,在一种较为优选的实施方式中,空调系统主要包括换热单元1、除湿单元2、喷淋单元3和光伏单元4。换热单元1包括压缩机11、室外换热器12、外风机121、室外接水盘123、回水管124、第一节流元件13、室内换热器14、内风机141、室内接水盘142、冷凝水管143和总控制器15。压缩机11、室外换热器12、外风机121、第一节流元件13和总控制器15设置在室外机的机箱16中,机箱16底部靠近室外换热器12的位置开设有下水孔161,室外接水盘123设置在下水孔161的下方,回水管124的一端与室外接水盘123连通。室内换热器14、内风机141和室内接水盘142设置在室内机中,冷凝水管143一端与室内接水盘142连通,另一端引出室外。其中,压缩机11、室外换热器12、第一节流元件13和室内换热器14之间通过冷媒管连接形成冷媒循环,压缩机11的排气口处还设置有第一电控阀111。总控制器15分别与压缩机11、外风机121、第一电控阀111、第一节流元件13和内风机141连接,用以控制上述部件运行。本实施方式中,第一节流元件13可以为电子膨胀阀等开度可控的阀体,第一电控阀111可以为电磁阀等可以实现开闭的阀体。
继续参照图2,喷淋单元3包括降温水箱31和喷淋管32,降温水箱31内存放有冷却液,如水或盐水等,回水管124的另一端与降温水箱31连通。喷淋管32的第一端与降温水箱31连通,靠近第一端的位置设置有水泵321,喷淋管32的第二端延伸至室外换热器12的外侧,该第二端设置有喷淋孔。具体地,室外换热器12的截面整体呈L型,喷淋管32的第二端沿室外换热器12的进风侧延伸也大致为L型。喷淋管32的第二端可以设置多个喷淋孔,多个喷淋孔可以全部排布于喷淋管32的第二端,也可以分别排布于第二端的多个平行设置的子管路上。参照图3,本实施方式中,喷淋管32第二端靠近室外换热器12设置,喷淋孔朝向室外换热器12并与水平面呈一定角度,该角度可选取在30°至60°之间,较为优选地,可以选择45°。
通过在空调系统中设置降温水箱31和喷淋管32,使得空调系统在运行时能够通过向室外换热器12喷洒冷却液的方式辅助室外换热器12进行热交换,提高室外换热器12的换热能力,降低空调系统的运行功率。通过设置室外接水盘123和回水管124,使得喷淋管32、室外接水盘123、回水管124与降温水箱31之间形成水循环,从而喷淋水能够循环利用,节约水资源。通过喷淋管32第二端靠近室外换热器12且喷淋孔斜向45°设置,能够最大程度的保证喷淋面积和喷淋效果。
返回参照图2,除湿单元2包括除湿箱21、固体吸附组件22和还原组件(图中未示出)。固体吸附组件22包括固体吸附剂,还原组件包括还原水箱23、还原盘管24、换热盘管25、降温换热器242和降温风机243。其中,除湿箱21和固体吸附组件22设置于室内,如设置于室内机中或单独设置于室内,还原水箱23、降温水箱31和降温换热器242设置于室外,如设置于室外机机箱16中或单独设置在室外等。
除湿箱21上开设有除湿进气口211、除湿出气口212、还原进气口213和还原出气口214,除湿进气口211和除湿出气口212分别与室内连通,除湿出气口212设置有除湿风机215,还原进气口213与室内连通,还原出气口214与室外连通,还原出气口214设置有还原风机216。
固体吸附组件22固设于除湿箱21内,固体吸附组件22包括固体吸附剂,本实施方式中,固体吸附剂可以为硅胶、分子筛、活性氧化铝或沸石,固体吸附组件22由上述固体吸附剂中的一种或多种经过粘接、拼接或压制等方式成型。还原盘管24部分盘设于固体吸附组件22,具体地,还原盘管24部分盘设于固体吸附组件22的内部,如图2中所示,还原盘管24盘设在固体吸附组件22内部的部分S型盘绕。例如,将固体吸附组件22与部分还原盘管24一起压制成型,或在成型过程中在固体吸附组件22内部留有允许还原盘管24穿过的孔道,以便固体吸附组件22成型后安装还原盘管24。
