CN111574225A - 微波介质陶瓷滤波器干压一次成型方法及其陶瓷滤波器 - Google Patents

微波介质陶瓷滤波器干压一次成型方法及其陶瓷滤波器 Download PDF

Info

Publication number
CN111574225A
CN111574225A CN202010480390.2A CN202010480390A CN111574225A CN 111574225 A CN111574225 A CN 111574225A CN 202010480390 A CN202010480390 A CN 202010480390A CN 111574225 A CN111574225 A CN 111574225A
Authority
CN
China
Prior art keywords
dry
heating
ceramic filter
pressing
heating rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010480390.2A
Other languages
English (en)
Inventor
张保林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN202010480390.2A priority Critical patent/CN111574225A/zh
Publication of CN111574225A publication Critical patent/CN111574225A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/608Green bodies or pre-forms with well-defined density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Chemistry (AREA)

Abstract

本发明公开一种微波介质陶瓷滤波器干压一次成型方法,包括以下步骤:步骤一:将重量份为100的ASCT粉体和重量份为1‑5的有机载体混合均匀,通过喷雾造粒后获得干压颗粒料;其中,ASCT粉体由特定重量百分比的Al2O3、Sm2O3、CaCo3、TiO2混合形成;步骤二:将干压颗粒料经过精密模具干压成型,得到坯体;步骤三:对坯体进行烧结得到陶瓷滤波器主体。本发明通过采用Al2O3、Sm2O3、CaCo3、TiO2作为主体材料,并将主体材料与有机载体进行喷雾造粒,得到的干压颗粒料综合性能更稳定,收缩率误差在0.2%以内,生坯密度在3±0.1g/cm3,烧结后产品密度≥5.0g/cm3,结合高精密流道模具可以做到产品烧结后尺寸参数免加工,且产品一次良率≥90%,提高陶瓷滤波器的生产效率和生产质量,降低企业生产成本。

