CN111574203A - 一种多孔陶瓷材料及其制备方法 - Google Patents
一种多孔陶瓷材料及其制备方法 Download PDFInfo
- Publication number
- CN111574203A CN111574203A CN202010419499.5A CN202010419499A CN111574203A CN 111574203 A CN111574203 A CN 111574203A CN 202010419499 A CN202010419499 A CN 202010419499A CN 111574203 A CN111574203 A CN 111574203A
- Authority
- CN
- China
- Prior art keywords
- parts
- ceramic material
- porous ceramic
- ceramic
- tetrahydroxy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/10—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/16—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
- C04B35/18—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
- C04B35/185—Mullite 3Al2O3-2SiO2
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/44—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminates
- C04B35/443—Magnesium aluminate spinel
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/56—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
- C04B35/565—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B38/00—Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
- C04B38/02—Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by adding chemical blowing agents
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/34—Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3409—Boron oxide, borates, boric acids, or oxide forming salts thereof, e.g. borax
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/34—Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/349—Clays, e.g. bentonites, smectites such as montmorillonite, vermiculites or kaolines, e.g. illite, talc or sepiolite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/44—Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
- C04B2235/449—Organic acids, e.g. EDTA, citrate, acetate, oxalate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6562—Heating rate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6567—Treatment time
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Compositions Of Oxide Ceramics (AREA)
- Filtering Materials (AREA)
Abstract
本发明提供了一种多孔陶瓷材料及其制备方法,属于陶瓷材料领域。所述陶瓷材料所含原料及重量份数为:骨料60‑75份、高岭土5‑10份、四羟基草酸铝8‑15份、熔剂1‑3份、粘合剂3‑7份、分散剂0.5‑2份、润滑剂1‑3份、水15‑18份。其中四羟基草酸铝在陶瓷泥料灼烧过程中释放气体,完成陶瓷材料的造孔,其分解得到的超细氧化铝则作为陶瓷组分原位结合于陶瓷相中,由于熔剂的加入使陶瓷泥料灼烧过程中四羟基草酸铝分解释放气体和低熔陶瓷相生成的温度窗口相匹配,避免了常见造孔剂分解释放气体时陶瓷尚未产生熔融相的问题,以及常见造孔剂分解排放污染性气体问题。本发明获得的多孔陶瓷孔道均匀贯通、孔隙率可控、稳定性好。
Description
技术领域
本发明属于陶瓷材料领域,尤其是涉及一种多孔陶瓷材料及其制备方法。
背景技术
多孔陶瓷材料大部分应用在过滤领域中,多孔陶瓷材料通常是用α-氧化铝、莫来石、碳化硅等为主料,经过成型,烧结而成,现有技术中,为了提高多孔材料过滤性能,通常添加大量的有机造孔剂,来提高通量,这样会造成孔径大小和分布比较宽、强度不高、产品易开裂、合格率不高等缺陷。随着经济的高速发展,工业生产也随之发展,多孔陶瓷材料中平板陶瓷膜作为水过滤的一种重要材料,在工业生产环保中担任重要角色。面临的问题是废水、废气、固废三废等环保;急需要解决,由于工业上的废水大部分是酸碱性的,有机膜不耐腐蚀,无机多孔陶瓷膜具有耐腐蚀,耐温,强度高等优势。
而平板陶瓷膜在多孔陶瓷领域里又具有低成本、高通量、低能耗、性能稳定、易清洗等特点,是当今工业水处理中首先的环保产品。同时平板陶瓷膜具有热稳定性好,耐酸、耐碱、耐有机溶剂,pH值适用范围宽,机械强度大,易清洗、易再生,能耗低等特点。
目前大部平板膜生产厂家,生产平板膜支撑体为了增加气孔率,使用有机造孔剂量大,造孔剂大多是淀粉、石墨、树脂粉、聚合物塑料球、木炭粉、石蜡等;一般添加量高达10%以上,但是有机物高温排焦会带来产品开裂比较多,合格率低,另一方面,由于使用的有机造孔剂,为了增加气孔隙,必须增加造孔剂添加量,这样会造成产品强度下降;同时还会排放大量有害气体,严重污染环境。且现有技术中多孔陶瓷材料的有机造孔剂与无机主料如α-氧化铝、莫来石、碳化硅等之间混合之间相容性差,结合力差,易产生团聚现象,产品出现大孔,孔径分布不均等缺陷。
发明内容
本申请针对现有技术的不足,本发明提供了一种利用四羟基草酸铝造孔剂制备的多孔陶瓷材料及其制备方法。本发明工艺简单,低成本,制备得到的陶瓷材料具有高孔隙、能量高、稳定性好等特点。
本发明的技术方案如下:
一种多孔陶瓷材料,所述陶瓷材料所含原料及各原料重量份数为:骨料60-75份、高岭土5-10份、四羟基草酸铝8-15份、熔剂1-3份、粘合剂3-7份、分散剂0.5-2份、润滑剂1-3份与水15-18份。
所述骨料为α-氧化铝、碳化硅、莫来石或尖晶石中的至少一种;所述骨料的平均粒径为5-15μm。
所述陶瓷材料形状为片状、板状、管状或网状多孔陶瓷材料中的一种。
所述四羟基草酸铝的粒径在40nm-5μm之间;优选的,所述四羟基草酸铝粒径在40nm-2μm之间。
所述高岭土为膨润土、红柱石或水洗高岭土中的至少一种,且平均粒度为3-5μm。
所述熔剂为硼酸、氧化硼、硼酸钠或硼酸锌中的至少一种,硼酸、氧化硼、硼酸钠与硼酸锌的纯度大于95%。
所述粘合剂为羟丙基甲基纤维素、羟乙基纤维素、黄原胶或淀粉醚中的至少一种;且所述粘合剂的粘度范围为4000-6000mPa·s。
所述分散剂为油酸、硬脂酸钠、月桂酸钾皂、硬脂酸或月桂酸中的至少一种。