通过将还原盘管24部分盘设于固体吸附组件22的内部,更进一步地,在固体吸附组件22内部呈S型盘绕,使得盘管与固体吸附组件22直接接触,能够提高固体吸附组件22的再生效率,保证再生效果。
仍参照图2,还原水箱23内存放有换热液体(即换热介质),如水或盐水等,还原盘管24盘设在固体吸附组件22后,其第一端与还原水箱23连通,第二端与降温水箱31连通,降温水箱31通过管路311与还原水箱23连通,并且在设置高度上降温水箱31高于还原水箱23。还原盘管24上靠近第一端的位置设置有循环泵241,靠近第二端的位置设置有降温换热器242,降温换热器242配置有降温风机243,降温换热器242优选的采用板式换热器。换热盘管25部分盘设于还原水箱23内,且盘设于还原水箱23内的部分呈S型。换热盘管25盘设好后,其第一端伸出还原水箱23并与空调系统的压缩机11排气口连通,第二端伸出还原水箱23并与空调系统的室外换热器12的进口连通。其中,换热盘管25上靠近第一端的位置还设置有第二电控阀252,如电磁阀等能够实现开闭功能的阀体,换热盘管25上靠近第二端的位置还设置有第二节流元件251,如电子膨胀阀等可以控制开度的阀体。其中,第一电控阀111位于换热盘管25的第一端与第二端之间的冷媒管上。
通过在还原组件中设置还原水箱23和换热盘管25,使得固体吸附组件22需要再生时,能够利用空调系统运行过程中压缩机11排出的高温冷媒通过换热盘管25加热还原水箱23内的换热液体,然后利用循环泵241带动换热液体循环的方式实现对固体吸附组件22的加热再生。通过将还原盘管24的第二端与降温水箱31连通,能够使用降温水箱31为还原水箱23供水,并且保证换热液体处于适当加热温度的前提下,防止由于换热液体温度过高而导致的蒸发过快、缺水等情况出现。再者,降温水箱31的设置还能够在空调运行时进一步提升冷媒的换热效果,提高空调的运行效率,降低运行能耗。通过在还原盘管24上设置降温换热器242和降温风机243,使得流回降温水箱31的换热液体温度下降,保证降温水箱31内的水温保持在较低的范围,避免由于水温过高而影响喷淋效果。通过在压缩机11排气口设置第一电控阀111,在换热盘管25的不同位置分别设置第二节流元件251和第二电控阀252,使得固体吸附组件22的再生过程可以独立运行,不必借助制冷模式实现,避免固体吸附组件22的再生过程中伴随室内温度的降低而导致的用户体验下降。
继续参照图2,降温水箱31的侧壁上还设置有补水口(图中未示出),补水口通过液位阀312与市政用水连通,补水口的高度可以按照如下方式设置:在保证水量足够循环的前提下尽可能靠近降温水箱31的底部。液位阀312在本实施方式中指的是能够通过降温水箱31内的液位高低实现自动开闭的阀体,如液位阀312可以为液位球阀或通过液位传感器与电磁阀的组合等方式实现。此外,冷凝水管143引出室外后与降温水箱31连通。
通过将冷凝水导流至降温水箱31内,本申请的空调系统还能够进一步利用空调循环过程产生的冷凝水,减少水源浪费,减少补水量。并且,冷凝水由于温度较低,还能够进一步实现还原水箱23或降温水箱31内液体的降温,进一步提高冷媒的换热效果。补水口设置成尽可能靠近降温水箱31底部,使得本申请能够在保证水量的前提下,最大限度地节约市政水源,优先保证使用冷凝水。