Description

微波介质陶瓷滤波器干压一次成型方法及其陶瓷滤波器
技术领域
本发明涉及介质滤波器技术领域,具体涉及一种微波介质陶瓷滤波器干压一次成型方法及其陶瓷滤波器。
背景技术
介质滤波器是一种基本的微波元件,广泛应用于移动通讯、卫星通信、军用雷达、全球定位系统、蓝牙技术、无线局域网等现代通信中,是现代通信技术的关键基础器件。应用于微波电路的介质滤波器,除了必备的机械强度外,还需满足如下介电性能要求:(1)在微波频率下具有相对较高的介电常数εr,一般要求εr>19,以便于微波器件小型化、集成化;(2)在微波谐振频率下具有极低的介电损耗,即很高的品质因数(Q×f),以保证优良的选频特性和降低器件在高频下的插入损耗;(3)接近零的谐振频率温度系数(τf),以保证器件在温度变化环境中谐振频率的高度稳定性。
目前,介质滤波器的陶瓷材料主体由MgO、CaO、SiO2、Nd2O3、Sm2O3和TiO2组成,材料介电常数εr=19.5±0.2,f×Q≥52000GHz,τf(-40℃~25℃)=5~13ppm/℃,τf(25℃~110℃)=-5~0ppm/℃,介电性能较低,而且该种陶瓷材料主体通过干压成型法成型仍需要对产品的尺寸参数进行二次加工,造成滤波器的生产效率低,加工成本高,整体产品的一次良率仅有70%左右。
发明内容
本发明针对现有技术存在之缺失,提供一种微波介质陶瓷滤波器干压一次成型方法及其陶瓷滤波器,以解决技术背景中微波介质陶瓷滤波器介电性能低,介电损耗高,温度变化环境中谐振频率稳定性差,以及需要二次加工成型等技术问题。
为实现上述目的,本发明采用如下之技术方案:
一种微波介质陶瓷滤波器干压一次成型方法,包括以下步骤:
步骤一:将重量份为100的ASCT粉体和重量份为1-5的有机载体混合均匀,通过喷雾造粒后获得干压颗粒料;其中,ASCT粉体由特定重量百分比的Al2O3、Sm2O3、CaCo3、TiO2混合形成;
步骤二:将干压颗粒料经过精密模具干压成型,得到坯体;
步骤三:对坯体进行烧结得到陶瓷滤波器主体。
作为一种优选方案,所述ASCT粉体中各组份的重量百分比如下:
Figure BDA0002517137020000021
作为一种优选方案,所述有机载体为聚乙烯醇、硬脂酸和石蜡的混合物。
作为一种优选方案,所述有机载体中各组份的重量百分比如下:
聚乙烯醇 5-15%,
硬脂酸 5-15%,
石蜡 70-90%。
作为一种优选方案,步骤一中,喷雾造粒过程为:先将喷雾造粒机温度升温至150-350℃,将ASCT粉体和有机载体加入喷雾造粒机的料仓内,喷雾造粒100-200min,冷却40min后制得干压颗粒料。
作为一种优选方案,步骤二中,干压成型压力为20-40T,成型时间为25-40s。
作为一种优选方案,步骤三中,烧结的过程为:将干压成型得到的坯体移入高温烧结窑,以2℃/min的升温速率升温至120℃,保温2小时,再以1.5℃/min的升温速率升温至200℃,保温2小时,接着以1.5℃/min的升温速率升温至350℃,保温2小时,再以1℃/min的升温速率升温至400℃,保温2小时,然后以1.5℃/min的升温速率升温至550℃,再以1.5℃/min的升温速率升温至700℃,接着以1.5℃/min的升温速率升温至850℃,再以1.5℃/min的升温速率升温至1000℃,然后以1.5℃/min的升温速率升温至1300℃,再以1.5℃/min的升温速率升温至1470℃,保温4小时,再以1.5℃/min的降温速率降温至1300℃,然后以1.5℃/min的降温速率降温至1150℃,最后以1.5℃/min的降温速率降温至1000℃,保温2-3小时后移出高温烧结窑。
一种陶瓷滤波器,包括陶瓷滤波器主体,所述陶瓷滤波器主体由上述的微波介质陶瓷滤波器干压一次成型方法一次干压成型,尺寸参数无需后续加工。
本发明与现有技术相比具有明显的优点和有益效果,具体而言:1、通过采用Al2O3、Sm2O3、CaCo3、TiO2作为主体材料,并将主体材料与有机载体进行喷雾造粒,得到的干压颗粒料综合性能更稳定,收缩率误差在0.2%以内,生坯密度在3±0.1g/cm3,烧结后产品密度≥5.0g/cm3,结合自行设计的高精密流道模具可以做到产品烧结后尺寸参数免加工,且产品一次良率≥90%,提高微波介质陶瓷滤波器的生产效率和生产质量,降低企业生产成本;2、通过采用Al2O3、Sm2O3、CaCo3、TiO2作为主体材料,粉体材料配方性能一致性更高,材料介电常数εr=19.9±0.2,f×Q≥82000GHz,0<τf(-40℃~25℃)≤4ppm/℃,-2.5≤τf(25℃~110℃)<0ppm/℃,从而提高了微波介质陶瓷滤波器的介电性能,降低了介电损耗,提高了温度变化环境中谐振频率的稳定性。
为更清楚地阐述本发明的结构特征、技术手段及其所达到的具体目的和功能,下面结合附图与具体实施例来对本发明作进一步详细说明:
附图说明
图1是本发明之实施例的流程示意图。
具体实施方式
在本发明的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述发明和简化描述,而不是指示或暗示所指的位置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以视具体情况理解上述术语在本发明中的具体含义。
如图1所示,一种微波介质陶瓷滤波器干压一次成型方法,包括以下步骤:
步骤一100:将重量份为100的ASCT粉体和重量份为1-5的有机载体混合均匀,通过喷雾造粒后获得干压颗粒料;其中,ASCT粉体由以下重量百分比的材料混合形成:30-60%的Al2O3,20-40%的Sm2O3,14-25%的CaCo3,1-10%的TiO2;所述有机载体由以下重量百分比的材料混合形成:5-15%的聚乙烯醇、5-15%的硬脂酸和70-90%的石蜡;喷雾造粒过程为:先将喷雾造粒机温度升温至150-350℃,将ASCT粉体和有机载体加入喷雾造粒机的料仓内,喷雾造粒100-200min,冷却40min后制得干压颗粒料。通过喷雾造粒,使有机载体形成中间有机物助剂体系,该体系确保了陶瓷滤波器产品干压成型后的强度,以及烧结后产品材质的强度和密度均匀,一致性高。
步骤二200:将干压颗粒料经过精密模具干压成型,得到坯体;干压成型压力为20-40T,成型时间为25-40s。
步骤三300:对坯体进行烧结得到陶瓷滤波器主体;烧结时:先将干压成型得到的坯体移入高温烧结窑,以2℃/min的升温速率升温至120℃,保温2小时,再以1.5℃/min的升温速率升温至200℃,保温2小时,接着以1.5℃/min的升温速率升温至350℃,保温2小时,再以1℃/min的升温速率升温至400℃,保温2小时,然后以1.5℃/min的升温速率升温至550℃,再以1.5℃/min的升温速率升温至700℃,接着以1.5℃/min的升温速率升温至850℃,再以1.5℃/min的升温速率升温至1000℃,然后以1.5℃/min的升温速率升温至1300℃,再以1.5℃/min的升温速率升温至1470℃,保温4小时,再以1.5℃/min的降温速率降温至1300℃,然后以1.5℃/min的降温速率降温至1150℃,最后以1.5℃/min的降温速率降温至1000℃,保温2-3小时后移出高温烧结窑。
本发明还提供一种陶瓷滤波器,包括陶瓷滤波器主体,所述陶瓷滤波器主体由上述的微波介质陶瓷滤波器干压一次成型方法一次干压成型,尺寸参数无需后续加工。
下面结合几个具体实施例来说明本发明的微波介质陶瓷滤波器主体成型过程。
实施例一
一种微波介质陶瓷滤波器干压一次成型方法,包括以下步骤:
(1)将重量份为100的ASCT粉体和重量份为1的有机载体混合均匀,通过喷雾造粒后获得干压颗粒料;其中,ASCT粉体由以下重量百分比的材料混合形成:30%的Al2O3,40%的Sm2O3,25%的CaCo3,5%的TiO2;所述有机载体由以下重量百分比的材料混合形成:5%的聚乙烯醇、15%的硬脂酸和80%的石蜡;喷雾造粒过程为:先将喷雾造粒机温度升温至150℃,将ASCT粉体和有机载体加入喷雾造粒机的料仓内,喷雾造粒150min,冷却40min后制得干压颗粒料。
(2)将干压颗粒料经过精密模具干压成型,得到坯体;干压成型压力为20T,成型时间为30s。
(3)对坯体进行烧结得到陶瓷滤波器主体;烧结时:先将干压成型得到的坯体移入高温烧结窑,以2℃/min的升温速率升温至120℃,保温2小时,再以1.5℃/min的升温速率升温至200℃,保温2小时,接着以1.5℃/min的升温速率升温至350℃,保温2小时,再以1℃/min的升温速率升温至400℃,保温2小时,然后以1.5℃/min的升温速率升温至550℃,再以1.5℃/min的升温速率升温至700℃,接着以1.5℃/min的升温速率升温至850℃,再以1.5℃/min的升温速率升温至1000℃,然后以1.5℃/min的升温速率升温至1300℃,再以1.5℃/min的升温速率升温至1470℃,保温4小时,再以1.5℃/min的降温速率降温至1300℃,然后以1.5℃/min的降温速率降温至1150℃,最后以1.5℃/min的降温速率降温至1000℃,保温2.5小时后移出高温烧结窑,得到微滤介质陶瓷滤波器主体。
实施例二
一种微波介质陶瓷滤波器干压一次成型方法,包括以下步骤:
(1)将重量份为100的ASCT粉体和重量份为5的有机载体混合均匀,通过喷雾造粒后获得干压颗粒料;其中,ASCT粉体由以下重量百分比的材料混合形成:60%的Al2O3,20%的Sm2O3,19%的CaCo3,1%的TiO2;所述有机载体由以下重量百分比的材料混合形成:5%的聚乙烯醇、5%的硬脂酸和90%的石蜡;喷雾造粒过程为:先将喷雾造粒机温度升温至350℃,将ASCT粉体和有机载体加入喷雾造粒机的料仓内,喷雾造粒200min,冷却40min后制得干压颗粒料。
(2)将干压颗粒料经过精密模具干压成型,得到坯体;干压成型压力为40T,成型时间为40s。
(3)对坯体进行烧结得到陶瓷滤波器主体;烧结时:先将干压成型得到的坯体移入高温烧结窑,以2℃/min的升温速率升温至120℃,保温2小时,再以1.5℃/min的升温速率升温至200℃,保温2小时,接着以1.5℃/min的升温速率升温至350℃,保温2小时,再以1℃/min的升温速率升温至400℃,保温2小时,然后以1.5℃/min的升温速率升温至550℃,再以1.5℃/min的升温速率升温至700℃,接着以1.5℃/min的升温速率升温至850℃,再以1.5℃/min的升温速率升温至1000℃,然后以1.5℃/min的升温速率升温至1300℃,再以1.5℃/min的升温速率升温至1470℃,保温4小时,再以1.5℃/min的降温速率降温至1300℃,然后以1.5℃/min的降温速率降温至1150℃,最后以1.5℃/min的降温速率降温至1000℃,保温2小时后移出高温烧结窑,得到微滤介质陶瓷滤波器主体。
实施例三
一种微波介质陶瓷滤波器干压一次成型方法,包括以下步骤:
(1)将重量份为100的ASCT粉体和重量份为3的有机载体混合均匀,通过喷雾造粒后获得干压颗粒料;其中,ASCT粉体由以下重量百分比的材料混合形成:50%的Al2O3,26%的Sm2O3,14%的CaCo3,10%的TiO2;所述有机载体由以下重量百分比的材料混合形成:15%的聚乙烯醇、15%的硬脂酸和70%的石蜡;喷雾造粒过程为:先将喷雾造粒机温度升温至250℃,将ASCT粉体和有机载体加入喷雾造粒机的料仓内,喷雾造粒100min,冷却40min后制得干压颗粒料。
(2)将干压颗粒料经过精密模具干压成型,得到坯体;干压成型压力为30T,成型时间为25s。
(3)对坯体进行烧结得到陶瓷滤波器主体;烧结时:先将干压成型得到的坯体移入高温烧结窑,以2℃/min的升温速率升温至120℃,保温2小时,再以1.5℃/min的升温速率升温至200℃,保温2小时,接着以1.5℃/min的升温速率升温至350℃,保温2小时,再以1℃/min的升温速率升温至400℃,保温2小时,然后以1.5℃/min的升温速率升温至550℃,再以1.5℃/min的升温速率升温至700℃,接着以1.5℃/min的升温速率升温至850℃,再以1.5℃/min的升温速率升温至1000℃,然后以1.5℃/min的升温速率升温至1300℃,再以1.5℃/min的升温速率升温至1470℃,保温4小时,再以1.5℃/min的降温速率降温至1300℃,然后以1.5℃/min的降温速率降温至1150℃,最后以1.5℃/min的降温速率降温至1000℃,保温3小时后移出高温烧结窑,得到微滤介质陶瓷滤波器主体。
下表为以上实施例制备得到的微波介质陶瓷滤波器主体与现有材料成型工艺制备得到的微波介质陶瓷滤波器主体的主要参数对照表。
Figure BDA0002517137020000091
由上表可见,采用本发明提供的微波介质陶瓷滤波器注塑成型方法制备得到的微波介质陶瓷滤波器主体介电常数更大,品质因数更高,温漂系数更接近零,同时,产品制备成型的几何尺寸精度更高,不需要对几何尺寸进行二次加工。
综上所述,本发明通过采用Al2O3、Sm2O3、CaCo3、TiO2作为主体材料,并将主体材料与有机载体进行喷雾造粒,得到的干压颗粒料综合性能更稳定,收缩率误差在0.2%以内,生坯密度在3±0.1g/cm3,烧结后产品密度≥5.0g/cm3,结合自行设计的高精密流道模具可以做到产品烧结后尺寸参数免加工,且产品一次良率≥90%,提高微波介质陶瓷滤波器的生产效率和生产质量,降低企业生产成本;通过采用Al2O3、Sm2O3、CaCo3、TiO2作为主体材料,粉体材料配方性能一致性更高,材料介电常数εr=19.9±0.2,f×Q≥82000GHz,0<τf(-40℃~25℃)≤4ppm/℃,-2.5≤τf(25℃~110℃)<0ppm/℃,从而提高了微波介质陶瓷滤波器的介电性能,降低了介电损耗,提高了温度变化环境中谐振频率的稳定性。
以上所述,仅是本发明的较佳实施例而已,并不用以限制本发明,故凡是依据本发明的技术实际对以上实施例所作的任何修改、等同替换、改进等,均仍属于本发明技术方案的范围内。

Claims (8)

1.一种微波介质陶瓷滤波器干压一次成型方法,其特征在于,包括以下步骤:
步骤一:将重量份为100的ASCT粉体和重量份为1-5的有机载体混合均匀,通过喷雾造粒后获得干压颗粒料;其中,ASCT粉体由特定重量百分比的Al2O3、Sm2O3、CaCo3、TiO2混合形成;
步骤二:将干压颗粒料经过精密模具干压成型,得到坯体;
步骤三:对坯体进行烧结得到陶瓷滤波器主体。
2.根据权利要求1所述的微波介质陶瓷滤波器干压一次成型方法,其特征在于,所述ASCT粉体中各组份的重量百分比如下:
Figure FDA0002517137010000011
3.根据权利要求1所述的微波介质陶瓷滤波器干压一次成型方法,其特征在于,所述有机载体为聚乙烯醇、硬脂酸和石蜡的混合物。
4.根据权利要求3所述的微波介质陶瓷滤波器干压一次成型方法,其特征在于,所述有机载体中各组份的重量百分比如下:
聚乙烯醇 5-15%,
硬脂酸 5-15%,
石蜡 70-90%。
5.根据权利要求1所述的微波介质陶瓷滤波器干压一次成型方法,其特征在于,步骤一中,喷雾造粒过程为:先将喷雾造粒机温度升温至150-350℃,将ASCT粉体和有机载体加入喷雾造粒机的料仓内,喷雾造粒100-200min,冷却40min后制得干压颗粒料。
6.根据权利要求1所述的微波介质陶瓷滤波器干压一次成型方法,其特征在于,步骤二中,干压成型压力为20-40T,成型时间为25-40s。
7.根据权利要求1所述的微波介质陶瓷滤波器干压一次成型方法,其特征在于,步骤三中,烧结的过程为:将干压成型得到的坯体移入高温烧结窑,以2℃/min的升温速率升温至120℃,保温2小时,再以1.5℃/min的升温速率升温至200℃,保温2小时,接着以1.5℃/min的升温速率升温至350℃,保温2小时,再以1℃/min的升温速率升温至400℃,保温2小时,然后以1.5℃/min的升温速率升温至550℃,再以1.5℃/min的升温速率升温至700℃,接着以1.5℃/min的升温速率升温至850℃,再以1.5℃/min的升温速率升温至1000℃,然后以1.5℃/min的升温速率升温至1300℃,再以1.5℃/min的升温速率升温至1470℃,保温4小时,再以1.5℃/min的降温速率降温至1300℃,然后以1.5℃/min的降温速率降温至1150℃,最后以1.5℃/min的降温速率降温至1000℃,保温2-3小时后移出高温烧结窑。
8.一种陶瓷滤波器,其特征在于,包括陶瓷滤波器主体,所述陶瓷滤波器主体由权利要求1-7任意一项所述的微波介质陶瓷滤波器干压一次成型方法一次干压成型。
CN202010480390.2A 2020-05-30 2020-05-30 微波介质陶瓷滤波器干压一次成型方法及其陶瓷滤波器 Pending CN111574225A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010480390.2A CN111574225A (zh) 2020-05-30 2020-05-30 微波介质陶瓷滤波器干压一次成型方法及其陶瓷滤波器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010480390.2A CN111574225A (zh) 2020-05-30 2020-05-30 微波介质陶瓷滤波器干压一次成型方法及其陶瓷滤波器

Publications (1)

Publication Number Publication Date
CN111574225A true CN111574225A (zh) 2020-08-25

Family

ID=72114427

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010480390.2A Pending CN111574225A (zh) 2020-05-30 2020-05-30 微波介质陶瓷滤波器干压一次成型方法及其陶瓷滤波器

Country Status (1)

Country Link
CN (1) CN111574225A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114262212A (zh) * 2021-12-27 2022-04-01 广东泛瑞新材料有限公司 一种黑色氧化铝陶瓷颗粒料及其制备方法和应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101565300A (zh) * 2008-04-25 2009-10-28 浙江大学 一种低损耗微波介质陶瓷

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101565300A (zh) * 2008-04-25 2009-10-28 浙江大学 一种低损耗微波介质陶瓷

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
郭立新等: "《对流层传播与散射及其对无线系统的影响》", 30 November 2008, 西安电子科技大学出版社 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114262212A (zh) * 2021-12-27 2022-04-01 广东泛瑞新材料有限公司 一种黑色氧化铝陶瓷颗粒料及其制备方法和应用
CN114262212B (zh) * 2021-12-27 2022-10-28 广东泛瑞新材料有限公司 一种黑色氧化铝陶瓷颗粒料及其制备方法和应用

Similar Documents

Publication Publication Date Title
CN111763083B (zh) 一种低温烧结型超低损耗微波介电陶瓷及其制备方法和应用
CN114874010B (zh) 一种微波陶瓷材料DyVO4及其制备方法
CN109231967B (zh) Bi2O3-B2O3二元体系微波介质陶瓷材料及其制备方法
CN108147809B (zh) 中低温烧结钡-钛系微波介质材料及制备方法
CN114933468B (zh) 冷烧结辅助低温致密化Zn3B2O6微波陶瓷材料的制备方法
CN114773060B (zh) 一种多层陶瓷电容器用Mg-Ta基介质陶瓷及其低温制备方法
CN111574225A (zh) 微波介质陶瓷滤波器干压一次成型方法及其陶瓷滤波器
CN108975913B (zh) 一种ZnO-TiO2-Nb2O5基LTCC材料及其制备方法
CN111548145A (zh) 微波介质陶瓷滤波器注塑成型方法及其陶瓷滤波器
WO2017113221A1 (zh) 陶瓷材料及其制备方法、谐振器、滤波器及射频拉远设备
CN108585809B (zh) 一种低温烧结SiO2基微波介质陶瓷材料及其制备方法
WO2017113218A1 (zh) 陶瓷材料及其制备方法、谐振器、滤波器及射频拉远设备
CN113336539A (zh) 微波介质陶瓷材料、制备方法及应用
CN115947596B (zh) 一种基于微波冷烧结的微波介质陶瓷材料及低碳制备方法
CN111943691A (zh) 一种钡钴锌铌体系微波介质陶瓷烧结退火工艺
CN114736012B (zh) 具有超高q值的低介微波介质陶瓷及其ltcc材料
CN112851333B (zh) 一种高q值微波介质陶瓷材料及其制备方法
CN105399413A (zh) 一种低介电常数、低损耗的微波介质陶瓷及制备方法
CN104692792A (zh) 低温烧结温度稳定型锡酸盐微波介质陶瓷材料
CN113956033A (zh) 一种中介高q值微波介质陶瓷及其制备方法
CN104710175A (zh) 一种低介电常数锆酸镁锂微波介质陶瓷材料及其制备方法
WO2017113223A1 (zh) 陶瓷材料及其制备方法、谐振器、滤波器及射频拉远设备
CN112250436B (zh) 一种陶瓷材料及其制备方法与应用
CN110698194B (zh) 一种层状结构的微波介质陶瓷及其制备方法
CN110723968A (zh) 一种高介电常数的微波介质陶瓷及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20200825