CN111569670A - 一种聚酚介导的普鲁士蓝/石英纳米复合膜及其制备方法与用途 - Google Patents

一种聚酚介导的普鲁士蓝/石英纳米复合膜及其制备方法与用途 Download PDF

Info

Publication number
CN111569670A
CN111569670A CN202010335221.XA CN202010335221A CN111569670A CN 111569670 A CN111569670 A CN 111569670A CN 202010335221 A CN202010335221 A CN 202010335221A CN 111569670 A CN111569670 A CN 111569670A
Authority
CN
China
Prior art keywords
quartz
prussian blue
membrane
polyphenol
mediated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010335221.XA
Other languages
English (en)
Other versions
CN111569670B (zh
Inventor
王璐璐
黄智康
李高翔
李桐
刘洪波
张瑞龙
戴江栋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu University
Original Assignee
Jiangsu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University filed Critical Jiangsu University
Priority to CN202010335221.XA priority Critical patent/CN111569670B/zh
Publication of CN111569670A publication Critical patent/CN111569670A/zh
Application granted granted Critical
Publication of CN111569670B publication Critical patent/CN111569670B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D17/00Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
    • B01D17/02Separation of non-miscible liquids
    • B01D17/04Breaking emulsions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0079Manufacture of membranes comprising organic and inorganic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/024Oxides
    • B01D71/027Silicium oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/1691Coordination polymers, e.g. metal-organic frameworks [MOF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/58Fabrics or filaments
    • B01J35/59Membranes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/10Catalysts being present on the surface of the membrane or in the pores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/36Hydrophilic membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/38Hydrophobic membranes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

本发明属于环境功能材料制备技术领域,具体涉及一种聚酚介导的普鲁士蓝/石英纳米复合膜及其制备方法与用途。本发明通过简单浸渍法,在石英膜表面层层堆叠负载单宁酸与铁离子络合物TA‑Fe和普鲁士蓝PB;构建出一种具有类似于荷叶表面有机‑无机仿生结构的超亲水‑水下超疏油性能的PB/TA‑Fe@QF复合膜;该复合膜制备方法操作过程简单、快速、廉价且没有废弃物产生,符合环境友好的理念。本发明制备的PB/TA‑Fe@QF复合膜具有优异的油水分离效果,适用于多种油类、乳液的分离,分离率达到99%以上;具有良好的稳定性和循环使用性,在重复油水乳液10次后,依然保持良好的油水分离效率;而且本发明具有良好的有机染料降解性能。具有广阔的商业应用前景。