仍然参照图2,光伏单元4包括光伏板41、储电部件42和太阳能控制器43,光伏板41通过太阳能控制器43与储电部件42连接,储电部件42与空调系统的总控制器15连接。具体地,光伏板41在本申请中采用单晶硅或多晶硅电池组合成板状,其通过光电效应将光能转化为电能加以利用。储电部件42优选的采用蓄电池组,蓄电池组中包括多个蓄电池,光伏板41通过太阳能控制器43与蓄电池组连接,蓄电池组通过连接线与总控制器15连接,从而实现对光电转换后的电能存储和利用,如将通过光电转化的电能直接用于空调系统的各用电部件的运行或将储存于蓄电池组中的电能用于空调系统的各用电部件的运行。其中,光伏发电以及电流的处理过程为本领域的公知技术,在此不再赘述。光伏单元4还包括集水器44和集水管45,集水器44可以为盘状或漏斗状,其设置在光伏板41的下方,用以收集光伏板41截留下的雨水,集水管45第一端与集水器44连通,第二端与降温水箱31连通,用以将收集到的雨水引流至降温水箱31内。
通过使用光伏板41和蓄电池组向空调系统的用电部件供电,使得空调系统在工作过程中,可以大大减少空调系统工作过程的电能消耗,甚至实现电能的零消耗。通过在光伏单元4中设置储电部件42,使得光伏单元4转换的电能能够得到存储和利用,避免光照强度不足时无法使用光伏单元4供电,进一步节省电能。通过在光伏板41下方设置集水器44和集水管45,巧妙地借助光伏板41实现对雨水的收集,使得降温水箱31内的换热液体可以由收集的雨水提供,实现自然资源的利用,节约水资源。再加上补水口设置成尽可能靠近降温水箱31底部,使得本申请的除湿装置能够在保证循环水量的前提下,最大限度地节约市政水源,优先保证使用收集的雨水和室内排出的冷凝水。
当然,由于光伏单元4转换的电能不一定能满足所有用电部件的需要,故虽然图中未示出,但仍需要配置相应的市电,只不过本实施方式中优先使用光伏单元4转换和存储的电能。
空调系统的总控制器15还分别与水泵321、除湿风机215、还原风机216、循环泵241、第二节流元件251、第二电控阀252和降温风机243连接,用以控制上述部件运行。
通过总控制器15分别与水泵321、除湿风机215、还原风机216、循环泵241、第二节流元件251、第二电控阀252和降温风机243连接,使得空调系统能够自动运行降温喷淋和除湿,并且能够实现温湿度联合控制,提高了空调系统的自动化程度。
下面参照图2,对本实施方式中空调系统的运行过程作简要说明。
如图2所示,在室内需要降温时,总控制器15控制压缩机11、外风机121、水泵321、内风机141、降温风机243和循环泵241启动,控制第一电控阀111关闭、第二电控阀252打开、第二节流元件251全开、第一节流元件13开启到设定开度,并优先使用光伏板41转换的电能和蓄电池中存储的电能为上述各部件供电。此时降温水箱31内的冷却液在水泵321的带动下由喷淋管32喷出至室外换热器12的盘管上,还原水箱23内的换热液体在循环泵241的带动下在还原水箱23与降温水箱31之间循环,压缩机11排出高温高压气态冷媒,高温高压气态冷媒经换热盘管25进入还原水箱23并与还原水箱23内的换热液体进行热交换后进入室外换热器12,进入室外换热器12的冷媒与室外空气和喷淋水进行双重热交换后变为中温高压液态冷媒,中温高压液态冷媒经过第一节流元件13的节流后变为低温低压气液两相冷媒,低温低压气液两相冷媒进入室内换热器14中与室内空气进行热交换后变为低温低压气态冷媒,室内温度随之下降。然后低温低压气态冷媒由吸气口返回压缩机11实现冷媒的循环。
当室内需要除湿时,总控制器15控制除湿风机215启动运行,光伏板41转换的电能和蓄电池中存储的电能为除湿风机215供电,室内空气在除湿风机215的带动下从除湿进气口211进入除湿箱21,并在经过固体吸附组件22时空气中的水分被吸附在固体吸附剂上而变为干燥空气,干燥空气通过除湿出气口212返回室内,室内湿度随之下降。
