CN111574909B - 一种抗击穿型环氧树脂-氮化硼复合材料的制备方法 - Google Patents

一种抗击穿型环氧树脂-氮化硼复合材料的制备方法 Download PDF

Info

Publication number
CN111574909B
CN111574909B CN202010327289.3A CN202010327289A CN111574909B CN 111574909 B CN111574909 B CN 111574909B CN 202010327289 A CN202010327289 A CN 202010327289A CN 111574909 B CN111574909 B CN 111574909B
Authority
CN
China
Prior art keywords
boron nitride
composite material
mixed solution
epoxy resin
breakdown
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN202010327289.3A
Other languages
English (en)
Other versions
CN111574909A (zh
Inventor
谢庆
阮浩鸥
律方成
宋景萱
詹振宇
周华皓
吴更腾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
North China Electric Power University
Original Assignee
North China Electric Power University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by North China Electric Power University filed Critical North China Electric Power University
Priority to CN202010327289.3A priority Critical patent/CN111574909B/zh
Publication of CN111574909A publication Critical patent/CN111574909A/zh
Application granted granted Critical
Publication of CN111574909B publication Critical patent/CN111574909B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • C09D7/62Additives non-macromolecular inorganic modified by treatment with other compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • C08K2003/382Boron-containing compounds and nitrogen
    • C08K2003/385Binary compounds of nitrogen with boron

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明公开了一种抗击穿型环氧树脂‑氮化硼复合材料的制备方法,其步骤包括:步骤一,对微米粒径的片状氮化硼填料进行表面活化处理;步骤二,采用化学共沉淀法,在填料表面修饰纳米Fe3O4粒子,以赋予其软磁性能;步骤三,将处理后的填料粉末与双酚A型环氧树脂单体、低温固化剂按13.9:100:25的质量比充分混合,搅拌并真空脱气后,在二维旋转磁场中进行固化,获得具有填料平铺结构的环氧树脂‑氮化硼复合材料。本发明提供的抗击穿型环氧树脂‑氮化硼复合材料的制备方法可以有效提升其体相击穿强度,所采用的化学处理手段和场控固化手段适合于工业生产中的批量制备,且理论上该方法对片状填料掺杂其他聚合物的复合材料击穿性能提升也具有一定适用性。