Description

一种聚酚介导的普鲁士蓝/石英纳米复合膜及其制备方法与 用途
技术领域
本发明属于环境功能材料制备技术领域,具体涉及一种聚酚介导的普鲁士蓝/石英纳米复合膜及其制备方法与用途。
背景技术
石油化工、冶金、制药等行业排放的含油污水及生活污水急剧增加,由于缺乏自我降解和净化能力,对动植物生长、人体健康和生态环境造成严重危害。传统的油水分离技术,如重力法、离心法、浮选法和生物法,可以有效地分离不混溶的油水混合物,但在处理表面活性剂稳定的乳状液时往往会出现故障。膜过滤技术以其操作简单、能耗低、无相变等优点,特别是在高效分离乳状液方面受到了众多研究者的广泛关注。近年来,微/纳米结构材料能有效地阻隔油滴,在一定程度上减少膜污染。但在长期的油水分离过程中,膜在外压作用下仍不可避免地受到油滴或表面活性剂的污染,导致膜通量和分离效率逐渐降低。因此,提高超亲水膜的防污和循环利用能力至关重要。
目前,将微纳米催化剂材料引入油水分离膜的设计和制备中,从而实现催化自清洁。但大多数催化自清洁膜主要集中在光催化技术上,而光催化技术通常依赖于附加的仪器和设备。在催化复合膜的设计和制备过程中,探索其他先进氧化工艺具有重要意义。此外,简单、快速、低成本、大规模地制备用于油水分离的催化自清洁膜仍然是一个巨大的挑战。
近年来,普鲁士蓝(PB)及其类似物(PBAs)作为一类典型的金属有机骨架(MOFs),由金属离子与氰化物配体桥联而成,不仅具有高的比表面积、均匀的孔隙率、内在有序的开孔和混合价态,而且具有良好的催化活性也具有制备简单、成本低、稳定性高等优点。单宁酸(TA)是一种典型的多酚类化合物,含有大量的没食子酸基团,可以可作为表面功能化的多功能粘附平台与Fe3+离子螯合,在几分钟内沉积3D稳定膜。但是目前还未见关于普鲁士蓝与单宁酸相关材料用于油水分离领域的报道出现。
发明内容
有鉴于此,本发明的目的在于提供一种聚酚介导的普鲁士蓝/石英纳米复合膜及其制备方法与用途。本发明将有机-无机层层堆叠制备出仿生复合膜,制备的复合膜具有优异的超亲水-水下超疏油性质,能对油水乳液进行有效分离并在过氧单硫酸酯(PMS)的作用下催化降解胭脂红实现自清洁。
为了实现上述目的,本发明提供如下技术方案:
本发明提供了一种聚酚介导的普鲁士蓝/石英纳米复合膜(PB/TA-Fe@QF),所述的复合膜以石英膜(QF)为基底,在石英膜表面层层堆叠负载单宁酸与铁离子络合物(TA-Fe)和普鲁士蓝,构建成有机-无机涂层结构;所述的聚酚介导的普鲁士蓝/石英纳米复合膜具有对油水乳液进行有效分离并在具有一定的有机染料降解能力及自清洁性能。
此外,本发明还提供了上述聚酚介导的普鲁士蓝/石英纳米复合膜的制备方法,所述制备方法具体包括如下步骤:
(1)将石英膜浸渍于含有单宁酸(TA)和Fe3+的混合溶液中反应,取出漂洗、烘干;
(2)将步骤(1)中烘干后的膜浸入FeCl3溶液中,烘干;再浸入亚铁氰化钾溶液中反应,漂洗烘干后制备出聚酚介导的普鲁士蓝/石英纳米复合膜。
本发明中,步骤(1)中所述石英膜的厚度为0.4~0.6mm。
步骤(1)中所述混合溶液中TA和Fe3+的摩尔浓度比为3~5:1。
步骤(1)中所述反应的时间为2~5 min。
步骤(2)中,所述FeCl3的浓度为0.5~10 mg/mL。
步骤(2)中,所述亚铁氰化钾溶液的浓度为0.5~10 mg/mL。
步骤(2)中所述浸入FeCl3溶液中的时间为2~3 min,所述反应的时间为5~10 min。
本发明中所述烘干的温度均为45~55 ℃,烘干时间均为2~4 min。
本发明还提供了上述制备方法制备的PB/TA-Fe@QF复合膜在油水乳液分离中的应用,尤其应用在分离纯化含油乳液。
本发明还提供了上述制备方法制备的PB/TA-Fe@QF复合膜在有机染料催化降解中的应用。
与现有技术相比,本发明的有益效果是:
本发明通过简单浸渍法,在石英膜表面层层堆叠负载单宁酸与铁离子络合物TA-Fe和普鲁士蓝PB;构建出一种具有类似于荷叶表面有机-无机仿生结构的超亲水-水下超疏油性能的PB/TA-Fe@QF复合膜;该复合膜制备方法操作过程简单、快速、廉价且没有废弃物产生,符合环境友好的理念。本发明制备的PB/TA-Fe@QF复合膜具有超亲水-水下超疏油性能,适用于多种油类、乳液的分离,分离率达到99%以上;具有良好的稳定性和催化自清洁性能,在重复油水乳液10次后,依然保持良好的油水分离效率,可以多次循环使用;而且本发明具有良好的有机染料降解性能。在水净化领域具有广阔的商业前景。