当固体吸附组件22吸附一定量的水分需要再生时,如果换热单元1正在以制冷模式运行,即压缩机11、外风机121、水泵321、内风机141、降温风机243和循环泵241正在运行,且第一电控阀111关闭、第二电控阀252打开,第二节流元件251全开、第一节流元件13开启到设定开度,则此时总控制器15继续控制还原风机216启动,并优先使用光伏板41转换的电能和蓄电池中存储的电能为各部件供电。此时冷媒按照制冷循环,降温水箱31内的冷却液在水泵321的带动下由喷淋管32喷出至室外换热器12的盘管上,室内空气从还原进气口213进入除湿箱21,并从还原出气口214排出至室外。压缩机11排出的高温高压气态冷媒通过换热盘管25进入还原水箱23内并加热还原水箱23内的换热液体,循环泵241带动换热液体在还原水箱23与降温水箱31之间循环,当换热液体升温至较高温度并循环至固体吸附组件22时,固体吸附组件22中的水分被换热液体加热蒸发为水蒸气而析出,析出的水蒸气随室内空气一起被排出至室外,固体吸附组件22实现再生。
如果换热单元1未运行,则此时总控制器15控制压缩机11、外风机121、水泵321、降温风机243、还原风机216和循环泵241启动,控制第一电控阀111关闭、第二电控阀252开启、第二节流元件251开启到一定开度、第一节流元件13全开,并优先使用光伏板41转换的电能和蓄电池中存储的电能为上述各部件供电。此时降温水箱31内的冷却液在水泵321的带动下由喷淋管32喷出至室外换热器12的盘管上,室内空气从还原进气口213进入除湿箱21,并从还原出气口214排出至室外。压缩机11排出的高温高压气态冷媒通过换热盘管25进入还原水箱23内并与还原水箱23内的换热液体热交换后变为中温高压液态冷媒,中温高压液态冷媒经过第二节流元件251的节流后变为低温低压气液两相冷媒,低温低压气液两相冷媒进入室外换热器12中与室外空气和喷淋水进行双重热交换后变为低温低压气态冷媒,然后低温低压气态冷媒经室内换热器14后由吸气口返回压缩机11实现冷媒的循环。循环泵241带动被加热的换热液体在还原水箱23与降温水箱31之间循环,当换热液体升温至较高温度并循环至固体吸附组件22时,固体吸附组件22中的水分被换热液体加热蒸发为水蒸气而析出,析出的水蒸气随室内空气一起被排出至室外,固体吸附组件22实现再生。
需要说明的是,上述优选的实施方式仅仅用于阐述本发明的原理,并非旨在于限制本发明的保护范围。在不偏离本发明原理的前提下,本领域技术人员可以对上述设置方式进行调整,以便本发明能够适用于更加具体的应用场景。
例如,在一种可替换的实施方式中,除湿风机215和还原风机216的设置位置并非唯一,在满足能够使室内空气经过固体吸附组件22的条件下,二者的设置位置还可以更换。例如,除湿风机215还可以设置在除湿进气口211,还原风机216还可以设置在还原进气口213等。
再如,在另一种可替换的实施方式中,虽然上述还原盘管24是结合部分盘设在固体吸附组件22内部并呈S型盘绕进行描述的,但是本领域技术人员可以对其设置方式进行调整,只要调整后的设置方式能够使得还原盘管24对固体吸附组件22加热的条件。比如,还原盘管24还可以沿固体吸附组件22的外侧表面缠绕,或者在固体吸附组件22的内侧呈螺旋状盘绕等。