Description

一种抗击穿型环氧树脂-氮化硼复合材料的制备方法
技术领域
本发明涉及一种抗击穿型环氧树脂-氮化硼复合材料的制备方法,属于电工材料领域。
背景技术
氮化硼具有与环氧树脂接近的介电常数和电导率,将其作为绝缘用复合材料的填料,可以有效缓解常规填料如氧化铝因其较高介电常数所导致的局部电场畸变问题。同时,掺杂片状氮化硼可以有效的提升环氧树脂的机械和导热性能,这令其成为下一代复合绝缘材料的理想填料。但研究表明,掺杂微米粒径的氮化硼会降低环氧树脂的介电击穿强度,研究者将其归因于环氧树脂中微米氮化硼的界面联结导致的击穿诱导效应。为了有效解决该问题,提高环氧树脂-氮化硼复合材料在电气绝缘领域的适用性,本发明提出了一种借助填料磁化和磁场辅助固化手段的改性方法,在复合材料内部构建出一种片状填料的平铺结构,从而利用氮化硼本身固有的较高介电击穿强度对放电发展过程进行阻碍,进而提升复合材料的介电击穿性能。
发明内容
本发明的目的在于解决掺杂微米粒径的氮化硼会降低环氧树脂的介电击穿强度的问题,提出一种借助填料磁化技术和磁场控制固化技术的抗击穿型环氧树脂-氮化硼复合材料的制备方法。
本发明的技术方案是:
一种抗击穿型环氧树脂-氮化硼复合材料的制备方法,包括如下步骤:
步骤一,氮化硼填料粉末的表面活化处理;
步骤二,表面活化氮化硼粉末的软磁性修饰;
步骤三,旋转磁场辅助下的复合材料制备。
优选地,步骤一具体为:称取10.0g氮化硼粉末,与60mL无水乙醇及40mL去离子水混合,室温下搅拌30min,并在超声波清洗器中持续分散30min,得到氮化硼悬浮液;向氮化硼悬浮液过量滴加0.5g平均分子量70000的聚苯乙烯磺酸钠的20%质量分数水溶液,持续搅拌20min后逐滴加入稀盐酸得到混合溶液a,待混合溶液a的PH为3时停止,而后保持反应温度30℃持续搅拌2h;将反应后的混合溶液a进行抽滤,反复洗涤至中性,60℃干燥1h,得到表面活化后的氮化硼粉末。
优选地,步骤二具体为:取锥形瓶,加入250mL去离子水,严格按照Fe3+与Fe2+的加入摩尔比为2:1,加入2.085gFeCl3·6H2O与0.495gFeSO4·7H2O粉末,得到混合溶液b,将锥形瓶封口,持续搅拌至混合溶液b澄清,而后向锥形瓶内倒入2g表面活化后的氮化硼粉末及50mL无水乙醇,得到混合溶液c,将锥形瓶封口后持续搅拌2h,而后向混合溶液c缓慢滴加0.1mol/L的氢氧化钠标准溶液,此时混合溶液c的颜色将逐渐变深,当混合溶液c瞬间变为纯黑色或极深的墨绿色时停止滴加,继续搅拌10min以保证反应充分,而后关停搅拌设备,升高反应温度至50℃,静置2h,取出所述锥形瓶内沉底粉末,反复抽滤、洗涤至中性,60℃干燥1h,得到Fe3O4颗粒表面软磁性修饰的氮化硼粉末,用于复合材料制备。
优选地,步骤三具体为:将Fe3O4颗粒表面软磁性修饰的氮化硼粉末填料、双酚A型环氧树脂单体E-51和低温固化剂593,以13.9:100:25的质量比混合,40℃真空环境下充分搅拌10min,得到混合溶液d,而后将混合溶液d注至聚四氟乙烯材质的模具中,放置于可产生旋转磁场的二维亥姆霍兹线圈的中心区域,开启磁场发生器,按其设计值调节中心磁场强度为100Oe,磁场矢量始终处于水平面内,转速维持在50rad/s,固化过程持续30min,结束后将样品脱模,并及时对线圈进行冷却处理。
优选地,步骤三中所用设备均需放置于热风干燥箱中,维持干燥箱内温度为55℃以提供固化所需热量。
本发明的有益效果在于:
本发明提供了一种借助填料磁化和场控固化技术的抗击穿型环氧树脂-氮化硼复合材料的制备方法,通过在固化过程中施加旋转磁场,引导片状氮化硼填料在环氧树脂基体中形成平铺型放电阻挡结构,从而有效提升材料的抗击穿性能。同时本发明提供的技术方案所需设备简单,可控性强,效率高,适合于批量化生产的绝缘件制造工业。
附图说明
图1是本发明的旋转磁场辅助下环氧树脂-氮化硼复合材料的制备流程示意图;
图2是本发明的不同Fe3O4荷载量磁化氮化硼的微观图像示意图;
图3是本发明的磁化氮化硼XRD测试结果示意图;
图4是本发明的磁化氮化硼的振动磁强测试结果示意图;
图5是本发明的不同Fe3O4荷载量的复合材料截面示意图;
图6是本发明的油中击穿测试装置结构示意图;
图7是本发明的无磁场下固化所得复合材料击穿强度的韦伯分布示意图;
图8是本发明的磁场辅助下固化所得复合材料击穿强度的韦伯分布示意图;
图9是本发明的体积电阻率测试结果示意图。
附图标记说明:
1-绝缘板;2-上电极;3-下电极;4-待测样片;5-绝缘油。
具体实施方式
下面结合附图和具体实施例对本发明作进一步说明,以使本领域的技术人员可以更好的理解本发明并能予以实施,本发明的实施方式不限于此。
图1所示为旋转磁场辅助下环氧树脂-氮化硼复合材料的制备流程。首先,进行氮化硼填料粉末的表面活化处理:称取10.0g片状六方氮化硼粉末,与60mL无水乙醇及40mL去离子水混合,室温下搅拌30min,并在超声波清洗器中持续分散30min,得到氮化硼悬浮液;向其滴加过量的0.5g平均分子量70000的聚苯乙烯磺酸钠(PSS)的20%质量分数水溶液,持续搅拌20min后逐滴加入稀盐酸,待溶液PH为3时停止,而后保持反应温度30℃持续搅拌2h;将反应后的溶液进行抽滤,反复洗涤至中性,60℃干燥1h,得到表面活化后的PSS包覆氮化硼粉末。
其次,氮化硼粉末的软磁性修饰:取锥形瓶,加入250mL去离子水,严格按照Fe3+与Fe2+摩尔比为2:1,加入2.085gFeCl3·6H2O与0.495gFeSO4·7H2O颗粒/粉末,将锥形瓶封口,持续搅拌至溶液澄清,而后向瓶内倒入2g表面活化后的氮化硼粉末及50mL无水乙醇,将锥形瓶封口后持续搅拌2h,此时被PSS包覆的氮化硼将通过静电作用吸附溶液中的Fe3+和Fe2 +,而后,向其缓慢滴加0.1mol/L的氢氧化钠标准溶液,此时混合溶液的颜色将逐渐变深,当溶液瞬间变为纯黑色或极深的墨绿色时停止滴加,继续搅拌10min以保证反应充分,而后关停搅拌设备,升高反应温度至50℃,静置2h,取出瓶内沉底粉末,反复抽滤、洗涤至中性,60℃干燥1h,得到Fe3O4包覆的氮化硼粉末。
最后,进行复合材料的制备:将氮化硼填料、双酚A型环氧树脂单体E-51和低温固化剂593,以13.9:100:25的质量比混合,40℃真空环境下充分搅拌10min,而后将混合液浇注至聚四氟乙烯材质的模具中,放置于可产生旋转磁场的二维亥姆霍兹线圈的中心区域,开启磁场发生器,按其设计值调节中心磁场强度为100Oe,磁场矢量始终处于水平面内,转速维持在50rad/s,固化过程持续30min,结束后将样品脱模,并及时对线圈进行冷却处理。上述设备均需放置于热风干燥箱中,维持箱内温度为55℃以提供固化所需热量。
在制备过程中,以含Fe试剂的用量为变量,制备了一系列不同Fe3O4荷载量的氮化硼粉末及其复合材料,其样品序号与对应药品用量见表1所示。
表1不同Fe3O4荷载量磁化氮化硼制备的药品用量
Figure BDA0002463671730000051
图2所示为不同Fe3O4荷载量的磁化氮化硼的扫描电子显微镜图像。可以发现,未处理的氮化硼底面直径为数微米,厚度约为70nm,呈片状。对其进行磁化改性后,随着Fe3O4负载量的增加,负载颗粒所处位置由氮化硼边缘向中心发展,在较高负载量下,如对于P5、P6样品,Fe3O4覆盖了氮化硼的整个外表面。通过对Fe元素的EDS面扫,可以验证氮化硼规则薄片表面的细小颗粒即是生成的Fe3O4
图3所示为P0和P1样品的X射线衍射图样,可以发现,磁化后的氮化硼片不仅具有氮化硼本身的002、100、101、102、004特征峰,也出现了明显的属于Fe3O4的220、311、511、440的特征峰,表示Fe3O4实现了有效包覆。
图4所示为不同Fe3O4荷载量的氮化硼粉末的振动磁强测试结果。可以发现,随着负载量的增加,磁化氮化硼的整体饱和磁强度不断增加,100Oe磁强附近的等效磁导率也不断增加。
图5所示为不同Fe3O4负载量的复合材料浅表层截面图,为了有效评估磁助固化下填料平铺结构的实现效果,利用小刀对薄片状样片的上表面进行轻微损坏,从垂直于磁场矢量所在平面的方向,采用扫描电子显微镜对其磨损处进行观测,从而分析浅表层填料的分布形态。图a至图g为施加旋转磁场后不同磁负载量氮化硼掺杂的固化产物浅表层截面图,图f是未施加磁场时P6/ER的浅表层界面图。可以发现,首先,P0/ER和P1/ER样片的磨损面上可以观察到大量垂直于观测面分布的氮化硼填料,这说明,未处理的氮化硼P0和磁负载量较低的P1在掺入环氧树脂后对磁场响应较差,固化后无法在环氧树脂中形成有序的空间取向结构。对于负载率较高的P2/ER至P6/ER,其浅表层截面图中的氮化硼基本上平行于观测面分布,这说明,一定量的磁负载可以赋予氮化硼磁场响应性能,从而在环氧固化的过程中形成填料平铺结构。同时可以发现,在撤去磁场后,高磁负载量的P6/ER固化产物呈现出了填料乱序结构,这说明,一定量值的磁负载和固化时的旋转磁场辅助手段均为氮化硼填料平铺结构形成的必要条件。
图6所示为复合材料样品的工频击穿测试装置图。待测样品4为底面直径9cm,厚度约1mm的圆形薄片,采用直径20mm的球形电极,上电极2施加工频高压,下电极3接地,电极的相对位置由有机玻璃材质绝缘板1固定,从而在球电极间隙区域内构建出稍不均匀电场。为了防止击穿测试中闪络的发生,测试时电极结构须完全浸没在克拉玛依25号变压器绝缘油5中。测试升压速率控制在0.5kV/s,通过示波器和电压衰减探头对击穿发生时的电压幅值进行测量。
图7所示为在固化过程中不施加磁场时,所得复合材料的工频击穿强度的韦伯分布结果。可以发现,掺杂未改性氮化硼粉末会显著降低环氧树脂的工频击穿强度,且在对氮化硼填料实施磁化改性手段后,复合材料的工频击穿强度随Fe3O4负载量的提升不断降低。
图8所示为在固化过程中施加旋转磁场后,所得复合材料的工频击穿强度的韦伯分布结果。可以发现,在适当的Fe3O4负载量下,包括样品P2/ER和P3/ER,都呈现出了比掺杂未处理氮化硼的P0/ER更高的工频击穿强度,且P2/ER样品的击穿强度甚至高于纯环氧树脂样品PureER。
如表2所示,通过提取图7和图8所示韦伯分布的尺寸参数α和形状参数β进行分析,其中,尺寸参数α为击穿概率为63.2%时的外施场强的数值,用于代表材料的本征击穿强度,形状参数β表示同一样品击穿电压数值的分散性,一般情况下β的相对数值比较没有明确意义。
表2样片击穿强度韦伯分布的形状参数和尺寸参数
Figure BDA0002463671730000071
对比分析α参数计算结果,可以发现,纯环氧树脂的击穿强度为33.1kV,掺杂10%质量分数的未处理氮化硼后,击穿强度降低至30.9kV,未施加磁场时,复合材料的击穿强度随着磁负载量的增加进一步降低,对于高负载量的P6/ER样片,其击穿强度降低到了8.6kV。在施加磁场后,复合材料的击穿强度随着磁负载量的增加,呈现出先升后降的趋势,磁助固化制备得到的P2/ER和P3/ER样片其击穿强度提高至35.8kV和32.9kV,其中P2/ER的击穿强度不仅相对于P0/ER的无负载复合材料得到了提高,甚至也高于纯环氧树脂的击穿强度。这说明,填料磁化和磁场固化的技术配合,有效改善了氮化硼掺杂环氧树脂导致的击穿降低,在合适的工艺参数下,甚至可以将复合材料的击穿强度提升到纯环氧树脂之上,这在目前已有的改姓方法中尚无报道。
图9所示为复合材料样片的体积电阻率测试结果。可以发现,在固化过程中不施加磁场时,材料的体积电阻率随着Fe3O4负载量呈现单调递减的趋势,施加旋转磁场后,低负载率下的样品体积电阻率得到提高,高负载率下的样品其体积电阻率被降低。
以上所述,仅是本发明的部分实例,并非是对本发明的限制。凡是根据本发明的技术实质对以上实例所做出的变形和改进,都属于本发明的范围。

Claims (2)

1.一种抗击穿型环氧树脂/氮化硼复合材料的制备方法,其特征在于,包括如下步骤:
步骤一,氮化硼填料粉末的表面活化处理;
步骤二,表面活化氮化硼粉末的软磁性修饰;
步骤三,旋转磁场辅助下的复合材料制备;
所述步骤一具体为:称取10.0g氮化硼粉末,与60mL无水乙醇及40mL去离子水混合,室温下搅拌30min,并在超声波清洗器中持续分散30min,得到氮化硼悬浮液;向所述氮化硼悬浮液过量滴加0.5g平均分子量70000的聚苯乙烯磺酸钠的20%质量分数水溶液,持续搅拌20min后逐滴加入稀盐酸得到混合溶液a,待所述混合溶液a的PH为3时停止,而后保持反应温度30℃持续搅拌2h;将反应后的所述混合溶液a进行抽滤,反复洗涤至中性,60℃干燥1h,得到表面活化后的氮化硼粉末;
所述步骤二具体为:取锥形瓶,加入250mL去离子水,严格按照Fe3+与Fe2+的加入摩尔比为2:1,加入2.085g FeCl3·6H2O与0.495g FeSO4·7H2O粉末,得到混合溶液b,将所述锥形瓶封口,持续搅拌至混合溶液b澄清,而后向所述锥形瓶内倒入2g所述表面活化后的氮化硼粉末及50mL无水乙醇,得到混合溶液c,将所述锥形瓶封口后持续搅拌2h,而后向所述混合溶液c缓慢滴加0.1mol/L的氢氧化钠标准溶液,此时所述混合溶液c的颜色将逐渐变深,当所述混合溶液c瞬间变为纯黑色或极深的墨绿色时停止滴加,继续搅拌10min以保证反应充分,而后关停搅拌设备,升高反应温度至50℃,静置2h,取出所述锥形瓶内沉底粉末,反复抽滤、洗涤至中性,60℃干燥1h,得到Fe3O4颗粒表面软磁性修饰的氮化硼粉末,用于复合材料制备;
所述步骤三具体为:将所述Fe3O4颗粒表面软磁性修饰的氮化硼粉末填料、双酚A型环氧树脂单体E-51和低温固化剂593,以13.9:100:25的质量比混合,40℃真空环境下充分搅拌10min,得到混合溶液d,而后将所述混合溶液d注至聚四氟乙烯材质的模具中,放置于可产生旋转磁场的二维亥姆霍兹线圈的中心区域,开启磁场发生器,按其设计值调节中心磁场强度为100Oe,磁场矢量始终处于水平面内,转速维持在50rad/s,固化过程持续30min,结束后将样品脱模,并及时对线圈进行冷却处理。
2.根据权利要求1所述的抗击穿型环氧树脂/氮化硼复合材料的制备方法,其特征在于,所述步骤三中所用设备均需放置于热风干燥箱中,维持所述干燥箱内温度为55℃以提供固化所需热量。
CN202010327289.3A 2020-04-23 2020-04-23 一种抗击穿型环氧树脂-氮化硼复合材料的制备方法 Expired - Fee Related CN111574909B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010327289.3A CN111574909B (zh) 2020-04-23 2020-04-23 一种抗击穿型环氧树脂-氮化硼复合材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010327289.3A CN111574909B (zh) 2020-04-23 2020-04-23 一种抗击穿型环氧树脂-氮化硼复合材料的制备方法

Publications (2)

Publication Number Publication Date
CN111574909A CN111574909A (zh) 2020-08-25
CN111574909B true CN111574909B (zh) 2021-11-02

Family

ID=72126765

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010327289.3A Expired - Fee Related CN111574909B (zh) 2020-04-23 2020-04-23 一种抗击穿型环氧树脂-氮化硼复合材料的制备方法

Country Status (1)

Country Link
CN (1) CN111574909B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115725115A (zh) * 2022-11-22 2023-03-03 哈尔滨理工大学 一种磁性取向核壳粒子BN@Fe3O4粉体填充环氧树脂复合材料制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108485190A (zh) * 2018-04-03 2018-09-04 西安交通大学 一种高导热绝缘氮化硼复合材料及其制备方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1017795B (de) * 1954-05-25 1957-10-17 Siemens Ag Verfahren zur Herstellung reinster kristalliner Substanzen, vorzugsweise Halbleitersubstanzen
KR960705311A (ko) * 1993-09-30 1996-10-09 워렌 리차드 보비 코팅된 자기 기록 매체, 코팅된 자기 매체용 페인트 및 코팅된 자기 매체의 제조 방법(coated magnetic recording medium, paint for coated magnetic medium and method for producing coated magnetic medium)
US6982501B1 (en) * 2003-05-19 2006-01-03 Materials Modification, Inc. Magnetic fluid power generator device and method for generating power
EP1873206A1 (en) * 2006-06-26 2008-01-02 ETH Zürich Nano-composite dielectrics
WO2011095208A1 (en) * 2010-02-03 2011-08-11 Abb Research Ltd Electrical insulation system
US10491071B2 (en) * 2017-02-16 2019-11-26 General Electric Company Method of manufacturing an electric machine with a conformal stator coating
CN108565109B (zh) * 2018-06-11 2020-09-25 中国计量大学 一种软磁复合材料的制备方法
CN109825010B (zh) * 2019-02-22 2020-10-30 安徽大学 一种利用磁场取向制备砖-泥结构导热聚合物复合材料的方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108485190A (zh) * 2018-04-03 2018-09-04 西安交通大学 一种高导热绝缘氮化硼复合材料及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
《Anisotropically Alignable Magnetic Boron Nitride Platelets》;Ho Sun Lim, Jin Woo Oh, So Yeon Kim, Myong-Jae Yoo, Seong-Dae P;《Chemistry of materials》;20130722;全文 *
《Thermal anisotropy of epoxy resin-based nano-hybrid films containing BN nanosheets under a rotating superconducting magnetic field》;Hong-Baek Cho, Masaya Mitsuhashi, Tadachika Nakayama, et al.;《Materials Chemistry and Physics》;20130531;第139卷(第2-3期);4. Conclusions部分第10-15行 *
磁场诱导下环氧树脂/BN有序复合材料的制备及其特性研究;阚宇强;《中国优秀硕士学位论文全文数据库 工程科技II辑》;20200115(第01期);第7-11页、第21、32页 *

Also Published As

Publication number Publication date
CN111574909A (zh) 2020-08-25

Similar Documents

Publication Publication Date Title
Chi et al. Nano iron oxide-deposited calcium copper titanate/polyimide hybrid films induced by an external magnetic field: toward a high dielectric constant and suppressed loss
Li et al. Self-healing superhydrophobic polyvinylidene fluoride/Fe 3 O 4@ polypyrrole fiber with core–sheath structures for superior microwave absorption
Lv et al. Recent progress in nanofluids based on transformer oil: preparation and electrical insulation properties
Andritsch Epoxy based nanodielectrics for high voltage DC-applications: synthesis, dielectric properties and space charge dynamics
Quinsaat et al. Highly stretchable dielectric elastomer composites containing high volume fractions of silver nanoparticles
Gass et al. Superparamagnetic polymer nanocomposites with uniform Fe3O4 nanoparticle dispersions
Gonzalez et al. Dielectric response of vulcanized natural rubber containing BaTiO3 filler: The role of particle functionalization
Li et al. Influence of hydrostatic pressure on dielectric properties of polyethylene/aluminum oxide nanocomposites
Wang et al. Influence of nanofillers on electrical characteristics of epoxy resins insulation
EA029994B1 (ru) Углеродный материал на основе графита, подходящий в качестве предшественника графена, а также способ его получения
Vasundhara et al. Enhancement of dielectric permittivity and ferroelectricity of a modified cobalt nanoparticle and polyvinylidene fluoride based composite
US20200265997A1 (en) Metal-polymer capacitor comprising a dielectric film with high dielectric constant and strong breakdown field
CN111574909B (zh) 一种抗击穿型环氧树脂-氮化硼复合材料的制备方法
CN104321839A (zh) 软磁复合材料
Zhai et al. Enhanced microwave absorbing performance of hydrogenated acrylonitrile–butadiene rubber/multi-walled carbon nanotube composites by in situ prepared rare earth acrylates
CN104671772B (zh) 改性纳米掺杂制备氧化锌压敏电阻复合粉体及制备方法
CN107840324A (zh) 一种轻质、柔性石墨烯基多元复合吸波膜及其制备方法
CN109694537A (zh) 含有量子点的储能复合薄膜材料及制备方法
Chen et al. Magnetically driven hierarchically ordered carbonyl iron@ SiO 2/Ni@ Ag/silicone rubber composite film for enhanced electromagnetic interference shielding with ultralow reflection
Hussain et al. Highly stable APTES incorporated CNTs based ternary polymer composites with improved dielectric and thermal properties
Nelson The promise of dielectric nanocomposites
Ren et al. Preparation and microwave absorption properties of novel carbon nanofiber/Fe3O4 composites
Manikandan et al. Influence of amine-functionalised graphene oxide filler on mechanical and insulating property of epoxy nanocomposites
Cao et al. Core-shell structured Ag@ PDA nanowires and BT@ PDA nanoparticles for three-phase flexible polymer nanocomposites with excellent dielectric properties
González et al. Improvement of insulation effectiveness of natural rubber by adding hydroxyl-functionalized barium titanate nanoparticles

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20211102

CF01 Termination of patent right due to non-payment of annual fee