附图说明
图1是本发明所制备的PB/TA-Fe@QF复合膜的SEM图;
图2是本发明所制备的PB/TA-Fe@QF复合膜的XRD图;
图3是本发明所制备的PB/TA-Fe@QF复合膜的水下油滴接触角示意图;
图4是制备的PB/TA-Fe@QF复合膜在酸碱或盐环境浸泡后的水下油接触角;
图5是对染料胭脂红降解过程中的紫外测试图;
图6是PB/TA-Fe@QF复合膜对石油醚/水乳状液的通量图。
具体实施方式
通过下面的实施例可以对本发明进行进一步的描述,然而,本发明的范围并不限于下述实施例。本发明对试验中所使用到的材料以及试验方法进行一般性和/或具体的描述。下列实施例中未注明具体条件的实验方法,通常按照常规条件或按照厂商所建议的条件实施检测。下列实施例中所用的试剂均可以通过商业途径购买。
实施例1
将厚度为0.4 mm的石英膜,浸渍于浓度为1 mg/mL的FeCl3和4 mg/mL的TA体积比为1:1的混合溶液中,5 min后于清水中漂洗,放入45℃的烘箱中干燥2 min;再将网膜浸入1 mg/mL的FeCl3溶液中,反应2 min后在45℃干燥,最后将网膜浸入1 mg/mL的亚铁氰化钾溶液中,反应5 min后置于清水中漂洗,45℃的烘箱中烘干后得到PB/TA-Fe@QF复合膜。
采用扫描电子显微镜(SEM)观察制备的PB/TA-Fe@QF复合膜与改性前石英膜的表面形貌特征。图1是制备的PB/TA-Fe@QF复合膜与改性前石英膜的SEM图;图中,(a)是改性前石英膜,(b)是制备的PB/TA-Fe@QF复合膜;由图1可以看出,制备的PB/TA-Fe@QF复合膜具有粗糙的表面结构,TA-Fe和PB成功地负载到石英膜表面。
对制备的PB/TA-Fe@QF复合膜中元素的价键进行分析,图2是制备的PB/TA-Fe@QF复合膜的XRD图;由图2可见,XRD图中出现有PB和SiO2的峰结构,进一步说明PB成功地负载到石英膜上。通过光学接触角测量仪测试制备的PB/TA-Fe@QF复合膜水下油滴接触角的变化情况;图3是制备的PB/TA-Fe@QF复合膜的水下油滴接触角示意图;由图3可见,制备的复合膜接触角达到160.7°,其在水下表现出超疏油特性,可以实现油水乳液分离的目的。
实施例2
将厚度为0.5 mm的石英膜浸渍于浓度为0.5 mg/mL的FeCl3和2.5 mg/mL的TA体积比为1:1的混合溶液中,2min后置于清水中漂洗,放入45 ℃的烘箱中干燥2 min;再将网膜浸入0.5 mg/mL的FeCl3溶液中,反应2 min后放入55 ℃烘箱中干燥,最后将网膜浸入0.5 mg/mL的亚铁氰化钾溶液中,反应5 min,然后置于清水中漂洗,放入45 ℃的烘箱中烘干,得到PB/TA-Fe@QF复合膜。
实施例3
将厚度为0.6 mm的石英膜浸渍于浓度为1 mg/mL的FeCl3和3 mg/mL的TA体积比为1:1的混合溶液中,2 min后置于清水中漂洗,放入45 ℃的烘箱中干燥2 min;再将网膜浸入10mg/mL的FeCl3溶液中,反应2 min后放入45 ℃烘箱中干燥,最后将网膜浸入10 mg/mL的亚铁氰化钾溶液中,反应5 min,然后置于清水中漂洗,放入45 ℃的烘箱中烘干,得到PB/TA-Fe@QF复合膜。
实施例4
将购买的厚度为0.4 mm的石英膜浸渍于浓度为1 mg/mL的FeCl3和4 mg/mL的TA体积比为1:1的混合溶液中,2 min后置于清水中漂洗,放入45 ℃的烘箱中干燥2 min;再将网膜浸入5 mg/mL的FeCl3溶液中,反应2 min后放入45℃烘箱中干燥,最后将网膜浸入5 mg/mL的亚铁氰化钾溶液中,反应5 min,然后置于清水中漂洗,放入45 ℃的烘箱中烘干,得到PB/TA-Fe@QF复合膜。
实施例5
将实施例1中制得的PB/TA-Fe@QF复合膜固定到直径为1.5cm的油水乳液分离装置中,用少量蒸馏水将PB/TA-Fe@QF复合膜表面润湿,以石油醚乳液(1%)为例测试分离性能,石油醚乳液分为3份,每份50 mL,且每份样品测试3次,整个实验过程在重力条件下进行。油水分离效率按以下公式计算:
Figure DEST_PATH_IMAGE001
其中,S为分离效率,T0为对应的油或水的平均透过率。T1是对应的油或水过滤后的平均透过率。Tfeed是原始乳状液平均透过率。经过计算,石油醚乳液的分离效率达到99.8%。10次重复后石油醚乳液的分离效率依然达到85%以上。
实施例6
本实施例中检测制备的PB/TA-Fe@QF复合膜在酸碱或盐环境中的稳定性:
将实施例4所制备的PB/TA-Fe@QF复合膜,分别放入不同pH值(3、5、7、10、12)、不同浓度NaCl溶液(NaCl的质量分数分别为1%、2%、3%、5%、10%)中浸泡12h,以二氯乙烷测试制备的PB/TA-Fe@QF复合膜在酸、碱或盐环境中浸泡一段时间的稳定性,并测量其水下油接触角。
图4是制备的PB/TA-Fe@QF复合膜在酸碱或盐环境浸泡后的水下油接触角;图中,(a)是浸泡在不同酸碱环境后的水下油接触角图,(b)是浸泡在不同浓度盐环境后的水下油接触角图;由图4可见,在不同酸碱环境或盐环境中浸泡12小时后制备的PB/TA-Fe@QF复合膜的水下油接触角仍在150°以上,可见其在酸、碱或盐环境中均具有良好的稳定性能。
实施例7
本实施例中以实施例4所制备的PB/TA-Fe@QF复合膜为例,利用活化过硫酸盐技术降解有机染料胭脂红,测试其对含有胭脂红的过硫酸氢钾溶液的截留性能,探究其在有机物染料降解中的应用。将PB/TA-Fe@QF复合膜浸入50 mL含有胭脂红的过硫酸氢钾溶液(每升溶液中含有0.01g胭脂,10mmoL过硫酸氢钾)中,用紫外可见分光光度计度(Mapada,UV-1800PC)进行分析测试,分析测试其是否含有波长为510nm的胭脂红。前20min内每2min取一次样,20 min后每5min取一次样。
图5是对染料胭脂红降解过程中的紫外测试图;由图5可见,所制备的PB/TA-Fe@QF复合膜降解反应溶液30min时,测试胭脂红的吸光度几乎为0,说明制备的PB/TA-Fe@QF复合膜在过氧单硫酸酯(PMS)的作用下具有显著的催化降解胭脂红溶液的效果,可应用于有机染料的降解。
实施例8
本实施例以实施例4所制备的PB/TA-Fe@QF复合膜为例探究其自清洁性能。将实施例4中制得的PB/TA-Fe@QF复合膜固定到直径为1.5cm的油水乳液分离装置中,用少量蒸馏水将PB/TA-Fe@QF复合膜表面润湿,以石油醚/水乳液(1%)为例测试其自清洁性能,每次注入石油醚乳液为5 mL,在重力条件下进行记录过滤时间并计算其通量,分离完用去离子水清该复合膜,直至该复合膜的通量下降严重时,在0.01Mpa压力下用去离子水清洗1min。再重复上述操作过滤石油醚/水乳液,在重力条件下进行记录过滤时间并计算其通量,分离完用去离子水清洗该复合膜,直至该复合膜的通量再次下降严重时,在0.01Mpa压力下用10 mmol/L 过硫酸氢钾水溶液清洗1min。再次重复过滤石油醚/水乳液,在重力条件下进行记录过滤时间并计算其通量,分离完用去离子水清洗该复合膜。通量按以下公式进行计算:
Figure 569786DEST_PATH_IMAGE002
其中,J是渗透通量,V (L)的渗透的体积,A是有效膜面积(m2),和Δt (h)是分离时间,ΔP (pa)应用的压力。
图6是PB/TA-Fe@QF复合膜对石油醚/水乳状液的通量图;由图6可见,制备的PB/TA-Fe@QF复合膜最初过滤石油醚/水乳液的通量为274.69Lm-2h-1,在过滤的石油醚/水乳状液的体积达到36mL时,PB/TA-Fe@QF复合膜的通量达到最低,经水加压冲洗后通量恢复到233.21 Lm-2h-1,经过硫酸氢钾水溶液加压冲洗后通量恢复到270.47 Lm-2h-1。可见,制备的PB/TA-Fe@QF复合膜使用后经过去离子水的加压清洗后恢复84.9%的通量,过硫酸氢钾溶液的加压清洗后膜通量恢复到98.5%,说明PB/TA-Fe@QF膜有良好的自清洁能力及使用寿命,在含油有废水处理领域有广泛的应用前景。
上述实例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人是能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明精神实质所做的等效变换或修饰,都应涵盖在本发明的保护范围。