所述润滑剂为菜籽油、色拉油、玉米油、桐油或烯烃油中的至少一种。
所述多孔陶瓷材料的制备方法包括如下步骤:
(1)混合:将四羟基草酸铝和高岭土依次放入混料机中搅拌混匀,之后加入骨料进行搅拌混匀,接着加入熔剂并搅拌混匀,最后添加粘合剂,得到预混料;同时将润滑剂、分散剂和水预先搅拌混合5min-10min,得到混合溶液;
(2)捏合:将步骤(1)中所得预混料加入捏合机,边捏合边喷入步骤(1)中所得混合溶液,得到捏合泥料;
(3)练泥:将步骤(2)中所得捏合泥料进行真空练泥2遍,真空度≥-0.08MPa,得到练泥浆料;
(4)陈腐:将步骤(3)中所得泥料放入温度为18-26℃陈腐室陈腐24h-48h,得到陈腐泥料;
(5)挤出成型:将步骤(4)中所得陈腐泥料经挤出机真空挤出陶瓷泥片;
(6)烘干:将步骤(5)中所得陶瓷泥片经微波干燥后,使得陶瓷泥片含水率≤3%;
(7)烧成:将步骤(6)中所得烘干陶瓷泥片装入燃气式隧道窑,经过阶梯式加热方式:从室温加热到400℃,对应升温速率60℃/h-80℃/h之间,之后由400℃升高至1300-1350℃,对应升温速率120℃/h-140℃/h之间,最后经1300℃-1350℃保温烧结3-5小时后得到多孔陶瓷材料。
本发明有益的技术效果在于:
本发明多孔材料中添加四羟基草酸铝作为造孔剂并加入熔剂的技术方案,具有如下的优势:1)四羟基草酸铝受热失重量大、产生气体多,非常适合陶瓷造孔;2)四羟基草酸铝受热分解后原位产生超细氧化铝颗粒,并与陶瓷相中其他组分结合,使材料的强度提高,避免了常见造孔剂完全分解气化后产生材料缺陷的问题;3)所添加的熔剂保证了四羟基草酸铝受热分解释放气体的温度窗口内陶瓷前驱体内形成熔融相,这便保证了四羟基草酸铝分解产生的气体被用于造孔、而不是仅仅由颗粒缝隙间逃逸浪费。本技术方案中陶瓷材料的泥料前驱体在400℃以前的升温速度较低也是出于这种考虑。
本发明中四羟基草酸铝是具有能够在300-400℃下大量释放CO2和气态H2O的功能材料,其热分解的产物为超细的活性氧化铝,非常有利于与其他的陶瓷原料组分原位结合形成陶瓷相,就避免了常见陶瓷造孔剂在热分解气化后形成空洞并导致材料缺陷的问题。由于四羟基草酸铝颗粒的粒度可控,当均匀分散于泥料前驱体中时,其热分解过程气体的产生过程均匀可控,非常适合制备孔径均匀的大孔隙率陶瓷体材料。此外,本技术方案中在添加四羟基草酸铝作为造孔剂的同时,还添加了熔剂,这保证了四羟基草酸铝颗粒分解释放气体的同时陶瓷前驱体中已经形成少量熔融相,避免了四羟基草酸铝颗粒热分解释放的气体从颗粒间逃逸损失,同时熔剂所参与形成的熔融相有很好的连接能力,可以实现四羟基草酸铝颗粒热分解产生的活性氧化铝和陶瓷材料其他组分的粘结,这赋予了材料较高的强度和灼烧成品率,解决了常见多孔陶瓷因为孔隙率大而容易产生裂纹缺陷的问题。
本发明利用四羟基草酸铝颗粒作造孔剂,其分解产物主要为CO2和H2O,避免了常见造孔剂热分解时常常产生VOCs和异味气体的问题,使陶瓷烧成过程更加环保。
具体实施方式
下面结合实施例,对本发明进行具体描述。
实施例1
表1
原料名称 | 细度μm | 粘度mpa.s | 重量份数 |
α-氧化铝 | 5 | / | 60 |
苏州高岭土 | 3 | / | 5 |
四羟基草酸铝颗粒 | 0.04-0.1 | / | 15 |
硼酸锌 | 1 | / | 1 |
羟丙基甲基纤维素 | / | 6000 | 3 |
油酸 | / | / | 0.5 |
菜籽油 | / | / | 1 |
去离子水 | / | / | 15 |
将四羟基草酸铝颗粒和苏州高岭土依次放入混料机中并搅拌混合,之后加入α-氧化铝再次进行搅拌混合,接着加入硼酸锌粉并搅拌混合,最后添加羟丙基甲基纤维素,得到预混料;同时将油酸、菜籽油和水预先搅拌混合5min,得到混合溶液,将所得预混料加入捏合机,边捏合边加混合溶液并捏合20分钟,得到捏合泥料,将捏合泥料真空练泥二遍,陈腐24小时,挤出成型,微波干燥,在隧道窑中烧成,以80℃/h速率从室温到400℃;再以120℃/h升到1320℃,保温3小时。
经过上述步骤制备得到的产品孔隙率为38%,平均孔径为1.8微米,最大孔为2.29微米,抗折强度为18.6MPa,在0.02MPa下纯水通量为1.5m3/m2·h。