再如,在另一种可替换的实施方式中,为了使本申请的技术方案达到更好的技术效果,本领域技术人员还可以在本实施方式的基础上有针对性地增加额外的零部件,这种本领域常用的调整并未偏离本申请的原理。比如,为了提高除湿过程和再生过程中进入除湿箱21内的流动空气的流动效果,本领域技术人员可以在除湿进气口211、除湿出气口212、还原进气口213和还原出气口214上分别设置进/出风阀门,从而在除湿过程中和再生过程中通过控制进/出风阀门的开闭实现对空气流向的控制;再如,为了提高流动空气与固体吸附组件22的接触效果,本领域技术人员还可以在除湿箱21内设置多个折流板,从而使得进入除湿箱21内的气流按照折流板限定出的路径反复经过固体吸附组件22,提高固体吸附组件22的利用率和吸附效果。
再如,在另一种可替换的实施方式中,虽然上述实施方式中补水口设置于降温水箱31的侧壁上,但是补水口的设置位置并非唯一,本领域技术人员还可以将补水口设置在其他位置,如还原水箱23上等。
再如,在另一种可替换的实施方式中,储电部件42的具体形式并非固定,在满足能够储存电能的前提下,本领域技术人员可以对储电部件42的具体形式进行调整。比如储电部件42还可以采用超级电容电池组等。
再如,在另一种可替换的实施方式中,本领域技术人员在具体应用时可以选择性地省略下述的一个或多个部件,以使得本申请能够满足于不同的应用场景。部件包括但不限于:降温换热器242、降温风机243、第一电控阀111、第二电控阀252、第二节流元件251、室内接水盘142、冷凝水管143、室外接水盘123、回水管124、集水器44、集水管45。
当然,上述可以替换的实施方式之间、以及可以替换的实施方式和优选的实施方式之间还可以交叉配合使用,从而组合出新的实施方式以适用于更加具体的应用场景。
实施例3
下面结合图4,对本发明的另一种可替换的实施方式进行介绍。其中,图4为本发明的温湿度独立控制的节能型空调系统的第三种实施方式的系统图。
如图4所示,本实施例与实施例2的区别之处在于,冷凝水管143引出室外后与还原水箱23连通。冷凝水管143与还原水箱23连通的设置方式能够提高还原水箱23中的冷媒与换热液体之间的换热效果,提高空调系统的运行效率,降低系统能耗。
实施例4
下面结合图5,对本发明的另一种可替换的实施方式进行介绍。其中,图5为本发明的温湿度独立控制的节能型空调系统的第四种实施方式中喷淋管的喷淋方向示意图。
如图5所示,本实施例与实施例2的区别之处在于,喷淋孔沿所述室外机的进风方向背向所述室外换热器12设置。该设置方式能够使得喷淋水呈锥形发散且喷淋覆盖面积逐渐扩大,同时,通过外风机121的旋转产生的负压,喷淋水重新被吸入机箱16中,从而使喷淋水可以覆盖室外换热器12的较大的表面面积,增加了对室外换热器12的喷淋覆盖面积,并且还可以使得喷淋管32的第二端紧靠室外换热器12设置,节省室外机的空间。
本领域技术人员可以理解,上述总控制器还包括一些其他公知结构,例如处理器、控制器、存储器等,其中,存储器包括但不限于随机存储器、闪存、只读存储器、可编程只读存储器、易失性存储器、非易失性存储器、串行存储器、并行存储器或寄存器等,处理器包括但不限于CPLD/FPGA、DSP、ARM处理器、MIPS处理器等。为了不必要地模糊本公开的实施例,这些公知的结构未在附图中示出。
此外,本领域的技术人员能够理解,尽管在此所述的一些实施例包括其它实施例中所包括的某些特征而不是其它特征,但是不同实施例的特征的组合意味着处于本发明的范围之内并且形成不同的实施例。例如,在本发明的权利要求书中,所要求保护的实施例的任意之一都可以以任意的组合方式来使用。
至此,已经结合附图所示的优选实施方式描述了本发明的技术方案,但是,本领域技术人员容易理解的是,本发明的保护范围显然不局限于这些具体实施方式。在不偏离本发明的原理的前提下,本领域技术人员可以对相关技术特征作出等同的更改或替换,这些更改或替换之后的技术方案都将落入本发明的保护范围之内。