Claims (10)

1.一种聚酚介导的普鲁士蓝/石英纳米复合膜,其特征在于,所述的复合膜以石英膜为基底,在石英膜表面层层堆叠负载单宁酸与铁离子的络合物和普鲁士蓝,构建成有机-无机涂层结构。
2.一种聚酚介导的普鲁士蓝/石英纳米复合膜的制备方法,其特征在于,所述复合膜包括如下制备步骤:
(1)将石英膜浸渍于含有单宁酸和Fe3+的混合溶液中反应,取出漂洗、烘干;
(2)将步骤(1)中烘干后的膜浸入FeCl3溶液中,烘干;再浸入亚铁氰化钾溶液中反应,漂洗烘干后制备出聚酚介导的普鲁士蓝/石英纳米复合膜。
3.根据权利要求2所述的制备方法,其特征在于,步骤(1)中所述石英膜的厚度为0.4~0.6mm。
4.根据权利要求2所述的制备方法,其特征在于,步骤(1)中所述混合溶液中TA和Fe3+的摩尔浓度比为3~5:1。
5.根据权利要求2所述的制备方法,其特征在于,步骤(2)中,所述FeCl3的浓度为0.5~10mg/mL。
6.根据权利要求2所述的制备方法,其特征在于,步骤(2)中,所述亚铁氰化钾溶液的浓度为0.5~10 mg/mL。
7.根据权利要求2所述的制备方法,其特征在于,步骤(2)中所述浸入FeCl3溶液中的时间为2~3 min,所述反应的时间为5~10 min。
8.根据权利要求2所述的制备方法,其特征在于,所述烘干的温度均为45~55 ℃,烘干时间均为2~4 min。
9.根据权利要求1所述的聚酚介导的普鲁士蓝/石英纳米复合膜的在油水乳液分离中的应用。
10.根据权利要求1所述的聚酚介导的普鲁士蓝/石英纳米复合膜的在有机染料催化降解中的应用。
CN202010335221.XA 2020-04-24 2020-04-24 一种聚酚介导的普鲁士蓝/石英纳米复合膜及其制备方法与用途 Active CN111569670B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010335221.XA CN111569670B (zh) 2020-04-24 2020-04-24 一种聚酚介导的普鲁士蓝/石英纳米复合膜及其制备方法与用途

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010335221.XA CN111569670B (zh) 2020-04-24 2020-04-24 一种聚酚介导的普鲁士蓝/石英纳米复合膜及其制备方法与用途

Publications (2)

Publication Number Publication Date
CN111569670A true CN111569670A (zh) 2020-08-25
CN111569670B CN111569670B (zh) 2022-05-20

Family

ID=72109144

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010335221.XA Active CN111569670B (zh) 2020-04-24 2020-04-24 一种聚酚介导的普鲁士蓝/石英纳米复合膜及其制备方法与用途

Country Status (1)

Country Link
CN (1) CN111569670B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3704046A1 (de) * 1987-02-10 1988-08-18 Allgaeuer Alpenmilch Verfahren zum entfernen von radioaktiven metallen aus fluessigkeiten, lebens- und futtermitteln
JP2014091088A (ja) * 2012-11-05 2014-05-19 Japan Exlan Co Ltd ポリアクリロニトリル系膜および該膜を含有するセシウムイオン吸着材
CN104445571A (zh) * 2014-10-23 2015-03-25 上海交通大学 一种紫外光助非均相芬顿氧化污水处理方法
CN107008161A (zh) * 2017-04-06 2017-08-04 江苏大学 一种普鲁士蓝/羧甲基纤维素凝胶改性复合膜及制备方法和用途
CN107158963A (zh) * 2017-06-01 2017-09-15 江苏大学 一种铁‑单宁酸骨架改性复合膜的制备方法及其用途
CN109354131A (zh) * 2018-11-23 2019-02-19 浙江工业大学 一种基于静电纺丝制备电化学脱盐电极的方法
CN109603565A (zh) * 2018-12-12 2019-04-12 浙江工业大学 儿茶酚类化合物辅助沉积合成金属有机骨架复合膜的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3704046A1 (de) * 1987-02-10 1988-08-18 Allgaeuer Alpenmilch Verfahren zum entfernen von radioaktiven metallen aus fluessigkeiten, lebens- und futtermitteln
JP2014091088A (ja) * 2012-11-05 2014-05-19 Japan Exlan Co Ltd ポリアクリロニトリル系膜および該膜を含有するセシウムイオン吸着材
CN104445571A (zh) * 2014-10-23 2015-03-25 上海交通大学 一种紫外光助非均相芬顿氧化污水处理方法
CN107008161A (zh) * 2017-04-06 2017-08-04 江苏大学 一种普鲁士蓝/羧甲基纤维素凝胶改性复合膜及制备方法和用途
CN107158963A (zh) * 2017-06-01 2017-09-15 江苏大学 一种铁‑单宁酸骨架改性复合膜的制备方法及其用途
CN109354131A (zh) * 2018-11-23 2019-02-19 浙江工业大学 一种基于静电纺丝制备电化学脱盐电极的方法
CN109603565A (zh) * 2018-12-12 2019-04-12 浙江工业大学 儿茶酚类化合物辅助沉积合成金属有机骨架复合膜的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KENJI HONDA ET AL.,: "《Structural Control of the Prussian Blue-Nafion Composite Membrane》", 《CHEMISTRY LETTERS》 *
XUEWU ZHU ET AL.,: "《Supramolecular-Based Regenerable Coating Layer of a Thin-Film Composite Nanofiltration Membrane for Simultaneously Enhanced Desalination and Antifouling Properties》", 《ACS APPLIED MATERIALS & INTERFACES》 *

Also Published As

Publication number Publication date
CN111569670B (zh) 2022-05-20

Similar Documents

Publication Publication Date Title
Yin et al. A multifunctional and environmentally safe superhydrophobic membrane with superior oil/water separation, photocatalytic degradation and anti-biofouling performance
Lu et al. Cellulose-based electrospun nanofiber membrane with core-sheath structure and robust photocatalytic activity for simultaneous and efficient oil emulsions separation, dye degradation and Cr (VI) reduction
Yan et al. Nanocomposite hydrogel engineered hierarchical membranes for efficient oil/water separation and heavy metal removal
Yin et al. A harsh environment resistant robust Co (OH) 2@ stearic acid nanocellulose-based membrane for oil-water separation and wastewater purification
Liu et al. Durable Co (OH) 2/stearic acid-based superhydrophobic/superoleophilic nanocellulose membrane for highly efficient oil/water separation and simultaneous removal of soluble dye
Bai et al. Layered metal oxides loaded ceramic membrane activating peroxymonosulfate for mitigation of NOM membrane fouling
Li et al. Facile construction of robust superhydrophobic ZIF‐8@ pulp/cellulose nanofiber (CNF) membrane for multifunctional applications
CN113144917B (zh) 一种海胆状的镍钴水滑石不锈钢网膜及其制备方法和应用
Miao et al. Ag/polydopamine-coated textile for enhanced liquid/liquid mixtures separation and dye removal
Ma et al. MOF derivative functionalized titanium-based catalytic membrane for efficient sulfamethoxazole removal via peroxymonosulfate activation
Yin et al. A superhydrophobic pulp/cellulose nanofiber (CNF) membrane via coating ZnO suspensions for multifunctional applications
Li et al. Mussel-inspired fabrication of superhydrophobic cellulose-based paper for the integration of excellent antibacterial activity, effective oil/water separation and photocatalytic degradation
Zhai et al. Highly sensitive colorimetric detection and effective adsorption of phosphate based on MOF-808 (Zr/Ce)
CN113977722A (zh) 一种Janus型特殊润湿性木质纳米复合材料的制备方法
Bensalah et al. Adsorption of the Orange Methyl Dye and Lead (II) by the Cationic Resin Amberlite® IRC-50: Kinetic Study and Modeling of Experimental Data.
CN111569670B (zh) 一种聚酚介导的普鲁士蓝/石英纳米复合膜及其制备方法与用途
Yu et al. Quaternized polyethyleneimine-polyacrylonitrile crosslinked membrane with excellent performance synthetized by homogeneous strategy for efficient uranium extraction from seawater
CN107008161A (zh) 一种普鲁士蓝/羧甲基纤维素凝胶改性复合膜及制备方法和用途
CN114011252A (zh) 配位自组装结合延迟相变制备CoFe-PBA@PVDF复合膜的方法与其用途
Yang et al. Antifouling multi-functional membrane for oil/dye wastewater treatment: Regeneration while treating mixed pollutants
Wang et al. Preparation of super hydrophilic-underwater super oleophobic photoinduced self-cleaning Al2O3@ TiO2 ceramic membrane and separation performance of oil-in-water emulsion
Chen et al. UV-activated superwetting ability of electrospun polysulfone/titanium dioxide membranes toward highly efficient methylene blue removal and oil/water separation
CN115414919B (zh) 一种功能化共价有机框架材料及其制备方法、应用
Gkogkou et al. Highly efficient removal of crude oil and dissolved hydrocarbons from water using superhydrophobic cotton filters
CN113877426A (zh) 一种超疏水聚丙烯改性超滤膜及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant