CN111575653A - 一种x射线吸收光栅及其制作方法 - Google Patents

一种x射线吸收光栅及其制作方法 Download PDF

Info

Publication number
CN111575653A
CN111575653A CN202010389492.3A CN202010389492A CN111575653A CN 111575653 A CN111575653 A CN 111575653A CN 202010389492 A CN202010389492 A CN 202010389492A CN 111575653 A CN111575653 A CN 111575653A
Authority
CN
China
Prior art keywords
ray absorption
absorption grating
silicon substrate
coating
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010389492.3A
Other languages
English (en)
Inventor
张催
潘小东
李公平
李畅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lanzhou University
Original Assignee
Lanzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lanzhou University filed Critical Lanzhou University
Priority to CN202010389492.3A priority Critical patent/CN111575653A/zh
Publication of CN111575653A publication Critical patent/CN111575653A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/028Physical treatment to alter the texture of the substrate surface, e.g. grinding, polishing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/50Substrate holders
    • C23C14/505Substrate holders for rotation of the substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5873Removal of material
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/02Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

本发明公开了一种X射线吸收光栅及其制作方法,制作方法如下:(1)基底制备:选择厚度为几十至几百微米的双面抛光硅片作为基底片,均匀涂抹一层SU8光刻胶,制作与X射线吸收光栅图案匹配的掩膜版,在SU8光刻胶上显影出X射线吸收光栅图案,然后刻蚀X射线吸收光栅图案,再去除基底片表面的SU8光刻胶,得到具有X射线吸收光栅图案的硅基底;(2)蒸发镀膜:硅基底上蒸发镀膜,镀膜时将硅基底匀速旋转和平移;(3)表面去膜:镀膜结束后,去除硅基底表面的金属膜层,保留硅基底槽内的膜层,完成X射线吸收光栅的制作。本发明提出的X射线吸收光栅制作方法简单高效、稳定可靠、成本可控,制作出的X射线吸收光栅的结构稳定、厚度均匀、性能可靠。

Description

一种X射线吸收光栅及其制作方法
技术领域
本发明属于X射线相衬成像技术领域,尤其涉及一种X射线吸收光栅及其制作方法。
背景技术
X射线相衬成像是目前X射线成像领域的研究热点之一,相比于传统的X射线吸收衬度成像具有更高的图像衬度和细节分辨性,并能降低辐照剂量,在医学、生物学、材料科学、安检和工业无损检测等领域具有巨大的应用价值。目前常用的X射线相衬成像方法主要是边缘照明(WO2008/029107,WO2013/011317)和光栅干涉方法(WO2010150136A1,WO2016070771A1),这两种方法均需借助X射线吸收光栅来实现相位信息的提取,因此成熟、高效的X射线吸收光栅制作方法是X射线相衬成像技术推广应用的关键。X射线吸收光栅应对X射线具有很强的吸收能力,通常采用高原子序数金属材料作为吸收物质,例如金、铂、铅和钨等,并且X射线吸收光栅周期小、精度高,因而利用激光刻蚀技术(CN205614207U)在X射线吸收片上直接刻蚀狭缝或孔制作X射线吸收光栅的方法会受限于精度以及狭缝边缘存在毛刺等问题无法满足要求。
现有X射线吸收光栅制作方法主要有电镀法、铸造法和填充法,以上三种方法均是在具有X射线吸收光栅图案的基底上,分别通过电镀、铸造和颗粒填充法在基底的深槽内充实X射线吸收材料,从而实现X射线吸收光栅的制作。但存在如下缺陷:电镀法在电镀之前,需要先在基底的深槽底部制作电极,导致工艺繁琐,对于硬X射线吸收光栅,由于电镀层较厚,导致电镀时间和成本都较高,几种主要X射线吸收材料的电镀液成本较高甚至难以实现。铸造法需在高温条件下熔化用于吸收X射线的金属材料进行铸造,高温环境和大的温度变化将引起基底槽壁扭曲甚至损坏,导致X射线吸收光栅的成品率较低,此外由于温度效应,当金属冷却后会出现收缩现象,导致深槽内的金属形状不规则,影响X射线吸收光栅性能。颗粒填充法是在基底的深槽内直接填充金属纳米颗粒,但填充均匀性以及X射线吸收光栅整体的机械性能较差。
发明内容
针对上述背景技术中指出的不足,本发明提供了一种X射线吸收光栅及其制作方法,旨在解决上述背景技术中现有的X射线吸收光栅制作方法工艺复杂、产品均匀性差、性能受环境影响较大、成品率低、成本较高等问题。
为实现上述目的,本发明采用的技术方案是:
一种X射线吸收光栅的制作方法,该方法包括以下步骤:
(1)基底制备
选择厚度为几十至几百微米的双面抛光硅片作为基底片,在所述基底片上均匀涂抹一层SU8光刻胶,制作与X射线吸收光栅图案匹配的掩膜版,在所述SU8光刻胶上显影出X射线吸收光栅图案,然后刻蚀出槽,形成X射线吸收光栅图案,去除基底片表面的SU8光刻胶,得到具有X射线吸收光栅图案的硅基底;
(2)蒸发镀膜
将制得的硅基底在蒸发镀膜设备中进行镀膜,镀膜材料选用高原子序数的金属材料;
(3)表面去膜
蒸发镀膜结束后,去除硅基底表面的金属膜层,保留硅基底槽内的膜层,完成X射线吸收光栅的制作。
优选地,步骤(1)中,利用丙酮溶液去除所述基底片表面的SU8光刻胶。
优选地,步骤(2)中,所述镀膜材料采用金、铂或铅。
优选地,步骤(2)中,所述镀膜采用真空镀膜,真空度为5×10-4Pa,蒸发电流为70A,镀膜时间4h。
优选地,步骤(2)中,镀膜过程中将所述硅基底匀速旋转和平移,以提高镀膜的均匀性。
优选地,步骤(3)中,去除硅基底表面的金属膜层的方法为:利用胶带粘连金属膜层,撕去硅基底表面的金属膜层。
本发明进一步提供了一种X射线吸收光栅的制作方法制作的X射线吸收光栅。
相比于现有技术的缺点和不足,本发明具有以下有益效果:
(1)本发明通过在硅基底上蒸发镀膜再去除表面膜层的方法可实现不同厚度、材质和周期X射线吸收光栅的制作,能满足不同尺寸的要求。
(2)由于硅基底上不需要制作电极,也不需要制备电镀液,因此相比于电镀法,本发明制作过程更为简单高效;此外,硅基底不需在高温条件下处理,因此避免了熔融法中对硅基底结构的破坏。
(3)本发明镀膜材料可采用铅等相对廉价金属材料,因此能大大降低成本。采用的蒸发镀膜技术成熟稳定,镀膜均匀性好,使得制作的X射线吸收光栅性能稳定可靠。
附图说明
图1是本发明实施例提供的一种X射线吸收光栅制作流程示意图。
图2是本发明实施例提供的不同周期的铅制X射线吸收光栅实物图。
图3是本发明实施例提供的不同周期的铅制X射线吸收光栅的显微镜图(20倍放大)。
图4是本发明实施例提供的不同周期的铅制X射线吸收光栅的X射线透射图(放大因子22)。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
一种X射线吸收光栅的制作流程示意图(切面图)如图1所示,制作方法如下:
1、基底制备
101.选择厚度为几十至几百微米的双面抛光硅片作为基底片,尺寸和形状可根据实际需求选取。
102.在基底片上均匀涂抹一层SU8光刻胶。
103.制作与X射线吸收光栅图案匹配的掩膜版,利用标准的光刻技术在步骤102的SU8光刻胶上显影出X射线吸收光栅图案。
104.利用深硅刻蚀技术在步骤103的硅片上刻蚀出槽,形成X射线吸收光栅图案。
105.利用丙酮溶液去除步骤104基底片表面的SU8光刻胶,得到具有X射线吸收光栅图案的硅基底。
2、蒸发镀膜
106.将步骤105制得的硅基底在蒸发镀膜设备中进行真空镀膜,镀膜材料选用高原子序数的金属材料(例如金、铂、铅等),以保证对X射线有较强的吸收能力,可优选铅等相对廉价金属材料,能大大降低成本。在镀膜过程中将硅基底匀速旋转和平移以提高镀膜的均匀性,使得制作的X射线吸收光栅结构稳定、厚度均匀、性能可靠。根据需求,选择镀膜的厚度,镀膜厚度不超过硅基底的槽深度即可。
3、表面去膜
107.蒸发镀膜结束后,去除硅基底表面的金属膜层,可利用胶带粘连金属膜层,撕去硅基底表面的金属膜层,保留硅基底槽内的膜层,完成X射线吸收光栅的制作。
实施例1
采用本发明方法制作125μm周期铅制X射线吸收光栅,过程如下:
101.采用双面抛光硅片作为基底,尺寸为20×20mm2,厚度为500μm。
102.在硅基底上均匀涂抹一层SU8光刻胶,光刻胶厚度50μm。
103.制作X射线吸收光栅图案匹配的掩膜版,利光刻机在光刻胶上显影出X射线吸收光栅图案,光栅周期为125μm,狭缝宽度为75μm,长度为10mm,100个周期。
104.利用电感耦合等离子刻蚀机进行深硅刻蚀,在硅基底上刻蚀出深槽,刻蚀深度为100μm,槽宽度为75μm。
105.利用丙酮溶液去除硅基底表面的SU8光刻胶,得到具有光栅结构的硅基底。
106.将具有光栅结构的硅基底在蒸发镀膜设备中进行真空镀膜,真空度为5×10- 4Pa,蒸发舟材质为钨,蒸发电流为70A,镀膜时间4h。硅基底距离蒸发舟20cm,与蒸发舟中心斜角10°,在镀膜过程中将硅基底匀速旋转,旋转速度为120°/s。镀膜材料为纯度99%的小铅块,镀膜的厚度约为30μm。
107.蒸发镀膜结束后,利用胶带粘连硅基底表面撕去铅膜,保留硅基底深槽内的铅膜,完成X射线吸收光栅的最终制作。
实施例2
采用本发明方法制作62.5μm周期铅制X射线吸收光栅,过程如下:
101.采用双面抛光硅片作为基底,尺寸为20×20mm2,厚度为500μm。
102.在硅基底上均匀涂抹一层SU8光刻胶,光刻胶厚度50μm。
103.制作X射线吸收光栅图案匹配的掩膜版,利光刻机在光刻胶上显影出X射线吸收光栅图案,光栅周期为62.5μm,狭缝宽度为37.5μm,长度为10mm,100个周期。
104.利用电感耦合等离子刻蚀机进行深硅刻蚀,在硅基底上刻蚀出深槽,刻蚀深度为100μm,槽宽度为37.5μm。
105.利用丙酮溶液去除硅基底表面的SU8光刻胶,得到具有光栅结构的硅基底。
106.将具有光栅结构的硅基底在蒸发镀膜设备中进行真空镀膜,真空度为5×10- 4Pa,蒸发舟材质为钨,蒸发电流为70A,镀膜时间4h。硅基底距离蒸发舟20cm,与蒸发舟中心斜角10°,在镀膜过程中将硅基底匀速旋转,旋转速度为120°/s。镀膜材料为纯度99%的小铅块,镀膜的厚度约为30μm。
107.蒸发镀膜结束后,利用胶带粘连硅基底表面撕去铅膜,保留硅基底深槽内的铅膜,完成X射线吸收光栅的最终制作。
实施例1和实施例2制作的X射线吸收光栅的实物图分别如图2(a)和2(b)所示,制得了两种周期的X射线吸收光栅。其光学体视显微镜下放大20倍的图像分别如图3(a)和3(b)所示,可以看到所制作的X射线吸收光栅的结构完整,形貌均匀,未出现形变。所制作的X射线吸收光栅进行X射线透射成像,放大因子为22,X射线机焦点为5μm,管电压为50kV,管电流为160μA,曝光时间0.5s。X射线透射图像结果分别如图4(a)和4(b)所示,可以看到所制作的X射线吸收光栅的厚度均匀,几乎没有缺陷,透射和吸收区域对比明显,满足实际应用的需求。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (7)

1.一种X射线吸收光栅的制作方法,其特征在于,该方法包括以下步骤:
(1)基底制备
选择厚度为几十至几百微米的双面抛光硅片作为基底片,在所述基底片上均匀涂抹一层SU8光刻胶,制作与X射线吸收光栅图案匹配的掩膜版,在所述SU8光刻胶上显影出X射线吸收光栅图案,然后刻蚀出槽,形成X射线吸收光栅图案,去除基底片表面的SU8光刻胶,得到具有X射线吸收光栅图案的硅基底;
(2)蒸发镀膜
将制得的硅基底在蒸发镀膜设备中进行镀膜,镀膜材料选用高原子序数的金属材料;
(3)表面去膜
蒸发镀膜结束后,去除硅基底表面的金属膜层,保留硅基底槽内的膜层,完成X射线吸收光栅的制作。
2.如权利要求1所述的X射线吸收光栅的制作方法,其特征在于,步骤(1)中,利用丙酮溶液去除所述基底片表面的SU8光刻胶。
3.如权利要求1所述的X射线吸收光栅的制作方法,其特征在于,步骤(2)中,所述镀膜材料采用金、铂或铅。
4.如权利要求3所述的X射线吸收光栅的制作方法,其特征在于,步骤(2)中,所述镀膜采用真空镀膜,真空度为5×10-4Pa,蒸发电流为70A。
5.如权利要求4所述的X射线吸收光栅的制作方法,其特征在于,步骤(2)中,镀膜过程中将所述硅基底匀速旋转和平移,以提高镀膜的均匀性。
6.如权利要求1所述的X射线吸收光栅的制作方法,其特征在于,步骤(3)中,去除硅基底表面的金属膜层的方法为:利用胶带粘连金属膜层,撕去硅基底表面的金属膜层。
7.一种如权利要求1-6任一项所述的X射线吸收光栅的制作方法制作的X射线吸收光栅。
CN202010389492.3A 2020-05-10 2020-05-10 一种x射线吸收光栅及其制作方法 Pending CN111575653A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010389492.3A CN111575653A (zh) 2020-05-10 2020-05-10 一种x射线吸收光栅及其制作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010389492.3A CN111575653A (zh) 2020-05-10 2020-05-10 一种x射线吸收光栅及其制作方法

Publications (1)

Publication Number Publication Date
CN111575653A true CN111575653A (zh) 2020-08-25

Family

ID=72126474

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010389492.3A Pending CN111575653A (zh) 2020-05-10 2020-05-10 一种x射线吸收光栅及其制作方法

Country Status (1)

Country Link
CN (1) CN111575653A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115494571A (zh) * 2022-11-15 2022-12-20 北京至格科技有限公司 表面浮雕光栅衍射光波导的母版制作方法、光波导和设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050233503A1 (en) * 2002-04-15 2005-10-20 Jurgen Leib Method for the production of structured layers on substrates
CN1794093A (zh) * 2005-12-23 2006-06-28 中国科学院光电技术研究所 掩膜遮蔽变角度沉积制作纳米周期结构图形的方法
CN101183158A (zh) * 2007-11-26 2008-05-21 华中科技大学 一种金属线栅宽带偏振器及其制备方法
WO2010150136A1 (en) * 2009-06-22 2010-12-29 Koninklijke Philips Electronics N. V. Grating-based phase contrast x-ray imaging apparatus and methods
CN102360093A (zh) * 2011-10-19 2012-02-22 苏州大学 一种全息闪耀光栅制作方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050233503A1 (en) * 2002-04-15 2005-10-20 Jurgen Leib Method for the production of structured layers on substrates
CN1794093A (zh) * 2005-12-23 2006-06-28 中国科学院光电技术研究所 掩膜遮蔽变角度沉积制作纳米周期结构图形的方法
CN101183158A (zh) * 2007-11-26 2008-05-21 华中科技大学 一种金属线栅宽带偏振器及其制备方法
WO2010150136A1 (en) * 2009-06-22 2010-12-29 Koninklijke Philips Electronics N. V. Grating-based phase contrast x-ray imaging apparatus and methods
CN102360093A (zh) * 2011-10-19 2012-02-22 苏州大学 一种全息闪耀光栅制作方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
张催: "基于常规X射线源的相位衬度成像方法研究", 《万方学位论文》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115494571A (zh) * 2022-11-15 2022-12-20 北京至格科技有限公司 表面浮雕光栅衍射光波导的母版制作方法、光波导和设备
CN115494571B (zh) * 2022-11-15 2023-01-31 北京至格科技有限公司 表面浮雕光栅衍射光波导的母版制作方法、光波导和设备

Similar Documents

Publication Publication Date Title
CN101508419B (zh) 一种纳米柱森林的加工方法
CN107758607A (zh) 一种高深宽比高保形纳米级正型结构的制备方法
CN102466967B (zh) 一种大高宽比衍射光学元件的制作方法
CN107857236A (zh) 一种高深宽比高保形纳米级负型结构的制备方法
EP4354223A1 (en) Photolithography method based on bilayer photoresist
CN111575653A (zh) 一种x射线吸收光栅及其制作方法
CN101554991B (zh) 一种多样性纳米结构的加工方法
CN101813884B (zh) 一种在非平整衬底表面制备纳米结构基质的方法
CN102466980A (zh) 基于电子束光刻和x射线曝光制作多层膜闪耀光栅的方法
Guo et al. A flexible nitrogen-vacancy center probe for scanning magnetometry
CN102495526B (zh) 光学曝光方法及其用于制备硅材料竖直中空结构的方法
Achenbach et al. Polymer-based X-ray masks patterned by direct laser writing
RU2421833C2 (ru) Металлическая сеточная структура и способ ее изготовления
US11846882B2 (en) Methods for manufacturing high-density neural probes having various forms
CN110095441B (zh) 一种荧光纳米标尺部件及其制备和应用
Tominov et al. Study of the regimes of scratching probe nanolithography
CN107248367A (zh) 一种防伪结构及其制作和使用方法
KR101839903B1 (ko) 메타물질을 갖는 마스크 형성 방법
CN111029248A (zh) 一种ebl直写高精度第三代半导体的方法
RU2706265C1 (ru) Способ изготовления массивов регулярных субмикронных металлических структур на оптически прозрачных подложках
TWI498669B (zh) X射線光罩結構及其製備方法
CN109867260B (zh) 在非导电衬底上进行电子束或离子束聚焦刻蚀及显微成像的方法
Chang et al. Parallel multi-step nanolithography by nanoscale Cu-covered h-PDMS tip array
CN104599940B (zh) 一种用位图叠加制备二次微曲面结构的方法
US10312354B2 (en) Method for making thin film transistor

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20200825