实施例2
表2
将四羟基草酸铝颗粒和钙基膨润土粉依次放入混料机中并搅拌混合,之后加入α-氧化铝再次进行搅拌混合,接着加入硼酸钠并搅拌混合,最后添加羟丙基甲基纤维素,得到预混料;同时将油酸、菜籽油和去离子水预先搅拌混合8min,得到混合溶液,将所得预混料加入捏合机,边捏合边加混合溶液并捏合20分钟,得到捏合泥料,将捏合泥料真空练泥二遍,陈腐30小时,挤出成型,微波干燥,在隧道窑中烧成,以60℃/h速率从室温到400℃;再以120℃/h升到1300℃,保温4小时。
根据上述工艺方法制备得到的产品孔隙率为42%,平均孔径为2.1微米,最大孔为2.89微米,抗折强度为20.4MPa,在0.02MPa下纯水通量为1.8m3/m2·h。
实施例3
表3
原料名称 | 细度μm | 粘度mpa.s | 重量份数 |
莫来石粉 | 8 | / | 65 |
红柱石 | 5 | / | 10 |
四羟基草酸铝颗粒 | 0.1-1 | / | 12 |
硼酸 | 1 | / | 1.5 |
淀粉醚 | / | 4000 | 5 |
硬脂酸钠 | / | / | 1 |
烯烃油 | / | / | 1 |
去离子水 | / | / | 16 |
将四羟基草酸铝颗粒和红柱石依次放入混料机中并搅拌混合,之后加入莫来石粉再次进行搅拌混合,接着加入硼酸并搅拌混合,最后添加淀粉醚,得到预混料;同时将烯烃油、硬脂酸钠和去离子水预先搅拌混合10min,得到混合溶液,将所得预混料加入捏合机,边捏合边加混合溶液并捏合20分钟,得到捏合泥料,将捏合泥料真空练泥二遍,陈腐40小时,挤出成型,微波干燥,在隧道窑中烧成,以70℃/h速率从室温到400℃;再以140℃/h升到1350℃,保温5小时。
根据上述所制备得到的产品孔隙率为45%,平均孔径为3.4微米,最大孔为6.97微米,抗折强度为23.8MPa,在0.02MPa下纯水通量为2.3m3/m2·h。
实施例4
表4
原料名称 | 细度μm | 粘度mpa.s | 重量份数 |
碳化硅粉 | 10 | / | 70 |
钙基膨润土粉 | 5 | / | 8 |
四羟基草酸铝颗粒 | 3-5 | / | 8 |
硼砂 | 2 | / | 3 |
黄原胶 | / | 5200 | 7 |
月桂酸 | / | / | 2 |
桐油 | / | / | 3 |
去离子水 | / | / | 18 |
将四羟基草酸铝颗粒和钙基膨润土粉依次放入混料机中并搅拌混合,之后加入碳化硅粉再次进行搅拌混合,接着加入硼砂并搅拌混合,最后添加黄原胶,得到预混料;同时将月桂酸、桐油和去离子水预先搅拌混合5min,得到混合溶液,将所得预混料加入捏合机,边捏合边加混合溶液并捏合20分钟,得到捏合泥料,将捏合泥料真空练泥二遍,陈腐48小时,挤出成型,微波干燥,在隧道窑中烧成,以80℃/h速率从室温到400℃;再以140℃/h升到1300℃,保温3小时。
产品孔隙率48%,平均孔径3.8微米,最大孔7.05微米,抗折强度24.3MPa,在0.02MPa下纯水通量2.6m3/m2·h。
对比例1(与实施例1进行对比)
表5
将γ-氧化铝和苏州高岭土粉依次放入混料机中并搅拌混合,之后加入α-氧化铝再次进行搅拌混合,接着加入硼酸锌粉并搅拌混合,最后添加羟丙基甲基纤维素,得到预混料;同时将油酸、菜籽油和水预先搅拌混合5min,得到混合溶液,将所得预混料加入捏合机,边捏合边加混合溶液并捏合20分钟,得到捏合泥料,将捏合泥料真空练泥二遍,陈腐24小时,挤出成型,微波干燥,在隧道窑中烧成,以80℃/h速率从室温到400℃;再以120℃/h升到1320℃,保温3小时。
通过该工艺制备得到的产品孔隙率为16%,平均孔径为1.6微米,最大孔为2.6微米,抗折强度为17.1MPa,在0.02MPa下纯水通量为1.1m3/m2·h。
对比例2(与实施例3进行对比)
表6
原料名称 | 细度μm | 粘度mpa.s | 重量份数 |
莫来石粉 | 8 | / | 65 |
红柱石 | 5 | / | 10 |
γ-氧化铝 | 0.1-1 | / | 12 |
硼酸钠 | 1 | / | 1.5 |
淀粉醚 | / | 4000 | 5 |
硬脂酸钠 | / | / | 1 |
烯烃油 | / | / | 1 |
去离子水 | / | / | 16 |
将γ-氧化铝和红柱石粉依次放入混料机中并搅拌混合,之后加入莫来石粉再次进行搅拌混合,接着加入硼酸钠并搅拌混合,最后添加淀粉醚,得到预混料;同时将烯烃油、硬脂酸钠和去离子水预先搅拌混合10min,得到混合溶液,将所得预混料加入捏合机,边捏合边加混合溶液并捏合20分钟,得到捏合泥料,将捏合泥料真空练泥二遍,陈腐40小时,挤出成型,微波干燥,在隧道窑中烧成,以880℃/h速率从室温到400℃;再以140℃/h升到1350℃,保温5小时。
通过本工艺制备得到的产品孔隙率为23%,平均孔径为2.4微米,最大孔为4.2微米,抗折强度为20.2MPa,在0.02MPa下纯水通量为1.3m3/m2·h。
以下表7产品的工艺关键点与性能参数汇总表
表7
实施例1-4,使用的是四羟基草酸铝颗粒作为造孔剂,形成材料孔隙率较大,从室温到400℃,升温速率60℃/h-80℃/h,此时为分解造孔阶段,400℃-1300℃升温速率加快到120℃/h-140℃/h,此时为材料烧成阶段,所得产品孔隙率大,成品率高,制得的多孔陶瓷制品非常适合用于水处理工业深度过滤。
以上描述仅为申请的较佳实施例,以及对所运用的技术进行说明和论证,本领域技术人员应当理解,本申请所涉及的发明范围,并不限于以上述技术特征和组合。
Claims (10)
1.一种多孔陶瓷材料,其特征在于,所述陶瓷材料所含原料及各原料重量份数为:骨料60-75份、高岭土5-10份、四羟基草酸铝8-15份、熔剂1-3份、粘合剂3-7份、分散剂0.5-2份、润滑剂1-3份与水15-18份。
2.根据权利要求1所述的多孔陶瓷材料,其特征在于,所述骨料为α-氧化铝、碳化硅、莫来石或尖晶石中的至少一种;所述骨料的平均粒径为5-15μm。
3.根据权利要求1所述的多孔陶瓷材料,其特征在于,所述陶瓷材料形状为片状、板状、管状或网状多孔陶瓷材料中的一种。
4.根据权利要求1所述的多孔陶瓷材料,其特征在于,所述四羟基草酸铝的粒径在40nm-5μm之间;优选的,所述四羟基草酸铝粒径在40nm-2μm之间。
5.根据权利要求1所述的多孔陶瓷材料,其特征在于,所述高岭土为膨润土、红柱石或水洗高岭土中的至少一种,且平均粒度为3-5μm。
6.根据权利要求1所述的多孔陶瓷材料,其特征在于,所述熔剂为硼酸、氧化硼、硼酸钠或硼酸锌中的至少一种,硼酸、氧化硼、硼酸钠与硼酸锌的纯度大于95%。
7.根据权利要求1所述的多孔陶瓷材料,其特征在于,所述粘合剂为羟丙基甲基纤维素、羟乙基纤维素、黄原胶或淀粉醚中的至少一种;且所述粘合剂的粘度范围为4000-6000mPa·s。
8.根据权利要求1所述的多孔陶瓷材料,其特征在于,所述分散剂为油酸、硬脂酸钠、月桂酸钾皂、硬脂酸或月桂酸中的至少一种。
9.根据权利要求1所述的多孔陶瓷材料,其特征在于,所述润滑剂为菜籽油、色拉油、玉米油、桐油或烯烃油中的至少一种。
10.根据权利要求1-9中任一项所述的多孔陶瓷材料的制备方法,其特征在于,所述制备方法包括如下步骤:
(1)混合:将四羟基草酸铝和高岭土依次放入混料机中搅拌混匀,之后加入骨料进行搅拌混匀,接着加入熔剂并搅拌混匀,最后添加粘合剂,得到预混料;同时将润滑剂、分散剂和水预先搅拌混合5min-10min,得到混合溶液;
(2)捏合:将步骤(1)中所得预混料加入捏合机,边捏合边喷入步骤(1)中所得混合溶液,得到捏合泥料;
(3)练泥:将步骤(2)中所得捏合泥料进行真空练泥2遍,真空度≥-0.08MPa,得到练泥浆料;
(4)陈腐:将步骤(3)中所得泥料放入温度为18-26℃陈腐室陈腐24h-48h,得到陈腐泥料;
(5)挤出成型:将步骤(4)中所得陈腐泥料经挤出机真空挤出陶瓷泥片;
(6)烘干:将步骤(5)中所得陶瓷泥片经微波干燥后,使得陶瓷泥片含水率≤3%;
(7)烧成:将步骤(6)中所得烘干陶瓷泥片装入燃气式隧道窑,经过阶梯式加热方式:从室温加热到400℃,对应升温速率60℃/h-80℃/h之间,之后由400℃升高至1300-1350℃,对应升温速率120℃/h-140℃/h之间,最后经1300℃-1350℃保温烧结3-5小时后得到多孔陶瓷材料。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010419499.5A CN111574203A (zh) | 2020-05-18 | 2020-05-18 | 一种多孔陶瓷材料及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010419499.5A CN111574203A (zh) | 2020-05-18 | 2020-05-18 | 一种多孔陶瓷材料及其制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111574203A true CN111574203A (zh) | 2020-08-25 |
Family
ID=72117469
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010419499.5A Withdrawn CN111574203A (zh) | 2020-05-18 | 2020-05-18 | 一种多孔陶瓷材料及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111574203A (zh) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040020176A1 (en) * | 2002-08-05 | 2004-02-05 | Kong Peter C. | Methods of fabricating cermet materials and methods of utilizing same |
CN1869155A (zh) * | 2005-05-25 | 2006-11-29 | 北京林业大学 | 一种新型铝系阻燃剂——四羟基草酸铝微晶及其生产方法 |
CN104043912A (zh) * | 2014-06-09 | 2014-09-17 | 广东省工业技术研究院(广州有色金属研究院) | 一种适用于管线钢焊接用自保护药芯焊丝 |
CN104844264A (zh) * | 2015-04-13 | 2015-08-19 | 山东理工大学 | 一种生物质催化液化用多孔陶瓷负载催化剂及制备方法 |
CN108017409A (zh) * | 2016-11-04 | 2018-05-11 | 云南菲尔特环保科技股份有限公司 | 一种低温烧结的碳化硅蜂窝陶瓷材料及制备方法 |
CN110963787A (zh) * | 2019-12-19 | 2020-04-07 | 江苏省宜兴非金属化工机械厂有限公司 | 一种利用干冰填充改性硅胶粉造孔剂制备的多孔陶瓷材料及其制备方法 |
-
2020
- 2020-05-18 CN CN202010419499.5A patent/CN111574203A/zh not_active Withdrawn
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040020176A1 (en) * | 2002-08-05 | 2004-02-05 | Kong Peter C. | Methods of fabricating cermet materials and methods of utilizing same |
CN1869155A (zh) * | 2005-05-25 | 2006-11-29 | 北京林业大学 | 一种新型铝系阻燃剂——四羟基草酸铝微晶及其生产方法 |
CN104043912A (zh) * | 2014-06-09 | 2014-09-17 | 广东省工业技术研究院(广州有色金属研究院) | 一种适用于管线钢焊接用自保护药芯焊丝 |
CN104844264A (zh) * | 2015-04-13 | 2015-08-19 | 山东理工大学 | 一种生物质催化液化用多孔陶瓷负载催化剂及制备方法 |
CN108017409A (zh) * | 2016-11-04 | 2018-05-11 | 云南菲尔特环保科技股份有限公司 | 一种低温烧结的碳化硅蜂窝陶瓷材料及制备方法 |
CN110963787A (zh) * | 2019-12-19 | 2020-04-07 | 江苏省宜兴非金属化工机械厂有限公司 | 一种利用干冰填充改性硅胶粉造孔剂制备的多孔陶瓷材料及其制备方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102155075B1 (ko) | 세라믹 폼 필터 및 그 제조방법 | |
CN111533572B (zh) | 一种多孔碳化硅陶瓷支撑体的制备方法 | |
CN108017409B (zh) | 一种低温烧结的碳化硅蜂窝陶瓷材料及制备方法 | |
CN106316447B (zh) | 一种稻壳基多孔碳化硅陶瓷材料及其制备方法 | |
CN104402517B (zh) | 一种Al2O3-SiC泡沫陶瓷及其制备方法 | |
CN102807384B (zh) | 高气孔率的碳化硅多孔陶瓷的制备方法 | |
CN113563103B (zh) | 一种采用流延成型法制备梯度氧化铝多孔陶瓷的方法 | |
CN108558418B (zh) | 一种轻量高强六铝酸钙耐火材料的制备方法 | |
US20110262689A1 (en) | Composition for extrusion-molded bodies | |
CN110922204A (zh) | 一种低温烧结氧化铝陶瓷膜的制备方法 | |
CN112430123A (zh) | 一种窄孔径分布、大尺寸堇青石汽油颗粒过滤器及其制备方法 | |
US8101117B2 (en) | Controlled gas pore formers in extruded ware | |
CN105669163B (zh) | 一种镍渣粉烧制的轻质高强陶粒及其制备工艺 | |
CN107188610B (zh) | 一种多孔碳化硅陶瓷的制备方法 | |
JP2012504092A (ja) | 多孔質SiC材料の製造方法 | |
US7914718B2 (en) | Gas pore former in cellular monoliths | |
CN112939583B (zh) | 一种铝矾土尾矿制备的rto蜂窝陶瓷蓄热体及其制备方法 | |
CN104072142A (zh) | 一种氧化物结合SiC多孔陶瓷的制备方法 | |
CN111574203A (zh) | 一种多孔陶瓷材料及其制备方法 | |
CN110759713A (zh) | 一种气化渣多孔烧结砖及其制备方法 | |
CN111960846A (zh) | 一种纳米多孔材料及其制备方法 | |
JP2009256175A (ja) | ハニカム構造体の製造方法 | |
CN110963787A (zh) | 一种利用干冰填充改性硅胶粉造孔剂制备的多孔陶瓷材料及其制备方法 | |
CN107721259B (zh) | 一种高性能透水砖 | |
CN115872772A (zh) | 一种粉煤灰基陶瓷膜支撑体的制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB03 | Change of inventor or designer information | ||
CB03 | Change of inventor or designer information |
Inventor after: Chen Mingxiang Inventor after: Feng Jiadi Inventor before: Chen Mingxiang Inventor before: Feng Jiadi |
|
WW01 | Invention patent application withdrawn after publication | ||
WW01 | Invention patent application withdrawn after publication |
Application publication date: 20200825 |