Claims (8)

1.一种温湿度独立控制的节能型空调系统,其特征在于,所述空调系统包括换热单元、除湿单元、喷淋单元和光伏单元,
所述换热单元包括室外机和室内机,所述室外机包括机箱和设置于所述机箱内的压缩机、室外换热器、外风机、第一节流元件,所述室内机包括室内换热器,所述压缩机、所述室外换热器、所述第一节流元件和所述室内换热器之间通过冷媒管连接;
所述除湿单元包括除湿箱、固体吸附组件、和还原组件,所述除湿箱上开设有除湿进气口、除湿出气口、还原进气口和还原出气口,所述除湿进气口或所述除湿出气口设置有除湿风机,所述还原进气口或所述还原出气口设置有还原风机,所述固体吸附组件固设于所述除湿箱内,所述固体吸附组件包括固体吸附剂,所述还原组件包括还原盘管,所述还原盘管部分盘设于所述固体吸附组件,所述还原盘管内允许换热介质流过;
所述喷淋单元包括降温水箱和喷淋管,所述降温水箱内存放有冷却液,所述喷淋管的第一端与所述降温水箱连通,第二端延伸至所述室外换热器处并且所述第二端设置有喷淋孔,所述喷淋管上设置有水泵;
所述光伏单元包括光伏板,所述光伏板用以将光能转换为电能并因此向所述空调系统供电;
所述还原组件还包括:
还原水箱,所述还原水箱内存放有换热液体,所述还原盘管的第一端和第二端分别与所述还原水箱连通,并且所述还原盘管上设置有循环泵;
换热盘管,所述换热盘管部分盘设于所述还原水箱内,所述换热盘管的第一端伸出所述还原水箱并与空调系统的压缩机的排气口连通,第二端伸出所述还原水箱并与所述空调系统的室外换热器的进口连通;
所述换热单元还包括第一电控阀,所述第一电控阀设置于所述冷媒管上并位于所述换热盘管的第一端与第二端之间,所除湿单元还包括第二节流元件,所述第二节流元件设置于所述换热盘管上并位于所述还原水箱与所述换热盘管的第二端之间;
所述换热盘管上靠近其第一端的位置还设置有第二电控阀;
当所述固体吸附组件需要再生时,如果所述换热单元未运行,则控制所述压缩机、所述外风机、所述还原风机和所述循环泵启动,并控制所述第一电控阀关闭、所述第二电控阀开启、所述第二节流元件开启到一定开度、所述第一节流元件全开。
2.根据权利要求1所述的温湿度独立控制的节能型空调系统,其特征在于,所述光伏单元还包括集水器和集水管,所述集水器设置于所述光伏板的下方,所述集水管的第一端与所述集水器连通,第二端与所述降温水箱连通。
3.根据权利要求1所述的温湿度独立控制的节能型空调系统,其特征在于,所述喷淋单元还包括室外接水盘和回水管,所述机箱上设置有下水孔,所述室外接水盘设置于所述下水孔的下方,所述回水管的一端与所述室外接水盘连通,另一端与所述降温水箱连通。
4.根据权利要求1所述的温湿度独立控制的节能型空调系统,其特征在于,所述喷淋管的第二端延伸至所述室外换热器的进风侧,所述喷淋孔朝向所述室外换热器设置或者沿所述室外机的进风方向背向所述室外换热器设置。
5.根据权利要求1所述的温湿度独立控制的节能型空调系统,其特征在于,所述还原盘管的第二端与所述降温水箱连通,所述降温水箱通过管路与所述还原水箱连通。
6.根据权利要求4所述的温湿度独立控制的节能型空调系统,其特征在于,所述除湿单元还包括降温换热器,所述降温换热器设置于所述还原盘管上并位于所述固体吸附组件与所述还原盘管的第二端之间,所述降温换热器还配置有降温风机。
7.根据权利要求1所述的温湿度独立控制的节能型空调系统,其特征在于,所述还原盘管部分盘设于所述固体吸附组件的内部。
8.根据权利要求1所述的温湿度独立控制的节能型空调系统,其特征在于,所述光伏单元还包括储电部件和太阳能控制器,所述光伏板通过所述太阳能控制器与所述储电部件连接,所述储电部件与所述空调系统的总控制器连接。
CN202010383263.0A 2020-05-08 2020-05-08 温湿度独立控制的节能型空调系统 Active CN111578373B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010383263.0A CN111578373B (zh) 2020-05-08 2020-05-08 温湿度独立控制的节能型空调系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010383263.0A CN111578373B (zh) 2020-05-08 2020-05-08 温湿度独立控制的节能型空调系统

Publications (2)

Publication Number Publication Date
CN111578373A CN111578373A (zh) 2020-08-25
CN111578373B true CN111578373B (zh) 2022-09-06

Family

ID=72126369

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010383263.0A Active CN111578373B (zh) 2020-05-08 2020-05-08 温湿度独立控制的节能型空调系统

Country Status (1)

Country Link
CN (1) CN111578373B (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100507389C (zh) * 2004-03-31 2009-07-01 大金工业株式会社 空调机及空调机的控制方法
JP2012225529A (ja) * 2011-04-15 2012-11-15 Daikin Industries Ltd 調湿装置
EP2881274A1 (en) * 2012-08-05 2015-06-10 Yokohama Heat use Technology Dehumidifying device for vehicle
CN205245404U (zh) * 2015-12-21 2016-05-18 珠海格力电器股份有限公司 空调系统
CN206274194U (zh) * 2016-10-31 2017-06-23 广东美的制冷设备有限公司 一种空调除湿系统
WO2018186439A1 (ja) * 2017-04-07 2018-10-11 ダイキン工業株式会社 調湿ユニット、及びこれを用いた空気調和機
JP2019066090A (ja) * 2017-09-29 2019-04-25 一般財団法人電力中央研究所 空調システム
CN110748970A (zh) * 2019-11-14 2020-02-04 珠海格力电器股份有限公司 空调系统以及空调系统的控制方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100507389C (zh) * 2004-03-31 2009-07-01 大金工业株式会社 空调机及空调机的控制方法
JP2012225529A (ja) * 2011-04-15 2012-11-15 Daikin Industries Ltd 調湿装置
EP2881274A1 (en) * 2012-08-05 2015-06-10 Yokohama Heat use Technology Dehumidifying device for vehicle
EP2881274A4 (en) * 2012-08-05 2017-07-19 Yokohama Heat use Technology Dehumidifying device for vehicle
CN205245404U (zh) * 2015-12-21 2016-05-18 珠海格力电器股份有限公司 空调系统
CN206274194U (zh) * 2016-10-31 2017-06-23 广东美的制冷设备有限公司 一种空调除湿系统
WO2018186439A1 (ja) * 2017-04-07 2018-10-11 ダイキン工業株式会社 調湿ユニット、及びこれを用いた空気調和機
JP2019066090A (ja) * 2017-09-29 2019-04-25 一般財団法人電力中央研究所 空調システム
CN110748970A (zh) * 2019-11-14 2020-02-04 珠海格力电器股份有限公司 空调系统以及空调系统的控制方法

Also Published As

Publication number Publication date
CN111578373A (zh) 2020-08-25

Similar Documents

Publication Publication Date Title
CN101487609B (zh) 液体除湿多功能空气源热泵系统及其运行方法
CN110748970B (zh) 空调系统以及空调系统的控制方法
CN211667926U (zh) 一种新风除湿一体机
CN109373480B (zh) 一种蒸发冷却与蒸发冷凝相结合的节能净化空调系统
CN211177289U (zh) 一种热泵型双级蒸发热回收新风机组
CN110748964B (zh) 空调器系统、空调及空调的控制方法
CN209279429U (zh) 双蒸发器新风除湿机组
JP2021179301A (ja) 低温条件に適した多様なエネルギー相互補完のヒートポンプ乾燥装置
CN210070102U (zh) 一种地埋管水源除湿加湿新风机组
CN110748963B (zh) 空调器系统、空调及空调的控制方法
CN114992743A (zh) 一种被动通风及吸附式制冷的复合能源利用的通风系统
CN201016499Y (zh) 太阳能梯级利用式空调系统
CN204513624U (zh) 一种热泵驱动的除湿溶液温度控制及生活热水制取装置
CN111578373B (zh) 温湿度独立控制的节能型空调系统
CN111076311A (zh) 一种新风除湿一体机
CN216953338U (zh) 一种基于蓄冷蓄化学能的溶液除湿间接蒸发制冷系统
CN114543171B (zh) 一种空调器
CN212227242U (zh) 用于空调系统的降温喷淋装置及空调系统
CN212252904U (zh) 利用光伏供电的除湿装置及空调系统
CN211146701U (zh) 空调器系统、空调
CN211146700U (zh) 空调器系统、空调
CN212252903U (zh) 节能型空调系统
CN111578468B (zh) 空调系统的控制方法
CN101498522A (zh) 除湿空调热泵热水器
CN111578390B (zh) 一种风冷式pvt空调外机及运行方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant